baselines working on Linux
Browse files- baseline.py +9 -8
- codeprops_bench_ps.jsonl +10 -10
- utils.py +28 -18
baseline.py
CHANGED
@@ -29,11 +29,11 @@ def get_tactics_llmstep(goal, prev_file):
|
|
29 |
|
30 |
# for benchmarking 'get_tactics' functions that suggest several next possible steps for a given
|
31 |
# proofstate + optionally file context.
|
32 |
-
def benchmark_nextstep(pwd, get_tactics, send_command, search_depth=3, repl_type='zsh'):
|
33 |
lean_repl = make_lean_repl(repl_type=repl_type)
|
34 |
|
35 |
# get the first command out of the way which has a weird "expect" behavior using icanon mode
|
36 |
-
mathlib_out, mathlib_env = send_command(lean_repl, 'import Mathlib', env=None, first=True)
|
37 |
|
38 |
num_proved = 0
|
39 |
num_attempted = 0
|
@@ -41,7 +41,7 @@ def benchmark_nextstep(pwd, get_tactics, send_command, search_depth=3, repl_type
|
|
41 |
print(prop_name)
|
42 |
#time.sleep(5)
|
43 |
num_attempted += 1
|
44 |
-
#if num_attempted <
|
45 |
# continue
|
46 |
successful_def = False
|
47 |
while not successful_def:
|
@@ -58,7 +58,7 @@ def benchmark_nextstep(pwd, get_tactics, send_command, search_depth=3, repl_type
|
|
58 |
successful_def = False
|
59 |
lean_repl.close()
|
60 |
lean_repl = make_lean_repl(repl_type=repl_type)
|
61 |
-
mathlib_out, mathlib_env = send_command(lean_repl, 'import Mathlib', env=None, first=True)
|
62 |
break
|
63 |
all_lines.append(line)
|
64 |
|
@@ -77,8 +77,8 @@ def benchmark_nextstep(pwd, get_tactics, send_command, search_depth=3, repl_type
|
|
77 |
print(f'search at level {search_lvl}')
|
78 |
for (curr_goal, ps, tac_seq) in old_ps:
|
79 |
next_tactics = get_tactics(curr_goal, prev_lines)
|
80 |
-
for next_tactic, _scr in sorted(next_tactics, key=lambda p: -p[1])[:
|
81 |
-
print('\n'.join(tac_seq + [next_tactic]))
|
82 |
outp, new_proofState = send_tactic(lean_repl, next_tactic, ps)
|
83 |
if outp is None:
|
84 |
continue # i.e. timeout/error on tactic sending
|
@@ -340,9 +340,10 @@ if __name__ == '__main__':
|
|
340 |
|
341 |
#benchmark_nextstep(pwd, get_tactics_interactive, send_command, repl_type=repl_type) # get_tactics_interactive for testing
|
342 |
|
343 |
-
pwd = parse_benchmark_input('
|
344 |
|
345 |
if bench_type == 'nextstep':
|
346 |
benchmark_nextstep(pwd, get_tactics_llmstep, send_command, repl_type=repl_type) # get_tactics_llmstep for benchmarking
|
347 |
elif bench_type == 'fullproof':
|
348 |
-
benchmark_full_proofgen(pwd, get_proof_gpt, send_command, repl_type=repl_type)
|
|
|
|
29 |
|
30 |
# for benchmarking 'get_tactics' functions that suggest several next possible steps for a given
|
31 |
# proofstate + optionally file context.
|
32 |
+
def benchmark_nextstep(pwd, get_tactics, send_command, search_depth=3, search_width=10, repl_type='zsh'):
|
33 |
lean_repl = make_lean_repl(repl_type=repl_type)
|
34 |
|
35 |
# get the first command out of the way which has a weird "expect" behavior using icanon mode
|
36 |
+
mathlib_out, mathlib_env = send_command(lean_repl, 'import Mathlib', env=None, first=True, timeout=30)
|
37 |
|
38 |
num_proved = 0
|
39 |
num_attempted = 0
|
|
|
41 |
print(prop_name)
|
42 |
#time.sleep(5)
|
43 |
num_attempted += 1
|
44 |
+
#if num_attempted < 115:
|
45 |
# continue
|
46 |
successful_def = False
|
47 |
while not successful_def:
|
|
|
58 |
successful_def = False
|
59 |
lean_repl.close()
|
60 |
lean_repl = make_lean_repl(repl_type=repl_type)
|
61 |
+
mathlib_out, mathlib_env = send_command(lean_repl, 'import Mathlib', env=None, first=True, timeout=30)
|
62 |
break
|
63 |
all_lines.append(line)
|
64 |
|
|
|
77 |
print(f'search at level {search_lvl}')
|
78 |
for (curr_goal, ps, tac_seq) in old_ps:
|
79 |
next_tactics = get_tactics(curr_goal, prev_lines)
|
80 |
+
for next_tactic, _scr in sorted(next_tactics, key=lambda p: -p[1])[:search_width]:
|
81 |
+
#print('\n'.join(tac_seq + [next_tactic]))
|
82 |
outp, new_proofState = send_tactic(lean_repl, next_tactic, ps)
|
83 |
if outp is None:
|
84 |
continue # i.e. timeout/error on tactic sending
|
|
|
340 |
|
341 |
#benchmark_nextstep(pwd, get_tactics_interactive, send_command, repl_type=repl_type) # get_tactics_interactive for testing
|
342 |
|
343 |
+
pwd = parse_benchmark_input('codeprops_bench_ps.jsonl')
|
344 |
|
345 |
if bench_type == 'nextstep':
|
346 |
benchmark_nextstep(pwd, get_tactics_llmstep, send_command, repl_type=repl_type) # get_tactics_llmstep for benchmarking
|
347 |
elif bench_type == 'fullproof':
|
348 |
+
benchmark_full_proofgen(pwd, get_proof_gpt, send_command, repl_type=repl_type)
|
349 |
+
|
codeprops_bench_ps.jsonl
CHANGED
@@ -115,10 +115,10 @@
|
|
115 |
{"full_name": "prop_NMSortTDCount", "prop_defn": "theorem prop_NMSortTDCount (x: Nat) (xs: List Nat) : count x (nmsorttd xs) == count x xs:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:421", "score": 5, "deps": "import Mathlib\n\ndef count [DecidableEq \u03b1] : \u03b1 \u2192 List \u03b1 \u2192 Nat\n| _x, [] => 0\n| x, y::ys => if x == y then 1 + (count x ys) else count x ys\n\n\ndef lmerge : List Nat \u2192 List Nat \u2192 List Nat\n| [], ys => ys\n| xs, [] => xs\n| x::xs, y::ys => if x <= y then\n x::(lmerge xs (y::ys))\n else\n y::(lmerge (x::xs) ys)\n\n\ndef half : Nat \u2192 Nat\n| 0 => 0\n| 1 => 0\n| x + 2 => 1 + (half x)\n\n\nlemma half_lt: half x \u2264 x := by\n induction x using Nat.strong_induction_on with\n | h n ih =>\n cases n with\n | zero => unfold half; simp;\n | succ nm1 =>\n cases nm1 with\n | zero => unfold half; simp;\n | succ nm2 =>\n unfold half;\n have tmp := ih nm2 (by exact Nat.le.step Nat.le.refl);\n ring_nf;\n calc 1 + half nm2 \u2264 1 + nm2 := Nat.add_le_add (@Nat.le.refl 1) tmp\n _ \u2264 2 + nm2 := by simp\n\n\ndef nmsorttd : List Nat \u2192 List Nat\n| [] => []\n| [x] => [x]\n| x::y::xs =>\n let k:= half ((x::y::xs).length)\n have _h: half (Nat.succ (Nat.succ (List.length xs))) < Nat.succ (Nat.succ (List.length xs)) := by\n rw [Nat.succ_eq_add_one _];\n ring_nf;\n rw [Nat.add_comm];\n unfold half;\n ring_nf;\n calc 1 + half (xs.length) \u2264 1 + xs.length := by simp; exact half_lt;\n _ < 2 + xs.length := by simp;\n have _h': Nat.succ (Nat.succ (List.length xs)) - half (Nat.succ (Nat.succ (List.length xs))) <\n Nat.succ (Nat.succ (List.length xs)) := by\n suffices h': 0 < half (Nat.succ (Nat.succ (List.length xs)))\n case h';\n unfold half;simp;\n refine Nat.sub_lt ?h h'\n simp;\n lmerge (nmsorttd ((x::y::xs).take k)) (nmsorttd ((x::y::xs).drop k))\ntermination_by xs => xs.length\n", "proof_state": "x : \u2115\nxs : List \u2115\n\u22a2 (count x (nmsorttd xs) == count x xs) = true", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 421]]}
|
116 |
{"full_name": "prop_NMSortTDPermutes", "prop_defn": "theorem prop_NMSortTDPermutes (xs: List Nat) : isPermutation (nmsorttd xs) xs == true:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:422", "score": 5, "deps": "import Mathlib\n\ndef deleteFirst [DecidableEq \u03b1]: \u03b1 \u2192 List \u03b1 \u2192 List \u03b1\n | _, [] => []\n | n, x::xs => if n == x then xs else x::(deleteFirst n xs)\n\n\ndef isPermutation [DecidableEq \u03b1] : List \u03b1 \u2192 List \u03b1 \u2192 Bool\n| [], ys => (ys == [])\n| x::xs, ys => x \u2208 ys && (isPermutation xs (deleteFirst x ys))\n\n\ndef lmerge : List Nat \u2192 List Nat \u2192 List Nat\n| [], ys => ys\n| xs, [] => xs\n| x::xs, y::ys => if x <= y then\n x::(lmerge xs (y::ys))\n else\n y::(lmerge (x::xs) ys)\n\n\ndef half : Nat \u2192 Nat\n| 0 => 0\n| 1 => 0\n| x + 2 => 1 + (half x)\n\n\nlemma half_lt: half x \u2264 x := by\n induction x using Nat.strong_induction_on with\n | h n ih =>\n cases n with\n | zero => unfold half; simp;\n | succ nm1 =>\n cases nm1 with\n | zero => unfold half; simp;\n | succ nm2 =>\n unfold half;\n have tmp := ih nm2 (by exact Nat.le.step Nat.le.refl);\n ring_nf;\n calc 1 + half nm2 \u2264 1 + nm2 := Nat.add_le_add (@Nat.le.refl 1) tmp\n _ \u2264 2 + nm2 := by simp\n\n\ndef nmsorttd : List Nat \u2192 List Nat\n| [] => []\n| [x] => [x]\n| x::y::xs =>\n let k:= half ((x::y::xs).length)\n have _h: half (Nat.succ (Nat.succ (List.length xs))) < Nat.succ (Nat.succ (List.length xs)) := by\n rw [Nat.succ_eq_add_one _];\n ring_nf;\n rw [Nat.add_comm];\n unfold half;\n ring_nf;\n calc 1 + half (xs.length) \u2264 1 + xs.length := by simp; exact half_lt;\n _ < 2 + xs.length := by simp;\n have _h': Nat.succ (Nat.succ (List.length xs)) - half (Nat.succ (Nat.succ (List.length xs))) <\n Nat.succ (Nat.succ (List.length xs)) := by\n suffices h': 0 < half (Nat.succ (Nat.succ (List.length xs)))\n case h';\n unfold half;simp;\n refine Nat.sub_lt ?h h'\n simp;\n lmerge (nmsorttd ((x::y::xs).take k)) (nmsorttd ((x::y::xs).drop k))\ntermination_by xs => xs.length\n", "proof_state": "xs : List \u2115\n\u22a2 (isPermutation (nmsorttd xs) xs == true) = true", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 422]]}
|
117 |
{"full_name": "prop_NMSortTDIsSort", "prop_defn": "theorem prop_NMSortTDIsSort (xs: List Nat) : nmsorttd xs == isort xs:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:423", "score": 5, "deps": "import Mathlib\n\ndef insert' : Nat \u2192 List Nat \u2192 List Nat\n| x, [] => [x]\n| x, y::xs => if x <= y then x::y::xs else y::(insert x xs)\n\n\ndef isort: List Nat \u2192 List Nat\n| [] => []\n| x::xs => insert' x (isort xs)\n\n\ndef lmerge : List Nat \u2192 List Nat \u2192 List Nat\n| [], ys => ys\n| xs, [] => xs\n| x::xs, y::ys => if x <= y then\n x::(lmerge xs (y::ys))\n else\n y::(lmerge (x::xs) ys)\n\n\ndef half : Nat \u2192 Nat\n| 0 => 0\n| 1 => 0\n| x + 2 => 1 + (half x)\n\n\nlemma half_lt: half x \u2264 x := by\n induction x using Nat.strong_induction_on with\n | h n ih =>\n cases n with\n | zero => unfold half; simp;\n | succ nm1 =>\n cases nm1 with\n | zero => unfold half; simp;\n | succ nm2 =>\n unfold half;\n have tmp := ih nm2 (by exact Nat.le.step Nat.le.refl);\n ring_nf;\n calc 1 + half nm2 \u2264 1 + nm2 := Nat.add_le_add (@Nat.le.refl 1) tmp\n _ \u2264 2 + nm2 := by simp\n\n\ndef nmsorttd : List Nat \u2192 List Nat\n| [] => []\n| [x] => [x]\n| x::y::xs =>\n let k:= half ((x::y::xs).length)\n have _h: half (Nat.succ (Nat.succ (List.length xs))) < Nat.succ (Nat.succ (List.length xs)) := by\n rw [Nat.succ_eq_add_one _];\n ring_nf;\n rw [Nat.add_comm];\n unfold half;\n ring_nf;\n calc 1 + half (xs.length) \u2264 1 + xs.length := by simp; exact half_lt;\n _ < 2 + xs.length := by simp;\n have _h': Nat.succ (Nat.succ (List.length xs)) - half (Nat.succ (Nat.succ (List.length xs))) <\n Nat.succ (Nat.succ (List.length xs)) := by\n suffices h': 0 < half (Nat.succ (Nat.succ (List.length xs)))\n case h';\n unfold half;simp;\n refine Nat.sub_lt ?h h'\n simp;\n lmerge (nmsorttd ((x::y::xs).take k)) (nmsorttd ((x::y::xs).drop k))\ntermination_by xs => xs.length\n", "proof_state": "xs : List \u2115\n\u22a2 (nmsorttd xs == isort xs) = true", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 423]]}
|
118 |
-
{"full_name": "prop_BSortSorts", "prop_defn": "theorem prop_BSortSorts (xs: List Nat) : ordered (bsort xs) == true:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:530", "score": 5, "deps": "import Mathlib\n\ndef ordered : List Nat -> Bool\n| [] => True\n| [_x] => True\n| x::y::xs => x <= y && ordered (y::xs)\n\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n
|
119 |
-
{"full_name": "prop_BSortCount", "prop_defn": "theorem prop_BSortCount (x: Nat) (xs: List Nat) : count x (bsort xs) == count x xs:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:531", "score": 5, "deps": "import Mathlib\n\ndef count [DecidableEq \u03b1] : \u03b1 \u2192 List \u03b1 \u2192 Nat\n| _x, [] => 0\n| x, y::ys => if x == y then 1 + (count x ys) else count x ys\n\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n
|
120 |
-
{"full_name": "prop_BSortPermutes", "prop_defn": "theorem prop_BSortPermutes (xs: List Nat) : isPermutation (bsort xs) xs == true:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:532", "score": 5, "deps": "import Mathlib\n\ndef deleteFirst [DecidableEq \u03b1]: \u03b1 \u2192 List \u03b1 \u2192 List \u03b1\n | _, [] => []\n | n, x::xs => if n == x then xs else x::(deleteFirst n xs)\n\n\ndef isPermutation [DecidableEq \u03b1] : List \u03b1 \u2192 List \u03b1 \u2192 Bool\n| [], ys => (ys == [])\n| x::xs, ys => x \u2208 ys && (isPermutation xs (deleteFirst x ys))\n\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n
|
121 |
-
{"full_name": "prop_BSortIsSort", "prop_defn": "theorem prop_BSortIsSort (xs: List Nat) : bsort xs == isort xs:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:533", "score": 5, "deps": "import Mathlib\n\ndef insert' : Nat \u2192 List Nat \u2192 List Nat\n| x, [] => [x]\n| x, y::xs => if x <= y then x::y::xs else y::(insert x xs)\n\n\ndef isort: List Nat \u2192 List Nat\n| [] => []\n| x::xs => insert' x (isort xs)\n\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n
|
122 |
{"full_name": "prop_QSortSorts", "prop_defn": "theorem prop_QSortSorts (xs: List Nat) : ordered (qsort xs) == true:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:570", "score": 5, "deps": "import Mathlib\n\ndef ordered : List Nat -> Bool\n| [] => True\n| [_x] => True\n| x::y::xs => x <= y && ordered (y::xs)\n\n\ndef filter : List Nat \u2192 (Nat \u2192 Bool) \u2192 List Nat\n| [], _f => []\n| x::xs, f => if f x then x::(filter xs f) else (filter xs f)\n\n\nlemma filter_len_le {f: Nat \u2192 Bool} {xs: List Nat}: (filter xs f).length <= xs.length := by\n generalize hxsl: xs.length = xsl\n induction xsl generalizing xs with\n | zero => rw [List.length_eq_zero] at hxsl; rw [hxsl]; unfold filter; simp;\n | succ n ih =>\n cases xs with\n | nil => unfold filter; simp;\n | cons head tail =>\n rw [List.length_cons] at hxsl; simp at hxsl;\n unfold filter; split_ifs with h1;\n case pos;\n rw [List.length_cons];\n exact Nat.pred_le_iff.mp (ih hxsl)\n case neg;\n exact Nat.le.step (ih hxsl)\n\n\nlemma qsort_term (x:Nat) (xs: List Nat) : List.length (filter xs fun y => decide (y \u2264 x)) < Nat.succ (List.length xs) := by\n exact Nat.lt_succ_of_le (filter_len_le);\n\n\nlemma qsort_term2 (x:Nat) (xs: List Nat) : List.length (filter xs fun y => decide (y > x)) < Nat.succ (List.length xs) := by\n exact Nat.lt_succ_of_le (filter_len_le);\n\n\ndef qsort : List Nat \u2192 List Nat\n| [] => []\n| x::xs =>\n have _h:= qsort_term x xs\n have _h2:= qsort_term2 x xs\n (qsort (filter xs (fun y => y <= x))) ++ [x] ++ (qsort (filter xs (fun y => y > x)))\ntermination_by xs => xs.length\n", "proof_state": "xs : List \u2115\n\u22a2 (ordered (qsort xs) == true) = true", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 570]]}
|
123 |
{"full_name": "prop_QSortCount", "prop_defn": "theorem prop_QSortCount (x: Nat) (xs: List Nat) : count x (qsort xs) == count x xs:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:571", "score": 5, "deps": "import Mathlib\n\ndef count [DecidableEq \u03b1] : \u03b1 \u2192 List \u03b1 \u2192 Nat\n| _x, [] => 0\n| x, y::ys => if x == y then 1 + (count x ys) else count x ys\n\n\ndef filter : List Nat \u2192 (Nat \u2192 Bool) \u2192 List Nat\n| [], _f => []\n| x::xs, f => if f x then x::(filter xs f) else (filter xs f)\n\n\nlemma filter_len_le {f: Nat \u2192 Bool} {xs: List Nat}: (filter xs f).length <= xs.length := by\n generalize hxsl: xs.length = xsl\n induction xsl generalizing xs with\n | zero => rw [List.length_eq_zero] at hxsl; rw [hxsl]; unfold filter; simp;\n | succ n ih =>\n cases xs with\n | nil => unfold filter; simp;\n | cons head tail =>\n rw [List.length_cons] at hxsl; simp at hxsl;\n unfold filter; split_ifs with h1;\n case pos;\n rw [List.length_cons];\n exact Nat.pred_le_iff.mp (ih hxsl)\n case neg;\n exact Nat.le.step (ih hxsl)\n\n\nlemma qsort_term (x:Nat) (xs: List Nat) : List.length (filter xs fun y => decide (y \u2264 x)) < Nat.succ (List.length xs) := by\n exact Nat.lt_succ_of_le (filter_len_le);\n\n\nlemma qsort_term2 (x:Nat) (xs: List Nat) : List.length (filter xs fun y => decide (y > x)) < Nat.succ (List.length xs) := by\n exact Nat.lt_succ_of_le (filter_len_le);\n\n\ndef qsort : List Nat \u2192 List Nat\n| [] => []\n| x::xs =>\n have _h:= qsort_term x xs\n have _h2:= qsort_term2 x xs\n (qsort (filter xs (fun y => y <= x))) ++ [x] ++ (qsort (filter xs (fun y => y > x)))\ntermination_by xs => xs.length\n", "proof_state": "x : \u2115\nxs : List \u2115\n\u22a2 (count x (qsort xs) == count x xs) = true", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 571]]}
|
124 |
{"full_name": "prop_QSortPermutes", "prop_defn": "theorem prop_QSortPermutes (xs: List Nat) : isPermutation (qsort xs) xs == true:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:572", "score": 5, "deps": "import Mathlib\n\ndef deleteFirst [DecidableEq \u03b1]: \u03b1 \u2192 List \u03b1 \u2192 List \u03b1\n | _, [] => []\n | n, x::xs => if n == x then xs else x::(deleteFirst n xs)\n\n\ndef isPermutation [DecidableEq \u03b1] : List \u03b1 \u2192 List \u03b1 \u2192 Bool\n| [], ys => (ys == [])\n| x::xs, ys => x \u2208 ys && (isPermutation xs (deleteFirst x ys))\n\n\ndef filter : List Nat \u2192 (Nat \u2192 Bool) \u2192 List Nat\n| [], _f => []\n| x::xs, f => if f x then x::(filter xs f) else (filter xs f)\n\n\nlemma filter_len_le {f: Nat \u2192 Bool} {xs: List Nat}: (filter xs f).length <= xs.length := by\n generalize hxsl: xs.length = xsl\n induction xsl generalizing xs with\n | zero => rw [List.length_eq_zero] at hxsl; rw [hxsl]; unfold filter; simp;\n | succ n ih =>\n cases xs with\n | nil => unfold filter; simp;\n | cons head tail =>\n rw [List.length_cons] at hxsl; simp at hxsl;\n unfold filter; split_ifs with h1;\n case pos;\n rw [List.length_cons];\n exact Nat.pred_le_iff.mp (ih hxsl)\n case neg;\n exact Nat.le.step (ih hxsl)\n\n\nlemma qsort_term (x:Nat) (xs: List Nat) : List.length (filter xs fun y => decide (y \u2264 x)) < Nat.succ (List.length xs) := by\n exact Nat.lt_succ_of_le (filter_len_le);\n\n\nlemma qsort_term2 (x:Nat) (xs: List Nat) : List.length (filter xs fun y => decide (y > x)) < Nat.succ (List.length xs) := by\n exact Nat.lt_succ_of_le (filter_len_le);\n\n\ndef qsort : List Nat \u2192 List Nat\n| [] => []\n| x::xs =>\n have _h:= qsort_term x xs\n have _h2:= qsort_term2 x xs\n (qsort (filter xs (fun y => y <= x))) ++ [x] ++ (qsort (filter xs (fun y => y > x)))\ntermination_by xs => xs.length\n", "proof_state": "xs : List \u2115\n\u22a2 (isPermutation (qsort xs) xs == true) = true", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 572]]}
|
@@ -154,12 +154,12 @@
|
|
154 |
{"full_name": "len_pairwise", "prop_defn": "theorem len_pairwise (xs: List (List Nat)): 2 * (pairwise xs).length = (if (Odd xs.length) then xs.length + 1 else xs.length) := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:241", "score": 5, "deps": "import Mathlib\n\ndef lmerge : List Nat \u2192 List Nat \u2192 List Nat\n| [], ys => ys\n| xs, [] => xs\n| x::xs, y::ys => if x <= y then\n x::(lmerge xs (y::ys))\n else\n y::(lmerge (x::xs) ys)\n\n\ndef pairwise : List (List Nat) \u2192 List (List Nat)\n| xs::ys::xss => lmerge xs ys :: pairwise xss\n| xss => xss\n", "proof_state": "xs : List (List \u2115)\n\u22a2 2 * (pairwise xs).length = if Odd xs.length then xs.length + 1 else xs.length", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 286]]}
|
155 |
{"full_name": "merge_term", "prop_defn": "theorem merge_term : (pairwise (xs::ys::xss)).length < (xs::ys::xss).length := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:288", "score": 5, "deps": "import Mathlib\n\ndef lmerge : List Nat \u2192 List Nat \u2192 List Nat\n| [], ys => ys\n| xs, [] => xs\n| x::xs, y::ys => if x <= y then\n x::(lmerge xs (y::ys))\n else\n y::(lmerge (x::xs) ys)\n\n\ndef pairwise : List (List Nat) \u2192 List (List Nat)\n| xs::ys::xss => lmerge xs ys :: pairwise xss\n| xss => xss\n", "proof_state": "xs ys : List \u2115\nxss : List (List \u2115)\n\u22a2 (pairwise (xs :: ys :: xss)).length < (xs :: ys :: xss).length", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 299]]}
|
156 |
{"full_name": "half_lt", "prop_defn": "theorem half_lt: half x \u2264 x := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:382", "score": 5, "deps": "import Mathlib\n\ndef half : Nat \u2192 Nat\n| 0 => 0\n| 1 => 0\n| x + 2 => 1 + (half x)\n", "proof_state": "x : \u2115\n\u22a2 half x \u2264 x", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 395]]}
|
157 |
-
{"full_name": "len_evens_le", "prop_defn": "theorem len_evens_le {xs: List Nat}: (evens xs).length \u2264 xs.length := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:435", "score": 5, "deps": "import Mathlib\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n def odds : List Nat \u2192 List Nat\n | [] => []\n | _x::xs => evens xs\nend\n", "proof_state": "xs : List \u2115\n\u22a2 (evens xs).length \u2264 xs.length", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 451]]}
|
158 |
-
{"full_name": "len_odds_le", "prop_defn": "theorem len_odds_le {xs: List Nat}: (odds xs).length \u2264 xs.length := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:453", "score": 5, "deps": "import Mathlib\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n def odds : List Nat \u2192 List Nat\n | [] => []\n | _x::xs => evens xs\nend\n", "proof_state": "xs : List \u2115\n\u22a2 (odds xs).length \u2264 xs.length", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 469]]}
|
159 |
-
{"full_name": "bmerge_term", "prop_defn": "theorem bmerge_term (a b: Nat) (as bs: List Nat) (hlen: \u00ac(List.length as == 0 && List.length bs == 0) = true): List.length (evens (a :: as)) + List.length (evens (b :: bs)) < Nat.succ (List.length as) + Nat.succ (List.length bs) := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:482", "score": 5, "deps": "import Mathlib\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n def odds : List Nat \u2192 List Nat\n | [] => []\n | _x::xs => evens xs\nend\n", "proof_state": "a b : \u2115\nas bs : List \u2115\nhlen : \u00ac(as.length == 0 && bs.length == 0) = true\n\u22a2 (evens (a :: as)).length + (evens (b :: bs)).length < as.length.succ + bs.length.succ", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 493]]}
|
160 |
-
{"full_name": "bmerge_term2", "prop_defn": "theorem bmerge_term2 (x y: Nat) (xs ys: List Nat) : List.length (odds (x :: xs)) + List.length (odds (y :: ys)) < Nat.succ (List.length xs) + Nat.succ (List.length ys) := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:495", "score": 5, "deps": "import Mathlib\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n def odds : List Nat \u2192 List Nat\n | [] => []\n | _x::xs => evens xs\nend\n", "proof_state": "x y : \u2115\nxs ys : List \u2115\n\u22a2 (odds (x :: xs)).length + (odds (y :: ys)).length < xs.length.succ + ys.length.succ", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 497]]}
|
161 |
-
{"full_name": "bsort_term1", "prop_defn": "theorem bsort_term1 (x y: Nat) (xs: List Nat): List.length (evens (x :: y :: xs)) < Nat.succ (Nat.succ (List.length xs)) := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:509", "score": 5, "deps": "import Mathlib\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n def odds : List Nat \u2192 List Nat\n | [] => []\n | _x::xs => evens xs\nend\n", "proof_state": "x y : \u2115\nxs : List \u2115\n\u22a2 (evens (x :: y :: xs)).length < xs.length.succ.succ", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 513]]}
|
162 |
-
{"full_name": "bsort_term2", "prop_defn": "theorem bsort_term2 (x y: Nat) (xs: List Nat): List.length (odds (x :: y :: xs)) < Nat.succ (Nat.succ (List.length xs)) := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:515", "score": 5, "deps": "import Mathlib\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n def odds : List Nat \u2192 List Nat\n | [] => []\n | _x::xs => evens xs\nend\n", "proof_state": "x y : \u2115\nxs : List \u2115\n\u22a2 (odds (x :: y :: xs)).length < xs.length.succ.succ", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 519]]}
|
163 |
{"full_name": "filter_len_le", "prop_defn": "theorem filter_len_le {f: Nat \u2192 Bool} {xs: List Nat}: (filter xs f).length <= xs.length := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:539", "score": 5, "deps": "import Mathlib\n\ndef filter : List Nat \u2192 (Nat \u2192 Bool) \u2192 List Nat\n| [], _f => []\n| x::xs, f => if f x then x::(filter xs f) else (filter xs f)\n", "proof_state": "f : \u2115 \u2192 Bool\nxs : List \u2115\n\u22a2 (filter xs f).length \u2264 xs.length", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 553]]}
|
164 |
{"full_name": "qsort_term", "prop_defn": "theorem qsort_term (x:Nat) (xs: List Nat) : List.length (filter xs fun y => decide (y \u2264 x)) < Nat.succ (List.length xs) := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:556", "score": 5, "deps": "import Mathlib\n\ndef filter : List Nat \u2192 (Nat \u2192 Bool) \u2192 List Nat\n| [], _f => []\n| x::xs, f => if f x then x::(filter xs f) else (filter xs f)\n", "proof_state": "x : \u2115\nxs : List \u2115\n\u22a2 (filter xs fun y => decide (y \u2264 x)).length < xs.length.succ", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 557]]}
|
165 |
{"full_name": "qsort_term2", "prop_defn": "theorem qsort_term2 (x:Nat) (xs: List Nat) : List.length (filter xs fun y => decide (y > x)) < Nat.succ (List.length xs) := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:559", "score": 5, "deps": "import Mathlib\n\ndef filter : List Nat \u2192 (Nat \u2192 Bool) \u2192 List Nat\n| [], _f => []\n| x::xs, f => if f x then x::(filter xs f) else (filter xs f)\n", "proof_state": "x : \u2115\nxs : List \u2115\n\u22a2 (filter xs fun y => decide (y > x)).length < xs.length.succ", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 560]]}
|
|
|
115 |
{"full_name": "prop_NMSortTDCount", "prop_defn": "theorem prop_NMSortTDCount (x: Nat) (xs: List Nat) : count x (nmsorttd xs) == count x xs:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:421", "score": 5, "deps": "import Mathlib\n\ndef count [DecidableEq \u03b1] : \u03b1 \u2192 List \u03b1 \u2192 Nat\n| _x, [] => 0\n| x, y::ys => if x == y then 1 + (count x ys) else count x ys\n\n\ndef lmerge : List Nat \u2192 List Nat \u2192 List Nat\n| [], ys => ys\n| xs, [] => xs\n| x::xs, y::ys => if x <= y then\n x::(lmerge xs (y::ys))\n else\n y::(lmerge (x::xs) ys)\n\n\ndef half : Nat \u2192 Nat\n| 0 => 0\n| 1 => 0\n| x + 2 => 1 + (half x)\n\n\nlemma half_lt: half x \u2264 x := by\n induction x using Nat.strong_induction_on with\n | h n ih =>\n cases n with\n | zero => unfold half; simp;\n | succ nm1 =>\n cases nm1 with\n | zero => unfold half; simp;\n | succ nm2 =>\n unfold half;\n have tmp := ih nm2 (by exact Nat.le.step Nat.le.refl);\n ring_nf;\n calc 1 + half nm2 \u2264 1 + nm2 := Nat.add_le_add (@Nat.le.refl 1) tmp\n _ \u2264 2 + nm2 := by simp\n\n\ndef nmsorttd : List Nat \u2192 List Nat\n| [] => []\n| [x] => [x]\n| x::y::xs =>\n let k:= half ((x::y::xs).length)\n have _h: half (Nat.succ (Nat.succ (List.length xs))) < Nat.succ (Nat.succ (List.length xs)) := by\n rw [Nat.succ_eq_add_one _];\n ring_nf;\n rw [Nat.add_comm];\n unfold half;\n ring_nf;\n calc 1 + half (xs.length) \u2264 1 + xs.length := by simp; exact half_lt;\n _ < 2 + xs.length := by simp;\n have _h': Nat.succ (Nat.succ (List.length xs)) - half (Nat.succ (Nat.succ (List.length xs))) <\n Nat.succ (Nat.succ (List.length xs)) := by\n suffices h': 0 < half (Nat.succ (Nat.succ (List.length xs)))\n case h';\n unfold half;simp;\n refine Nat.sub_lt ?h h'\n simp;\n lmerge (nmsorttd ((x::y::xs).take k)) (nmsorttd ((x::y::xs).drop k))\ntermination_by xs => xs.length\n", "proof_state": "x : \u2115\nxs : List \u2115\n\u22a2 (count x (nmsorttd xs) == count x xs) = true", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 421]]}
|
116 |
{"full_name": "prop_NMSortTDPermutes", "prop_defn": "theorem prop_NMSortTDPermutes (xs: List Nat) : isPermutation (nmsorttd xs) xs == true:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:422", "score": 5, "deps": "import Mathlib\n\ndef deleteFirst [DecidableEq \u03b1]: \u03b1 \u2192 List \u03b1 \u2192 List \u03b1\n | _, [] => []\n | n, x::xs => if n == x then xs else x::(deleteFirst n xs)\n\n\ndef isPermutation [DecidableEq \u03b1] : List \u03b1 \u2192 List \u03b1 \u2192 Bool\n| [], ys => (ys == [])\n| x::xs, ys => x \u2208 ys && (isPermutation xs (deleteFirst x ys))\n\n\ndef lmerge : List Nat \u2192 List Nat \u2192 List Nat\n| [], ys => ys\n| xs, [] => xs\n| x::xs, y::ys => if x <= y then\n x::(lmerge xs (y::ys))\n else\n y::(lmerge (x::xs) ys)\n\n\ndef half : Nat \u2192 Nat\n| 0 => 0\n| 1 => 0\n| x + 2 => 1 + (half x)\n\n\nlemma half_lt: half x \u2264 x := by\n induction x using Nat.strong_induction_on with\n | h n ih =>\n cases n with\n | zero => unfold half; simp;\n | succ nm1 =>\n cases nm1 with\n | zero => unfold half; simp;\n | succ nm2 =>\n unfold half;\n have tmp := ih nm2 (by exact Nat.le.step Nat.le.refl);\n ring_nf;\n calc 1 + half nm2 \u2264 1 + nm2 := Nat.add_le_add (@Nat.le.refl 1) tmp\n _ \u2264 2 + nm2 := by simp\n\n\ndef nmsorttd : List Nat \u2192 List Nat\n| [] => []\n| [x] => [x]\n| x::y::xs =>\n let k:= half ((x::y::xs).length)\n have _h: half (Nat.succ (Nat.succ (List.length xs))) < Nat.succ (Nat.succ (List.length xs)) := by\n rw [Nat.succ_eq_add_one _];\n ring_nf;\n rw [Nat.add_comm];\n unfold half;\n ring_nf;\n calc 1 + half (xs.length) \u2264 1 + xs.length := by simp; exact half_lt;\n _ < 2 + xs.length := by simp;\n have _h': Nat.succ (Nat.succ (List.length xs)) - half (Nat.succ (Nat.succ (List.length xs))) <\n Nat.succ (Nat.succ (List.length xs)) := by\n suffices h': 0 < half (Nat.succ (Nat.succ (List.length xs)))\n case h';\n unfold half;simp;\n refine Nat.sub_lt ?h h'\n simp;\n lmerge (nmsorttd ((x::y::xs).take k)) (nmsorttd ((x::y::xs).drop k))\ntermination_by xs => xs.length\n", "proof_state": "xs : List \u2115\n\u22a2 (isPermutation (nmsorttd xs) xs == true) = true", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 422]]}
|
117 |
{"full_name": "prop_NMSortTDIsSort", "prop_defn": "theorem prop_NMSortTDIsSort (xs: List Nat) : nmsorttd xs == isort xs:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:423", "score": 5, "deps": "import Mathlib\n\ndef insert' : Nat \u2192 List Nat \u2192 List Nat\n| x, [] => [x]\n| x, y::xs => if x <= y then x::y::xs else y::(insert x xs)\n\n\ndef isort: List Nat \u2192 List Nat\n| [] => []\n| x::xs => insert' x (isort xs)\n\n\ndef lmerge : List Nat \u2192 List Nat \u2192 List Nat\n| [], ys => ys\n| xs, [] => xs\n| x::xs, y::ys => if x <= y then\n x::(lmerge xs (y::ys))\n else\n y::(lmerge (x::xs) ys)\n\n\ndef half : Nat \u2192 Nat\n| 0 => 0\n| 1 => 0\n| x + 2 => 1 + (half x)\n\n\nlemma half_lt: half x \u2264 x := by\n induction x using Nat.strong_induction_on with\n | h n ih =>\n cases n with\n | zero => unfold half; simp;\n | succ nm1 =>\n cases nm1 with\n | zero => unfold half; simp;\n | succ nm2 =>\n unfold half;\n have tmp := ih nm2 (by exact Nat.le.step Nat.le.refl);\n ring_nf;\n calc 1 + half nm2 \u2264 1 + nm2 := Nat.add_le_add (@Nat.le.refl 1) tmp\n _ \u2264 2 + nm2 := by simp\n\n\ndef nmsorttd : List Nat \u2192 List Nat\n| [] => []\n| [x] => [x]\n| x::y::xs =>\n let k:= half ((x::y::xs).length)\n have _h: half (Nat.succ (Nat.succ (List.length xs))) < Nat.succ (Nat.succ (List.length xs)) := by\n rw [Nat.succ_eq_add_one _];\n ring_nf;\n rw [Nat.add_comm];\n unfold half;\n ring_nf;\n calc 1 + half (xs.length) \u2264 1 + xs.length := by simp; exact half_lt;\n _ < 2 + xs.length := by simp;\n have _h': Nat.succ (Nat.succ (List.length xs)) - half (Nat.succ (Nat.succ (List.length xs))) <\n Nat.succ (Nat.succ (List.length xs)) := by\n suffices h': 0 < half (Nat.succ (Nat.succ (List.length xs)))\n case h';\n unfold half;simp;\n refine Nat.sub_lt ?h h'\n simp;\n lmerge (nmsorttd ((x::y::xs).take k)) (nmsorttd ((x::y::xs).drop k))\ntermination_by xs => xs.length\n", "proof_state": "xs : List \u2115\n\u22a2 (nmsorttd xs == isort xs) = true", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 423]]}
|
118 |
+
{"full_name": "prop_BSortSorts", "prop_defn": "theorem prop_BSortSorts (xs: List Nat) : ordered (bsort xs) == true:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:530", "score": 5, "deps": "import Mathlib\n\ndef ordered : List Nat -> Bool\n| [] => True\n| [_x] => True\n| x::y::xs => x <= y && ordered (y::xs)\n\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n--\n def odds : List Nat \u2192 List Nat\n | [] => []\n | _x::xs => evens xs\nend\n\n\nlemma len_evens_le : (evens xs).length \u2264 xs.length := by\n generalize hxsl: xs.length = xsl\n induction xsl using Nat.strong_induction_on generalizing xs with\n | h n ih =>\n cases xs with\n | nil => unfold evens; simp;\n | cons head1 tail1 =>\n unfold evens;\n cases tail1 with\n | nil => unfold odds; rw[\u2190 hxsl];\n | cons head2 tail2 =>\n unfold odds;\n rw [List.length_cons, List.length_cons] at hxsl;\n rw [\u2190 hxsl, List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n simp;\n have h': List.length tail2 < n := by rw [\u2190 hxsl, Nat.succ_eq_add_one _]; linarith;\n exact Nat.le.step (ih (List.length tail2) h' rfl);\n\n\nlemma len_odds_le : (odds xs).length \u2264 xs.length := by\n generalize hxsl: xs.length = xsl\n induction xsl using Nat.strong_induction_on generalizing xs with\n | h n ih =>\n cases xs with\n | nil => unfold odds; simp;\n | cons head1 tail1 =>\n unfold odds;\n cases tail1 with\n | nil => unfold evens; simp;\n | cons head2 tail2 =>\n unfold evens;\n rw [List.length_cons, List.length_cons] at hxsl;\n rw [\u2190 hxsl, List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n simp;\n have h': List.length tail2 < n := by rw [\u2190 hxsl, Nat.succ_eq_add_one _]; linarith;\n exact Nat.le.step (ih (List.length tail2) h' rfl);\n\n\ndef sort2 (a b: Nat): List Nat := if a \u2264 b then [a,b] else [b, a]\n\n\ndef pairs : List Nat \u2192 List Nat \u2192 List Nat\n| [], ys => ys\n| xs, [] => xs\n| x::xs, y::ys => (sort2 x y) ++ (pairs xs ys)\n\n\ndef stitch : List Nat \u2192 List Nat \u2192 List Nat\n| [], ys => ys\n| x::xs, ys => x::(pairs xs ys)\n\n\nlemma bmerge_term (a b: Nat) (as bs: List Nat) (hlen: \u00ac(List.length as == 0 && List.length bs == 0) = true): List.length (evens (a :: as)) + List.length (evens (b :: bs)) < Nat.succ (List.length as) + Nat.succ (List.length bs) := by\n unfold evens;\n simp at hlen;\n rw [List.length_cons, List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n ring_nf;\n cases as with\n | nil => cases bs with\n | nil => simp at hlen;\n | cons bhead btail => unfold odds; simp; linarith [@len_evens_le btail];\n | cons ahead atail =>\n rw [add_comm, add_comm (2 + List.length (ahead :: atail)) (List.length bs)]\n refine add_lt_add_of_le_of_lt (@len_odds_le bs) ?h; unfold odds; simp; linarith [@len_evens_le atail];\n\n\nlemma bmerge_term2 (x y: Nat) (xs ys: List Nat) : List.length (odds (x :: xs)) + List.length (odds (y :: ys)) < Nat.succ (List.length xs) + Nat.succ (List.length ys) := by\n unfold odds;\n exact add_lt_add_of_lt_of_lt (Nat.lt_succ_of_le (@len_evens_le xs)) (Nat.lt_succ_of_le (@len_evens_le ys))\n\n\ndef bmerge : List Nat \u2192 List Nat \u2192 List Nat\n| [], bs => bs -- I changed this from TIP. I don't believe this case is ever hit, though.\n| as, [] => as\n| x::xs, y::ys =>\n if hlen: xs.length == 0 && ys.length == 0 then sort2 x y else\n have _h := bmerge_term x y xs ys hlen;\n have _h2 := bmerge_term2 x y xs ys;\n stitch (bmerge (evens (x::xs)) (evens (y::ys))) (bmerge (odds (x::xs)) (odds (y::ys)))\ntermination_by xs ys => xs.length + ys.length\n\n\nlemma bsort_term1 (x y: Nat) (xs: List Nat): List.length (evens (x :: y :: xs)) < Nat.succ (Nat.succ (List.length xs)) := by\n unfold evens; unfold odds;\n rw [List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n simp;\n exact Nat.lt_succ_of_le (@len_evens_le xs);\n\n\nlemma bsort_term2 (x y: Nat) (xs: List Nat): List.length (odds (x :: y :: xs)) < Nat.succ (Nat.succ (List.length xs)) := by\n unfold odds; unfold evens;\n rw [List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n simp;\n exact Nat.lt_succ_of_le (@len_odds_le xs);\n\n\ndef bsort : List Nat \u2192 List Nat\n| [] => []\n| [x] => [x]\n| x::y::xs =>\n have _h := bsort_term1 x y xs\n have _h2 := bsort_term2 x y xs\n bmerge (bsort (evens (x::y::xs))) (bsort (odds (x::y::xs)))\ntermination_by xs => xs.length\n", "proof_state": "xs : List \u2115\n\u22a2 (ordered (bsort xs) == true) = true", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 530]]}
|
119 |
+
{"full_name": "prop_BSortCount", "prop_defn": "theorem prop_BSortCount (x: Nat) (xs: List Nat) : count x (bsort xs) == count x xs:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:531", "score": 5, "deps": "import Mathlib\n\ndef count [DecidableEq \u03b1] : \u03b1 \u2192 List \u03b1 \u2192 Nat\n| _x, [] => 0\n| x, y::ys => if x == y then 1 + (count x ys) else count x ys\n\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n--\n def odds : List Nat \u2192 List Nat\n | [] => []\n | _x::xs => evens xs\nend\n\n\nlemma len_evens_le : (evens xs).length \u2264 xs.length := by\n generalize hxsl: xs.length = xsl\n induction xsl using Nat.strong_induction_on generalizing xs with\n | h n ih =>\n cases xs with\n | nil => unfold evens; simp;\n | cons head1 tail1 =>\n unfold evens;\n cases tail1 with\n | nil => unfold odds; rw[\u2190 hxsl];\n | cons head2 tail2 =>\n unfold odds;\n rw [List.length_cons, List.length_cons] at hxsl;\n rw [\u2190 hxsl, List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n simp;\n have h': List.length tail2 < n := by rw [\u2190 hxsl, Nat.succ_eq_add_one _]; linarith;\n exact Nat.le.step (ih (List.length tail2) h' rfl);\n\n\nlemma len_odds_le : (odds xs).length \u2264 xs.length := by\n generalize hxsl: xs.length = xsl\n induction xsl using Nat.strong_induction_on generalizing xs with\n | h n ih =>\n cases xs with\n | nil => unfold odds; simp;\n | cons head1 tail1 =>\n unfold odds;\n cases tail1 with\n | nil => unfold evens; simp;\n | cons head2 tail2 =>\n unfold evens;\n rw [List.length_cons, List.length_cons] at hxsl;\n rw [\u2190 hxsl, List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n simp;\n have h': List.length tail2 < n := by rw [\u2190 hxsl, Nat.succ_eq_add_one _]; linarith;\n exact Nat.le.step (ih (List.length tail2) h' rfl);\n\n\ndef sort2 (a b: Nat): List Nat := if a \u2264 b then [a,b] else [b, a]\n\n\ndef pairs : List Nat \u2192 List Nat \u2192 List Nat\n| [], ys => ys\n| xs, [] => xs\n| x::xs, y::ys => (sort2 x y) ++ (pairs xs ys)\n\n\ndef stitch : List Nat \u2192 List Nat \u2192 List Nat\n| [], ys => ys\n| x::xs, ys => x::(pairs xs ys)\n\n\nlemma bmerge_term (a b: Nat) (as bs: List Nat) (hlen: \u00ac(List.length as == 0 && List.length bs == 0) = true): List.length (evens (a :: as)) + List.length (evens (b :: bs)) < Nat.succ (List.length as) + Nat.succ (List.length bs) := by\n unfold evens;\n simp at hlen;\n rw [List.length_cons, List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n ring_nf;\n cases as with\n | nil => cases bs with\n | nil => simp at hlen;\n | cons bhead btail => unfold odds; simp; linarith [@len_evens_le btail];\n | cons ahead atail =>\n rw [add_comm, add_comm (2 + List.length (ahead :: atail)) (List.length bs)]\n refine add_lt_add_of_le_of_lt (@len_odds_le bs) ?h; unfold odds; simp; linarith [@len_evens_le atail];\n\n\nlemma bmerge_term2 (x y: Nat) (xs ys: List Nat) : List.length (odds (x :: xs)) + List.length (odds (y :: ys)) < Nat.succ (List.length xs) + Nat.succ (List.length ys) := by\n unfold odds;\n exact add_lt_add_of_lt_of_lt (Nat.lt_succ_of_le (@len_evens_le xs)) (Nat.lt_succ_of_le (@len_evens_le ys))\n\n\ndef bmerge : List Nat \u2192 List Nat \u2192 List Nat\n| [], bs => bs -- I changed this from TIP. I don't believe this case is ever hit, though.\n| as, [] => as\n| x::xs, y::ys =>\n if hlen: xs.length == 0 && ys.length == 0 then sort2 x y else\n have _h := bmerge_term x y xs ys hlen;\n have _h2 := bmerge_term2 x y xs ys;\n stitch (bmerge (evens (x::xs)) (evens (y::ys))) (bmerge (odds (x::xs)) (odds (y::ys)))\ntermination_by xs ys => xs.length + ys.length\n\n\nlemma bsort_term1 (x y: Nat) (xs: List Nat): List.length (evens (x :: y :: xs)) < Nat.succ (Nat.succ (List.length xs)) := by\n unfold evens; unfold odds;\n rw [List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n simp;\n exact Nat.lt_succ_of_le (@len_evens_le xs);\n\n\nlemma bsort_term2 (x y: Nat) (xs: List Nat): List.length (odds (x :: y :: xs)) < Nat.succ (Nat.succ (List.length xs)) := by\n unfold odds; unfold evens;\n rw [List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n simp;\n exact Nat.lt_succ_of_le (@len_odds_le xs);\n\n\ndef bsort : List Nat \u2192 List Nat\n| [] => []\n| [x] => [x]\n| x::y::xs =>\n have _h := bsort_term1 x y xs\n have _h2 := bsort_term2 x y xs\n bmerge (bsort (evens (x::y::xs))) (bsort (odds (x::y::xs)))\ntermination_by xs => xs.length\n", "proof_state": "x : \u2115\nxs : List \u2115\n\u22a2 (count x (bsort xs) == count x xs) = true", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 531]]}
|
120 |
+
{"full_name": "prop_BSortPermutes", "prop_defn": "theorem prop_BSortPermutes (xs: List Nat) : isPermutation (bsort xs) xs == true:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:532", "score": 5, "deps": "import Mathlib\n\ndef deleteFirst [DecidableEq \u03b1]: \u03b1 \u2192 List \u03b1 \u2192 List \u03b1\n | _, [] => []\n | n, x::xs => if n == x then xs else x::(deleteFirst n xs)\n\n\ndef isPermutation [DecidableEq \u03b1] : List \u03b1 \u2192 List \u03b1 \u2192 Bool\n| [], ys => (ys == [])\n| x::xs, ys => x \u2208 ys && (isPermutation xs (deleteFirst x ys))\n\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n--\n def odds : List Nat \u2192 List Nat\n | [] => []\n | _x::xs => evens xs\nend\n\n\nlemma len_evens_le : (evens xs).length \u2264 xs.length := by\n generalize hxsl: xs.length = xsl\n induction xsl using Nat.strong_induction_on generalizing xs with\n | h n ih =>\n cases xs with\n | nil => unfold evens; simp;\n | cons head1 tail1 =>\n unfold evens;\n cases tail1 with\n | nil => unfold odds; rw[\u2190 hxsl];\n | cons head2 tail2 =>\n unfold odds;\n rw [List.length_cons, List.length_cons] at hxsl;\n rw [\u2190 hxsl, List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n simp;\n have h': List.length tail2 < n := by rw [\u2190 hxsl, Nat.succ_eq_add_one _]; linarith;\n exact Nat.le.step (ih (List.length tail2) h' rfl);\n\n\nlemma len_odds_le : (odds xs).length \u2264 xs.length := by\n generalize hxsl: xs.length = xsl\n induction xsl using Nat.strong_induction_on generalizing xs with\n | h n ih =>\n cases xs with\n | nil => unfold odds; simp;\n | cons head1 tail1 =>\n unfold odds;\n cases tail1 with\n | nil => unfold evens; simp;\n | cons head2 tail2 =>\n unfold evens;\n rw [List.length_cons, List.length_cons] at hxsl;\n rw [\u2190 hxsl, List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n simp;\n have h': List.length tail2 < n := by rw [\u2190 hxsl, Nat.succ_eq_add_one _]; linarith;\n exact Nat.le.step (ih (List.length tail2) h' rfl);\n\n\ndef sort2 (a b: Nat): List Nat := if a \u2264 b then [a,b] else [b, a]\n\n\ndef pairs : List Nat \u2192 List Nat \u2192 List Nat\n| [], ys => ys\n| xs, [] => xs\n| x::xs, y::ys => (sort2 x y) ++ (pairs xs ys)\n\n\ndef stitch : List Nat \u2192 List Nat \u2192 List Nat\n| [], ys => ys\n| x::xs, ys => x::(pairs xs ys)\n\n\nlemma bmerge_term (a b: Nat) (as bs: List Nat) (hlen: \u00ac(List.length as == 0 && List.length bs == 0) = true): List.length (evens (a :: as)) + List.length (evens (b :: bs)) < Nat.succ (List.length as) + Nat.succ (List.length bs) := by\n unfold evens;\n simp at hlen;\n rw [List.length_cons, List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n ring_nf;\n cases as with\n | nil => cases bs with\n | nil => simp at hlen;\n | cons bhead btail => unfold odds; simp; linarith [@len_evens_le btail];\n | cons ahead atail =>\n rw [add_comm, add_comm (2 + List.length (ahead :: atail)) (List.length bs)]\n refine add_lt_add_of_le_of_lt (@len_odds_le bs) ?h; unfold odds; simp; linarith [@len_evens_le atail];\n\n\nlemma bmerge_term2 (x y: Nat) (xs ys: List Nat) : List.length (odds (x :: xs)) + List.length (odds (y :: ys)) < Nat.succ (List.length xs) + Nat.succ (List.length ys) := by\n unfold odds;\n exact add_lt_add_of_lt_of_lt (Nat.lt_succ_of_le (@len_evens_le xs)) (Nat.lt_succ_of_le (@len_evens_le ys))\n\n\ndef bmerge : List Nat \u2192 List Nat \u2192 List Nat\n| [], bs => bs -- I changed this from TIP. I don't believe this case is ever hit, though.\n| as, [] => as\n| x::xs, y::ys =>\n if hlen: xs.length == 0 && ys.length == 0 then sort2 x y else\n have _h := bmerge_term x y xs ys hlen;\n have _h2 := bmerge_term2 x y xs ys;\n stitch (bmerge (evens (x::xs)) (evens (y::ys))) (bmerge (odds (x::xs)) (odds (y::ys)))\ntermination_by xs ys => xs.length + ys.length\n\n\nlemma bsort_term1 (x y: Nat) (xs: List Nat): List.length (evens (x :: y :: xs)) < Nat.succ (Nat.succ (List.length xs)) := by\n unfold evens; unfold odds;\n rw [List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n simp;\n exact Nat.lt_succ_of_le (@len_evens_le xs);\n\n\nlemma bsort_term2 (x y: Nat) (xs: List Nat): List.length (odds (x :: y :: xs)) < Nat.succ (Nat.succ (List.length xs)) := by\n unfold odds; unfold evens;\n rw [List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n simp;\n exact Nat.lt_succ_of_le (@len_odds_le xs);\n\n\ndef bsort : List Nat \u2192 List Nat\n| [] => []\n| [x] => [x]\n| x::y::xs =>\n have _h := bsort_term1 x y xs\n have _h2 := bsort_term2 x y xs\n bmerge (bsort (evens (x::y::xs))) (bsort (odds (x::y::xs)))\ntermination_by xs => xs.length\n", "proof_state": "xs : List \u2115\n\u22a2 (isPermutation (bsort xs) xs == true) = true", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 532]]}
|
121 |
+
{"full_name": "prop_BSortIsSort", "prop_defn": "theorem prop_BSortIsSort (xs: List Nat) : bsort xs == isort xs:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:533", "score": 5, "deps": "import Mathlib\n\ndef insert' : Nat \u2192 List Nat \u2192 List Nat\n| x, [] => [x]\n| x, y::xs => if x <= y then x::y::xs else y::(insert x xs)\n\n\ndef isort: List Nat \u2192 List Nat\n| [] => []\n| x::xs => insert' x (isort xs)\n\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n--\n def odds : List Nat \u2192 List Nat\n | [] => []\n | _x::xs => evens xs\nend\n\n\nlemma len_evens_le : (evens xs).length \u2264 xs.length := by\n generalize hxsl: xs.length = xsl\n induction xsl using Nat.strong_induction_on generalizing xs with\n | h n ih =>\n cases xs with\n | nil => unfold evens; simp;\n | cons head1 tail1 =>\n unfold evens;\n cases tail1 with\n | nil => unfold odds; rw[\u2190 hxsl];\n | cons head2 tail2 =>\n unfold odds;\n rw [List.length_cons, List.length_cons] at hxsl;\n rw [\u2190 hxsl, List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n simp;\n have h': List.length tail2 < n := by rw [\u2190 hxsl, Nat.succ_eq_add_one _]; linarith;\n exact Nat.le.step (ih (List.length tail2) h' rfl);\n\n\nlemma len_odds_le : (odds xs).length \u2264 xs.length := by\n generalize hxsl: xs.length = xsl\n induction xsl using Nat.strong_induction_on generalizing xs with\n | h n ih =>\n cases xs with\n | nil => unfold odds; simp;\n | cons head1 tail1 =>\n unfold odds;\n cases tail1 with\n | nil => unfold evens; simp;\n | cons head2 tail2 =>\n unfold evens;\n rw [List.length_cons, List.length_cons] at hxsl;\n rw [\u2190 hxsl, List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n simp;\n have h': List.length tail2 < n := by rw [\u2190 hxsl, Nat.succ_eq_add_one _]; linarith;\n exact Nat.le.step (ih (List.length tail2) h' rfl);\n\n\ndef sort2 (a b: Nat): List Nat := if a \u2264 b then [a,b] else [b, a]\n\n\ndef pairs : List Nat \u2192 List Nat \u2192 List Nat\n| [], ys => ys\n| xs, [] => xs\n| x::xs, y::ys => (sort2 x y) ++ (pairs xs ys)\n\n\ndef stitch : List Nat \u2192 List Nat \u2192 List Nat\n| [], ys => ys\n| x::xs, ys => x::(pairs xs ys)\n\n\nlemma bmerge_term (a b: Nat) (as bs: List Nat) (hlen: \u00ac(List.length as == 0 && List.length bs == 0) = true): List.length (evens (a :: as)) + List.length (evens (b :: bs)) < Nat.succ (List.length as) + Nat.succ (List.length bs) := by\n unfold evens;\n simp at hlen;\n rw [List.length_cons, List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n ring_nf;\n cases as with\n | nil => cases bs with\n | nil => simp at hlen;\n | cons bhead btail => unfold odds; simp; linarith [@len_evens_le btail];\n | cons ahead atail =>\n rw [add_comm, add_comm (2 + List.length (ahead :: atail)) (List.length bs)]\n refine add_lt_add_of_le_of_lt (@len_odds_le bs) ?h; unfold odds; simp; linarith [@len_evens_le atail];\n\n\nlemma bmerge_term2 (x y: Nat) (xs ys: List Nat) : List.length (odds (x :: xs)) + List.length (odds (y :: ys)) < Nat.succ (List.length xs) + Nat.succ (List.length ys) := by\n unfold odds;\n exact add_lt_add_of_lt_of_lt (Nat.lt_succ_of_le (@len_evens_le xs)) (Nat.lt_succ_of_le (@len_evens_le ys))\n\n\ndef bmerge : List Nat \u2192 List Nat \u2192 List Nat\n| [], bs => bs -- I changed this from TIP. I don't believe this case is ever hit, though.\n| as, [] => as\n| x::xs, y::ys =>\n if hlen: xs.length == 0 && ys.length == 0 then sort2 x y else\n have _h := bmerge_term x y xs ys hlen;\n have _h2 := bmerge_term2 x y xs ys;\n stitch (bmerge (evens (x::xs)) (evens (y::ys))) (bmerge (odds (x::xs)) (odds (y::ys)))\ntermination_by xs ys => xs.length + ys.length\n\n\nlemma bsort_term1 (x y: Nat) (xs: List Nat): List.length (evens (x :: y :: xs)) < Nat.succ (Nat.succ (List.length xs)) := by\n unfold evens; unfold odds;\n rw [List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n simp;\n exact Nat.lt_succ_of_le (@len_evens_le xs);\n\n\nlemma bsort_term2 (x y: Nat) (xs: List Nat): List.length (odds (x :: y :: xs)) < Nat.succ (Nat.succ (List.length xs)) := by\n unfold odds; unfold evens;\n rw [List.length_cons, Nat.succ_eq_add_one _, Nat.succ_eq_add_one _];\n simp;\n exact Nat.lt_succ_of_le (@len_odds_le xs);\n\n\ndef bsort : List Nat \u2192 List Nat\n| [] => []\n| [x] => [x]\n| x::y::xs =>\n have _h := bsort_term1 x y xs\n have _h2 := bsort_term2 x y xs\n bmerge (bsort (evens (x::y::xs))) (bsort (odds (x::y::xs)))\ntermination_by xs => xs.length\n", "proof_state": "xs : List \u2115\n\u22a2 (bsort xs == isort xs) = true", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 533]]}
|
122 |
{"full_name": "prop_QSortSorts", "prop_defn": "theorem prop_QSortSorts (xs: List Nat) : ordered (qsort xs) == true:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:570", "score": 5, "deps": "import Mathlib\n\ndef ordered : List Nat -> Bool\n| [] => True\n| [_x] => True\n| x::y::xs => x <= y && ordered (y::xs)\n\n\ndef filter : List Nat \u2192 (Nat \u2192 Bool) \u2192 List Nat\n| [], _f => []\n| x::xs, f => if f x then x::(filter xs f) else (filter xs f)\n\n\nlemma filter_len_le {f: Nat \u2192 Bool} {xs: List Nat}: (filter xs f).length <= xs.length := by\n generalize hxsl: xs.length = xsl\n induction xsl generalizing xs with\n | zero => rw [List.length_eq_zero] at hxsl; rw [hxsl]; unfold filter; simp;\n | succ n ih =>\n cases xs with\n | nil => unfold filter; simp;\n | cons head tail =>\n rw [List.length_cons] at hxsl; simp at hxsl;\n unfold filter; split_ifs with h1;\n case pos;\n rw [List.length_cons];\n exact Nat.pred_le_iff.mp (ih hxsl)\n case neg;\n exact Nat.le.step (ih hxsl)\n\n\nlemma qsort_term (x:Nat) (xs: List Nat) : List.length (filter xs fun y => decide (y \u2264 x)) < Nat.succ (List.length xs) := by\n exact Nat.lt_succ_of_le (filter_len_le);\n\n\nlemma qsort_term2 (x:Nat) (xs: List Nat) : List.length (filter xs fun y => decide (y > x)) < Nat.succ (List.length xs) := by\n exact Nat.lt_succ_of_le (filter_len_le);\n\n\ndef qsort : List Nat \u2192 List Nat\n| [] => []\n| x::xs =>\n have _h:= qsort_term x xs\n have _h2:= qsort_term2 x xs\n (qsort (filter xs (fun y => y <= x))) ++ [x] ++ (qsort (filter xs (fun y => y > x)))\ntermination_by xs => xs.length\n", "proof_state": "xs : List \u2115\n\u22a2 (ordered (qsort xs) == true) = true", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 570]]}
|
123 |
{"full_name": "prop_QSortCount", "prop_defn": "theorem prop_QSortCount (x: Nat) (xs: List Nat) : count x (qsort xs) == count x xs:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:571", "score": 5, "deps": "import Mathlib\n\ndef count [DecidableEq \u03b1] : \u03b1 \u2192 List \u03b1 \u2192 Nat\n| _x, [] => 0\n| x, y::ys => if x == y then 1 + (count x ys) else count x ys\n\n\ndef filter : List Nat \u2192 (Nat \u2192 Bool) \u2192 List Nat\n| [], _f => []\n| x::xs, f => if f x then x::(filter xs f) else (filter xs f)\n\n\nlemma filter_len_le {f: Nat \u2192 Bool} {xs: List Nat}: (filter xs f).length <= xs.length := by\n generalize hxsl: xs.length = xsl\n induction xsl generalizing xs with\n | zero => rw [List.length_eq_zero] at hxsl; rw [hxsl]; unfold filter; simp;\n | succ n ih =>\n cases xs with\n | nil => unfold filter; simp;\n | cons head tail =>\n rw [List.length_cons] at hxsl; simp at hxsl;\n unfold filter; split_ifs with h1;\n case pos;\n rw [List.length_cons];\n exact Nat.pred_le_iff.mp (ih hxsl)\n case neg;\n exact Nat.le.step (ih hxsl)\n\n\nlemma qsort_term (x:Nat) (xs: List Nat) : List.length (filter xs fun y => decide (y \u2264 x)) < Nat.succ (List.length xs) := by\n exact Nat.lt_succ_of_le (filter_len_le);\n\n\nlemma qsort_term2 (x:Nat) (xs: List Nat) : List.length (filter xs fun y => decide (y > x)) < Nat.succ (List.length xs) := by\n exact Nat.lt_succ_of_le (filter_len_le);\n\n\ndef qsort : List Nat \u2192 List Nat\n| [] => []\n| x::xs =>\n have _h:= qsort_term x xs\n have _h2:= qsort_term2 x xs\n (qsort (filter xs (fun y => y <= x))) ++ [x] ++ (qsort (filter xs (fun y => y > x)))\ntermination_by xs => xs.length\n", "proof_state": "x : \u2115\nxs : List \u2115\n\u22a2 (count x (qsort xs) == count x xs) = true", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 571]]}
|
124 |
{"full_name": "prop_QSortPermutes", "prop_defn": "theorem prop_QSortPermutes (xs: List Nat) : isPermutation (qsort xs) xs == true:= by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:572", "score": 5, "deps": "import Mathlib\n\ndef deleteFirst [DecidableEq \u03b1]: \u03b1 \u2192 List \u03b1 \u2192 List \u03b1\n | _, [] => []\n | n, x::xs => if n == x then xs else x::(deleteFirst n xs)\n\n\ndef isPermutation [DecidableEq \u03b1] : List \u03b1 \u2192 List \u03b1 \u2192 Bool\n| [], ys => (ys == [])\n| x::xs, ys => x \u2208 ys && (isPermutation xs (deleteFirst x ys))\n\n\ndef filter : List Nat \u2192 (Nat \u2192 Bool) \u2192 List Nat\n| [], _f => []\n| x::xs, f => if f x then x::(filter xs f) else (filter xs f)\n\n\nlemma filter_len_le {f: Nat \u2192 Bool} {xs: List Nat}: (filter xs f).length <= xs.length := by\n generalize hxsl: xs.length = xsl\n induction xsl generalizing xs with\n | zero => rw [List.length_eq_zero] at hxsl; rw [hxsl]; unfold filter; simp;\n | succ n ih =>\n cases xs with\n | nil => unfold filter; simp;\n | cons head tail =>\n rw [List.length_cons] at hxsl; simp at hxsl;\n unfold filter; split_ifs with h1;\n case pos;\n rw [List.length_cons];\n exact Nat.pred_le_iff.mp (ih hxsl)\n case neg;\n exact Nat.le.step (ih hxsl)\n\n\nlemma qsort_term (x:Nat) (xs: List Nat) : List.length (filter xs fun y => decide (y \u2264 x)) < Nat.succ (List.length xs) := by\n exact Nat.lt_succ_of_le (filter_len_le);\n\n\nlemma qsort_term2 (x:Nat) (xs: List Nat) : List.length (filter xs fun y => decide (y > x)) < Nat.succ (List.length xs) := by\n exact Nat.lt_succ_of_le (filter_len_le);\n\n\ndef qsort : List Nat \u2192 List Nat\n| [] => []\n| x::xs =>\n have _h:= qsort_term x xs\n have _h2:= qsort_term2 x xs\n (qsort (filter xs (fun y => y <= x))) ++ [x] ++ (qsort (filter xs (fun y => y > x)))\ntermination_by xs => xs.length\n", "proof_state": "xs : List \u2115\n\u22a2 (isPermutation (qsort xs) xs == true) = true", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 572]]}
|
|
|
154 |
{"full_name": "len_pairwise", "prop_defn": "theorem len_pairwise (xs: List (List Nat)): 2 * (pairwise xs).length = (if (Odd xs.length) then xs.length + 1 else xs.length) := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:241", "score": 5, "deps": "import Mathlib\n\ndef lmerge : List Nat \u2192 List Nat \u2192 List Nat\n| [], ys => ys\n| xs, [] => xs\n| x::xs, y::ys => if x <= y then\n x::(lmerge xs (y::ys))\n else\n y::(lmerge (x::xs) ys)\n\n\ndef pairwise : List (List Nat) \u2192 List (List Nat)\n| xs::ys::xss => lmerge xs ys :: pairwise xss\n| xss => xss\n", "proof_state": "xs : List (List \u2115)\n\u22a2 2 * (pairwise xs).length = if Odd xs.length then xs.length + 1 else xs.length", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 286]]}
|
155 |
{"full_name": "merge_term", "prop_defn": "theorem merge_term : (pairwise (xs::ys::xss)).length < (xs::ys::xss).length := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:288", "score": 5, "deps": "import Mathlib\n\ndef lmerge : List Nat \u2192 List Nat \u2192 List Nat\n| [], ys => ys\n| xs, [] => xs\n| x::xs, y::ys => if x <= y then\n x::(lmerge xs (y::ys))\n else\n y::(lmerge (x::xs) ys)\n\n\ndef pairwise : List (List Nat) \u2192 List (List Nat)\n| xs::ys::xss => lmerge xs ys :: pairwise xss\n| xss => xss\n", "proof_state": "xs ys : List \u2115\nxss : List (List \u2115)\n\u22a2 (pairwise (xs :: ys :: xss)).length < (xs :: ys :: xss).length", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 299]]}
|
156 |
{"full_name": "half_lt", "prop_defn": "theorem half_lt: half x \u2264 x := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:382", "score": 5, "deps": "import Mathlib\n\ndef half : Nat \u2192 Nat\n| 0 => 0\n| 1 => 0\n| x + 2 => 1 + (half x)\n", "proof_state": "x : \u2115\n\u22a2 half x \u2264 x", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 395]]}
|
157 |
+
{"full_name": "len_evens_le", "prop_defn": "theorem len_evens_le {xs: List Nat}: (evens xs).length \u2264 xs.length := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:435", "score": 5, "deps": "import Mathlib\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n--\n def odds : List Nat \u2192 List Nat\n | [] => []\n | _x::xs => evens xs\nend\n", "proof_state": "xs : List \u2115\n\u22a2 (evens xs).length \u2264 xs.length", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 451]]}
|
158 |
+
{"full_name": "len_odds_le", "prop_defn": "theorem len_odds_le {xs: List Nat}: (odds xs).length \u2264 xs.length := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:453", "score": 5, "deps": "import Mathlib\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n--\n def odds : List Nat \u2192 List Nat\n | [] => []\n | _x::xs => evens xs\nend\n", "proof_state": "xs : List \u2115\n\u22a2 (odds xs).length \u2264 xs.length", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 469]]}
|
159 |
+
{"full_name": "bmerge_term", "prop_defn": "theorem bmerge_term (a b: Nat) (as bs: List Nat) (hlen: \u00ac(List.length as == 0 && List.length bs == 0) = true): List.length (evens (a :: as)) + List.length (evens (b :: bs)) < Nat.succ (List.length as) + Nat.succ (List.length bs) := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:482", "score": 5, "deps": "import Mathlib\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n--\n def odds : List Nat \u2192 List Nat\n | [] => []\n | _x::xs => evens xs\nend\n", "proof_state": "a b : \u2115\nas bs : List \u2115\nhlen : \u00ac(as.length == 0 && bs.length == 0) = true\n\u22a2 (evens (a :: as)).length + (evens (b :: bs)).length < as.length.succ + bs.length.succ", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 493]]}
|
160 |
+
{"full_name": "bmerge_term2", "prop_defn": "theorem bmerge_term2 (x y: Nat) (xs ys: List Nat) : List.length (odds (x :: xs)) + List.length (odds (y :: ys)) < Nat.succ (List.length xs) + Nat.succ (List.length ys) := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:495", "score": 5, "deps": "import Mathlib\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n--\n def odds : List Nat \u2192 List Nat\n | [] => []\n | _x::xs => evens xs\nend\n", "proof_state": "x y : \u2115\nxs ys : List \u2115\n\u22a2 (odds (x :: xs)).length + (odds (y :: ys)).length < xs.length.succ + ys.length.succ", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 497]]}
|
161 |
+
{"full_name": "bsort_term1", "prop_defn": "theorem bsort_term1 (x y: Nat) (xs: List Nat): List.length (evens (x :: y :: xs)) < Nat.succ (Nat.succ (List.length xs)) := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:509", "score": 5, "deps": "import Mathlib\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n--\n def odds : List Nat \u2192 List Nat\n | [] => []\n | _x::xs => evens xs\nend\n", "proof_state": "x y : \u2115\nxs : List \u2115\n\u22a2 (evens (x :: y :: xs)).length < xs.length.succ.succ", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 513]]}
|
162 |
+
{"full_name": "bsort_term2", "prop_defn": "theorem bsort_term2 (x y: Nat) (xs: List Nat): List.length (odds (x :: y :: xs)) < Nat.succ (Nat.succ (List.length xs)) := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:515", "score": 5, "deps": "import Mathlib\n\nmutual\n def evens : List Nat \u2192 List Nat\n | [] => []\n | x::xs => x::(odds xs)\n--\n def odds : List Nat \u2192 List Nat\n | [] => []\n | _x::xs => evens xs\nend\n", "proof_state": "x y : \u2115\nxs : List \u2115\n\u22a2 (odds (x :: y :: xs)).length < xs.length.succ.succ", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 519]]}
|
163 |
{"full_name": "filter_len_le", "prop_defn": "theorem filter_len_le {f: Nat \u2192 Bool} {xs: List Nat}: (filter xs f).length <= xs.length := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:539", "score": 5, "deps": "import Mathlib\n\ndef filter : List Nat \u2192 (Nat \u2192 Bool) \u2192 List Nat\n| [], _f => []\n| x::xs, f => if f x then x::(filter xs f) else (filter xs f)\n", "proof_state": "f : \u2115 \u2192 Bool\nxs : List \u2115\n\u22a2 (filter xs f).length \u2264 xs.length", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 553]]}
|
164 |
{"full_name": "qsort_term", "prop_defn": "theorem qsort_term (x:Nat) (xs: List Nat) : List.length (filter xs fun y => decide (y \u2264 x)) < Nat.succ (List.length xs) := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:556", "score": 5, "deps": "import Mathlib\n\ndef filter : List Nat \u2192 (Nat \u2192 Bool) \u2192 List Nat\n| [], _f => []\n| x::xs, f => if f x then x::(filter xs f) else (filter xs f)\n", "proof_state": "x : \u2115\nxs : List \u2115\n\u22a2 (filter xs fun y => decide (y \u2264 x)).length < xs.length.succ", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 557]]}
|
165 |
{"full_name": "qsort_term2", "prop_defn": "theorem qsort_term2 (x:Nat) (xs: List Nat) : List.length (filter xs fun y => decide (y > x)) < Nat.succ (List.length xs) := by sorry", "prop_loc": "LeanSrc/LeanSrc/Sorts.lean:559", "score": 5, "deps": "import Mathlib\n\ndef filter : List Nat \u2192 (Nat \u2192 Bool) \u2192 List Nat\n| [], _f => []\n| x::xs, f => if f x then x::(filter xs f) else (filter xs f)\n", "proof_state": "x : \u2115\nxs : List \u2115\n\u22a2 (filter xs fun y => decide (y > x)).length < xs.length.succ", "file_locs": [["LeanSrc/LeanSrc/Sorts.lean", 560]]}
|
utils.py
CHANGED
@@ -2,8 +2,11 @@ import pexpect
|
|
2 |
import json_stream
|
3 |
import json
|
4 |
|
|
|
|
|
|
|
5 |
LEAN_REPL_CMD = 'lake env ../repl/.lake/build/bin/repl'
|
6 |
-
SHELL_CMD = '/bin/sh' #zsh doesn't play well with non-canonical input: https://github.com/samapriya/geeup/issues/41
|
7 |
BASE_PATH = 'LeanSrc/LeanSrc'
|
8 |
|
9 |
def make_lean_repl(repl_type='zsh'):
|
@@ -15,8 +18,9 @@ def make_lean_repl(repl_type='zsh'):
|
|
15 |
lean_repl = pexpect.spawn(SHELL_CMD, cwd='LeanSrc', maxread=5000, timeout=20, echo=False)
|
16 |
lean_repl.sendline('stty -icanon') # this is the magic that allows a bunch of chars to be sent
|
17 |
lean_repl.sendline(LEAN_REPL_CMD)
|
18 |
-
|
19 |
-
|
|
|
20 |
elif repl_type == 'zsh':
|
21 |
lean_repl = pexpect.spawn(LEAN_REPL_CMD,cwd='LeanSrc', maxread=1025, timeout=5)
|
22 |
|
@@ -73,7 +77,7 @@ def load_mult_json(jsons):
|
|
73 |
|
74 |
#ps_out = json.loads(output)
|
75 |
assert ps_out is not None, 'parsing failed: ' + jsons.decode()
|
76 |
-
print('parsed output:', ps_out)
|
77 |
return ps_out
|
78 |
|
79 |
def make_repl_command(def_str, env=None):
|
@@ -127,28 +131,34 @@ def send_command_zsh(repl, command, env=None, timeout=5, first=False):
|
|
127 |
|
128 |
|
129 |
def send_command_icanon(repl, command, env=None, timeout=20, first=False):
|
130 |
-
print('sending command:', command)
|
131 |
rpl_comm = make_repl_command(command, env=env)
|
132 |
|
133 |
-
repl.sendline(rpl_comm+'\n')
|
134 |
-
if
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
142 |
try:
|
143 |
-
_index = repl.expect('env": \d+\}', timeout=
|
144 |
command_sent = True
|
145 |
except pexpect.exceptions.TIMEOUT as e:
|
|
|
146 |
print('did not find env in output')
|
147 |
return None, None
|
148 |
|
149 |
env_str = repl.match.group().decode()
|
150 |
new_env = int(env_str.split(':')[1].strip()[:-1])
|
151 |
output = repl.before + repl.match.group()
|
|
|
|
|
152 |
return load_mult_json(output), new_env
|
153 |
|
154 |
def make_repl_tactic(tac, proofState):
|
@@ -165,7 +175,7 @@ def send_tactic(repl, tactic, proofState):
|
|
165 |
|
166 |
# the icanon mode sometimes sends a single dict with just one field: 'message'.
|
167 |
# when we get that with a lean error, the tactic failed so we return None
|
168 |
-
_index = repl.expect('(]})|(\"}\r\n\r\n)', timeout=
|
169 |
|
170 |
|
171 |
#ps_str = repl.match.group().decode()
|
@@ -174,7 +184,7 @@ def send_tactic(repl, tactic, proofState):
|
|
174 |
#if verbose:
|
175 |
#print('js outp 2', output)
|
176 |
ps_out = load_mult_json(output)
|
177 |
-
print('ps out', ps_out)
|
178 |
if 'proofState' not in ps_out:
|
179 |
return None, None
|
180 |
return ps_out, ps_out['proofState']
|
@@ -183,4 +193,4 @@ def send_tactic(repl, tactic, proofState):
|
|
183 |
# return None, None
|
184 |
|
185 |
def get_errs(outp):
|
186 |
-
return [m for m in outp.get('messages', []) if m.get('severity', 'error') == 'error']
|
|
|
2 |
import json_stream
|
3 |
import json
|
4 |
|
5 |
+
MACOS = 'MacOS'
|
6 |
+
LINUX = 'Linux'
|
7 |
+
OS = LINUX #MACOS
|
8 |
LEAN_REPL_CMD = 'lake env ../repl/.lake/build/bin/repl'
|
9 |
+
SHELL_CMD = '/bin/sh' if OS == MACOS else '/bin/bash' #zsh doesn't play well with non-canonical input: https://github.com/samapriya/geeup/issues/41
|
10 |
BASE_PATH = 'LeanSrc/LeanSrc'
|
11 |
|
12 |
def make_lean_repl(repl_type='zsh'):
|
|
|
18 |
lean_repl = pexpect.spawn(SHELL_CMD, cwd='LeanSrc', maxread=5000, timeout=20, echo=False)
|
19 |
lean_repl.sendline('stty -icanon') # this is the magic that allows a bunch of chars to be sent
|
20 |
lean_repl.sendline(LEAN_REPL_CMD)
|
21 |
+
if OS == MACOS:
|
22 |
+
print(lean_repl.readline()) # my mac prints out some garbage when I run /bin/sh
|
23 |
+
print(lean_repl.readline())
|
24 |
elif repl_type == 'zsh':
|
25 |
lean_repl = pexpect.spawn(LEAN_REPL_CMD,cwd='LeanSrc', maxread=1025, timeout=5)
|
26 |
|
|
|
77 |
|
78 |
#ps_out = json.loads(output)
|
79 |
assert ps_out is not None, 'parsing failed: ' + jsons.decode()
|
80 |
+
#print('parsed output:', ps_out)
|
81 |
return ps_out
|
82 |
|
83 |
def make_repl_command(def_str, env=None):
|
|
|
131 |
|
132 |
|
133 |
def send_command_icanon(repl, command, env=None, timeout=20, first=False):
|
134 |
+
#print('sending command:', command)
|
135 |
rpl_comm = make_repl_command(command, env=env)
|
136 |
|
137 |
+
repl.sendline(rpl_comm + '\n')
|
138 |
+
if OS == MACOS:
|
139 |
+
if first:
|
140 |
+
repl.expect_exact('~>')
|
141 |
+
first = False
|
142 |
+
else:
|
143 |
+
try:
|
144 |
+
repl.expect_exact('\r\n\r\n')
|
145 |
+
except pexpect.exceptions.TIMEOUT as e:
|
146 |
+
print('did not find newlines')
|
147 |
+
elif OS == LINUX and first:
|
148 |
+
repl.expect_exact('\r{')
|
149 |
try:
|
150 |
+
_index = repl.expect('env": \d+\}', timeout=60)
|
151 |
command_sent = True
|
152 |
except pexpect.exceptions.TIMEOUT as e:
|
153 |
+
raise(e)
|
154 |
print('did not find env in output')
|
155 |
return None, None
|
156 |
|
157 |
env_str = repl.match.group().decode()
|
158 |
new_env = int(env_str.split(':')[1].strip()[:-1])
|
159 |
output = repl.before + repl.match.group()
|
160 |
+
if OS == LINUX and first:
|
161 |
+
output = '{'.encode() + output
|
162 |
return load_mult_json(output), new_env
|
163 |
|
164 |
def make_repl_tactic(tac, proofState):
|
|
|
175 |
|
176 |
# the icanon mode sometimes sends a single dict with just one field: 'message'.
|
177 |
# when we get that with a lean error, the tactic failed so we return None
|
178 |
+
_index = repl.expect('(]})|(\"}\r\n\r\n)', timeout=60)
|
179 |
|
180 |
|
181 |
#ps_str = repl.match.group().decode()
|
|
|
184 |
#if verbose:
|
185 |
#print('js outp 2', output)
|
186 |
ps_out = load_mult_json(output)
|
187 |
+
#print('ps out', ps_out)
|
188 |
if 'proofState' not in ps_out:
|
189 |
return None, None
|
190 |
return ps_out, ps_out['proofState']
|
|
|
193 |
# return None, None
|
194 |
|
195 |
def get_errs(outp):
|
196 |
+
return [m for m in outp.get('messages', []) if m.get('severity', 'error') == 'error']
|