Datasets:
Erfan
commited on
Commit
•
abc723b
1
Parent(s):
4544886
Add dataset file myket.csv and update README
Browse files- .gitattributes +1 -0
- README.md +75 -0
- myket.csv +3 -0
.gitattributes
CHANGED
@@ -53,3 +53,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
56 |
+
myket.csv filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,78 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
# Myket Android Application Install Dataset
|
5 |
+
|
6 |
+
This dataset contains information on application install interactions of users in the [Myket](https://myket.ir/) android application market. The dataset was created for the purpose of evaluating interaction prediction models, requiring user and item identifiers along with timestamps of the interactions.
|
7 |
+
|
8 |
+
## Data Creation
|
9 |
+
|
10 |
+
The dataset was initially generated by the Myket data team, and later cleaned and subsampled by Erfan Loghmani a master student at Sharif University of Technology at the time. The data team focused on a two-week period and randomly sampled 1/3 of the users with interactions during that period. They then selected install and update interactions for three months before and after the two-week period, resulting in interactions spanning about 6 months and two weeks.
|
11 |
+
|
12 |
+
We further subsampled and cleaned the data to focus on application download interactions. We identified the top 8000 most installed applications and selected interactions related to them. We retained users with more than 32 interactions, resulting in 280,391 users. From this group, we randomly selected 10,000 users, and the data was filtered to include only interactions for these users. The detailed procedure can be found in [here](https://github.com/erfanloghmani/myket-android-application-market-dataset/blob/main/create_data.ipynb).
|
13 |
+
|
14 |
+
## Data Structure
|
15 |
+
|
16 |
+
The dataset follows the same format as the datasets used in the "[JODIE: Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks](https://github.com/claws-lab/jodie)" (ACM SIGKDD 2019) project. However, this data does not contain state labels and interaction features, resulting in associated columns being all zero.
|
17 |
+
|
18 |
+
## Dataset Details
|
19 |
+
|
20 |
+
- Total Instances: 694,121 install interaction instances
|
21 |
+
- Instances Format: Triplets of user_id, app_name, timestamp
|
22 |
+
- 10,000 users and 7,988 android applications
|
23 |
+
|
24 |
+
For a detailed summary of the data's statistics, including information on users, applications, and interactions, please refer to the Python notebook available at [summary-stats.ipynb](https://github.com/erfanloghmani/myket-android-application-market-dataset/blob/main/summary-stats.ipynb). The notebook provides an overview of the dataset's characteristics and can be helpful for understanding the data's structure before using it for research or analysis.
|
25 |
+
|
26 |
+
### Top 20 Most Installed Applications
|
27 |
+
|
28 |
+
| Package Name | Count of Interactions |
|
29 |
+
| ---------------------------------- | --------------------- |
|
30 |
+
| com.instagram.android | 15292 |
|
31 |
+
| ir.resaneh1.iptv | 12143 |
|
32 |
+
| com.tencent.ig | 7919 |
|
33 |
+
| com.ForgeGames.SpecialForcesGroup2 | 7797 |
|
34 |
+
| ir.nomogame.ClutchGame | 6193 |
|
35 |
+
| com.dts.freefireth | 6041 |
|
36 |
+
| com.whatsapp | 5876 |
|
37 |
+
| com.supercell.clashofclans | 5817 |
|
38 |
+
| com.mojang.minecraftpe | 5649 |
|
39 |
+
| com.lenovo.anyshare.gps | 5076 |
|
40 |
+
| ir.medu.shad | 4673 |
|
41 |
+
| com.firsttouchgames.dls3 | 4641 |
|
42 |
+
| com.activision.callofduty.shooter | 4357 |
|
43 |
+
| com.tencent.iglite | 4126 |
|
44 |
+
| com.aparat | 3598 |
|
45 |
+
| com.kiloo.subwaysurf | 3135 |
|
46 |
+
| com.supercell.clashroyale | 2793 |
|
47 |
+
| co.palang.QuizOfKings | 2589 |
|
48 |
+
| com.nazdika.app | 2436 |
|
49 |
+
| com.digikala | 2413 |
|
50 |
+
|
51 |
+
## Comparison with SNAP Datasets
|
52 |
+
|
53 |
+
The Myket dataset introduced in this repository exhibits distinct characteristics compared to the real-world datasets used by the project. The table below provides a comparative overview of the key dataset characteristics:
|
54 |
+
|
55 |
+
| Dataset | #Users | #Items | #Interactions | Average Interactions per User | Average Unique Items per User |
|
56 |
+
| --------- | ----------------- | ----------------- | ----------------- | ----------------------------- | ----------------------------- |
|
57 |
+
| **Myket** | **10,000** | **7,988** | 694,121 | 69.4 | 54.6 |
|
58 |
+
| LastFM | 980 | 1,000 | 1,293,103 | 1,319.5 | 158.2 |
|
59 |
+
| Reddit | **10,000** | 984 | 672,447 | 67.2 | 7.9 |
|
60 |
+
| Wikipedia | 8,227 | 1,000 | 157,474 | 19.1 | 2.2 |
|
61 |
+
| MOOC | 7,047 | 97 | 411,749 | 58.4 | 25.3 |
|
62 |
+
|
63 |
+
The Myket dataset stands out by having an ample number of both users and items, highlighting its relevance for real-world, large-scale applications. Unlike LastFM, Reddit, and Wikipedia datasets, where users exhibit repetitive item interactions, the Myket dataset contains a comparatively lower amount of repetitive interactions. This unique characteristic reflects the diverse nature of user behaviors in the Android application market environment.
|
64 |
+
|
65 |
+
## Citation
|
66 |
+
|
67 |
+
If you use this dataset in your research, please cite the following [preprint](https://arxiv.org/abs/2308.06862):
|
68 |
+
|
69 |
+
```
|
70 |
+
@misc{loghmani2023effect,
|
71 |
+
title={Effect of Choosing Loss Function when Using T-batching for Representation Learning on Dynamic Networks},
|
72 |
+
author={Erfan Loghmani and MohammadAmin Fazli},
|
73 |
+
year={2023},
|
74 |
+
eprint={2308.06862},
|
75 |
+
archivePrefix={arXiv},
|
76 |
+
primaryClass={cs.LG}
|
77 |
+
}
|
78 |
+
```
|
myket.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69a1f973d73c7a6d1a6a3b19ecdc8d1cd2b3e442184c70a3b4e6196b9dcd13be
|
3 |
+
size 37425927
|