Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
anli / anli.py
system's picture
system HF staff
Update files from the datasets library (from 1.6.0)
7029083
raw
history blame
5.55 kB
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""The Adversarial NLI Corpus."""
import json
import os
import datasets
_CITATION = """\
@InProceedings{nie2019adversarial,
title={Adversarial NLI: A New Benchmark for Natural Language Understanding},
author={Nie, Yixin
and Williams, Adina
and Dinan, Emily
and Bansal, Mohit
and Weston, Jason
and Kiela, Douwe},
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
year = "2020",
publisher = "Association for Computational Linguistics",
}
"""
_DESCRIPTION = """\
The Adversarial Natural Language Inference (ANLI) is a new large-scale NLI benchmark dataset,
The dataset is collected via an iterative, adversarial human-and-model-in-the-loop procedure.
ANLI is much more difficult than its predecessors including SNLI and MNLI.
It contains three rounds. Each round has train/dev/test splits.
"""
stdnli_label = {
"e": "entailment",
"n": "neutral",
"c": "contradiction",
}
class ANLIConfig(datasets.BuilderConfig):
"""BuilderConfig for ANLI."""
def __init__(self, **kwargs):
"""BuilderConfig for ANLI.
Args:
.
**kwargs: keyword arguments forwarded to super.
"""
super(ANLIConfig, self).__init__(version=datasets.Version("0.1.0", ""), **kwargs)
class ANLI(datasets.GeneratorBasedBuilder):
"""ANLI: The ANLI Dataset."""
BUILDER_CONFIGS = [
ANLIConfig(
name="plain_text",
description="Plain text",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"uid": datasets.Value("string"),
"premise": datasets.Value("string"),
"hypothesis": datasets.Value("string"),
"label": datasets.features.ClassLabel(names=["entailment", "neutral", "contradiction"]),
"reason": datasets.Value("string"),
}
),
# No default supervised_keys (as we have to pass both premise
# and hypothesis as input).
supervised_keys=None,
homepage="https://github.com/facebookresearch/anli/",
citation=_CITATION,
)
def _vocab_text_gen(self, filepath):
for _, ex in self._generate_examples(filepath):
yield " ".join([ex["premise"], ex["hypothesis"]])
def _split_generators(self, dl_manager):
downloaded_dir = dl_manager.download_and_extract("https://dl.fbaipublicfiles.com/anli/anli_v0.1.zip")
anli_path = os.path.join(downloaded_dir, "anli_v0.1")
path_dict = dict()
for round_tag in ["R1", "R2", "R3"]:
path_dict[round_tag] = dict()
for split_name in ["train", "dev", "test"]:
path_dict[round_tag][split_name] = os.path.join(anli_path, round_tag, f"{split_name}.jsonl")
return [
# Round 1
datasets.SplitGenerator(name="train_r1", gen_kwargs={"filepath": path_dict["R1"]["train"]}),
datasets.SplitGenerator(name="dev_r1", gen_kwargs={"filepath": path_dict["R1"]["dev"]}),
datasets.SplitGenerator(name="test_r1", gen_kwargs={"filepath": path_dict["R1"]["test"]}),
# Round 2
datasets.SplitGenerator(name="train_r2", gen_kwargs={"filepath": path_dict["R2"]["train"]}),
datasets.SplitGenerator(name="dev_r2", gen_kwargs={"filepath": path_dict["R2"]["dev"]}),
datasets.SplitGenerator(name="test_r2", gen_kwargs={"filepath": path_dict["R2"]["test"]}),
# Round 3
datasets.SplitGenerator(name="train_r3", gen_kwargs={"filepath": path_dict["R3"]["train"]}),
datasets.SplitGenerator(name="dev_r3", gen_kwargs={"filepath": path_dict["R3"]["dev"]}),
datasets.SplitGenerator(name="test_r3", gen_kwargs={"filepath": path_dict["R3"]["test"]}),
]
def _generate_examples(self, filepath):
"""Generate mnli examples.
Args:
filepath: a string
Yields:
dictionaries containing "premise", "hypothesis" and "label" strings
"""
for idx, line in enumerate(open(filepath, "rb")):
if line is not None:
line = line.strip().decode("utf-8")
item = json.loads(line)
reason_text = ""
if "reason" in item:
reason_text = item["reason"]
yield item["uid"], {
"uid": item["uid"],
"premise": item["context"],
"hypothesis": item["hypothesis"],
"label": stdnli_label[item["label"]],
"reason": reason_text,
}