Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 18,471 Bytes
ee37a6d
07549ca
ee37a6d
 
 
 
 
 
 
87a8578
ee37a6d
 
 
87a8578
 
 
ee37a6d
 
 
 
 
 
b1e4001
87a8578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee37a6d
 
 
 
 
 
b1e4001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee37a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab3777b
ee37a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
---
pretty_name: BabiQa
annotations_creators:
- machine-generated
language_creators:
- machine-generated
languages:
- en
licenses:
- cc-by-3.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
- 1K<n<10K
- n<1K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- question-answering-other-chained-qa
paperswithcode_id: babi-1
configs:
- en-10k-qa1
- en-10k-qa10
- en-10k-qa11
- en-10k-qa12
- en-10k-qa13
- en-10k-qa14
- en-10k-qa15
- en-10k-qa16
- en-10k-qa17
- en-10k-qa18
- en-10k-qa19
- en-10k-qa2
- en-10k-qa20
- en-10k-qa3
- en-10k-qa4
- en-10k-qa5
- en-10k-qa6
- en-10k-qa7
- en-10k-qa8
- en-10k-qa9
- en-qa1
- en-qa10
- en-qa11
- en-qa12
- en-qa13
- en-qa14
- en-qa15
- en-qa16
- en-qa17
- en-qa18
- en-qa19
- en-qa2
- en-qa20
- en-qa3
- en-qa4
- en-qa5
- en-qa6
- en-qa7
- en-qa8
- en-qa9
- en-valid-10k-qa1
- en-valid-10k-qa10
- en-valid-10k-qa11
- en-valid-10k-qa12
- en-valid-10k-qa13
- en-valid-10k-qa14
- en-valid-10k-qa15
- en-valid-10k-qa16
- en-valid-10k-qa17
- en-valid-10k-qa18
- en-valid-10k-qa19
- en-valid-10k-qa2
- en-valid-10k-qa20
- en-valid-10k-qa3
- en-valid-10k-qa4
- en-valid-10k-qa5
- en-valid-10k-qa6
- en-valid-10k-qa7
- en-valid-10k-qa8
- en-valid-10k-qa9
- en-valid-qa1
- en-valid-qa10
- en-valid-qa11
- en-valid-qa12
- en-valid-qa13
- en-valid-qa14
- en-valid-qa15
- en-valid-qa16
- en-valid-qa17
- en-valid-qa18
- en-valid-qa19
- en-valid-qa2
- en-valid-qa20
- en-valid-qa3
- en-valid-qa4
- en-valid-qa5
- en-valid-qa6
- en-valid-qa7
- en-valid-qa8
- en-valid-qa9
- hn-10k-qa1
- hn-10k-qa10
- hn-10k-qa11
- hn-10k-qa12
- hn-10k-qa13
- hn-10k-qa14
- hn-10k-qa15
- hn-10k-qa16
- hn-10k-qa17
- hn-10k-qa18
- hn-10k-qa19
- hn-10k-qa2
- hn-10k-qa20
- hn-10k-qa3
- hn-10k-qa4
- hn-10k-qa5
- hn-10k-qa6
- hn-10k-qa7
- hn-10k-qa8
- hn-10k-qa9
- hn-qa1
- hn-qa10
- hn-qa11
- hn-qa12
- hn-qa13
- hn-qa14
- hn-qa15
- hn-qa16
- hn-qa17
- hn-qa18
- hn-qa19
- hn-qa2
- hn-qa20
- hn-qa3
- hn-qa4
- hn-qa5
- hn-qa6
- hn-qa7
- hn-qa8
- hn-qa9
- shuffled-10k-qa1
- shuffled-10k-qa10
- shuffled-10k-qa11
- shuffled-10k-qa12
- shuffled-10k-qa13
- shuffled-10k-qa14
- shuffled-10k-qa15
- shuffled-10k-qa16
- shuffled-10k-qa17
- shuffled-10k-qa18
- shuffled-10k-qa19
- shuffled-10k-qa2
- shuffled-10k-qa20
- shuffled-10k-qa3
- shuffled-10k-qa4
- shuffled-10k-qa5
- shuffled-10k-qa6
- shuffled-10k-qa7
- shuffled-10k-qa8
- shuffled-10k-qa9
- shuffled-qa1
- shuffled-qa10
- shuffled-qa11
- shuffled-qa12
- shuffled-qa13
- shuffled-qa14
- shuffled-qa15
- shuffled-qa16
- shuffled-qa17
- shuffled-qa18
- shuffled-qa19
- shuffled-qa2
- shuffled-qa20
- shuffled-qa3
- shuffled-qa4
- shuffled-qa5
- shuffled-qa6
- shuffled-qa7
- shuffled-qa8
- shuffled-qa9
---


# Dataset Card for bAbi QA

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:**[The bAbI project](https://research.fb.com/downloads/babi/)
- **Repository:**
- **Paper:** [arXiv Paper](https://arxiv.org/pdf/1502.05698.pdf)
- **Leaderboard:**
- **Point of Contact:** 
### Dataset Summary

The (20) QA bAbI tasks are a set of proxy tasks that evaluate reading comprehension via question answering. Our tasks measure understanding in several ways: whether a system is able to answer questions via chaining facts, simple induction, deduction and many more. The tasks are designed to be prerequisites for any system that aims to be capable of conversing with a human. The aim is to classify these tasks into skill sets,so that researchers can identify (and then rectify) the failings of their systems.

### Supported Tasks and Leaderboards

The dataset supports a set of 20 proxy story-based question answering tasks for various "types" in English and Hindi. The tasks are:

|task_no|task_name|
|----|------------|
|qa1 |single-supporting-fact|
|qa2 |two-supporting-facts|
|qa3 |three-supporting-facts|
|qa4 |two-arg-relations|
|qa5 |three-arg-relations|
|qa6 |yes-no-questions|
|qa7 |counting|
|qa8 |lists-sets|
|qa9 |simple-negation|
|qa10| indefinite-knowledge|
|qa11| basic-coreference|
|qa12| conjunction|
|qa13| compound-coreference|
|qa14| time-reasoning|
|qa15| basic-deduction|
|qa16| basic-induction|
|qa17| positional-reasoning|
|qa18| size-reasoning|
|qa19| path-finding|
|qa20| agents-motivations|


The "types" are are:

- `en`
   - the tasks in English, readable by humans.

- `hn`
   - the tasks in Hindi, readable by humans.
- `shuffled` 
   - the same tasks with shuffled letters so they are not readable by humans, and for existing parsers and taggers cannot be used in a straight-forward fashion to leverage extra resources-- in this case the learner is more forced to rely on the given training data. This mimics a learner being first presented a language and having to learn from scratch.
- `en-10k`, `shuffled-10k` and `hn-10k`  
   - the same tasks in the three formats, but with 10,000 training examples, rather than 1000 training examples.
- `en-valid` and `en-valid-10k`
   - are the same as `en` and `en10k` except the train sets have been conveniently split into train and valid portions (90% and 10% split).

To get a particular dataset, use `load_dataset('babi_qa',type=f'{type}',task_no=f'{task_no}')` where `type` is one of the types, and `task_no` is one of the task numbers. For example, `load_dataset('babi_qa', type='en', task_no='qa1')`.
### Languages



## Dataset Structure

### Data Instances
An instance from the `en-qa1` config's `train` split:

```
{'story': {'answer': ['', '', 'bathroom', '', '', 'hallway', '', '', 'hallway', '', '', 'office', '', '', 'bathroom'], 'id': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15'], 'supporting_ids': [[], [], ['1'], [], [], ['4'], [], [], ['4'], [], [], ['11'], [], [], ['8']], 'text': ['Mary moved to the bathroom.', 'John went to the hallway.', 'Where is Mary?', 'Daniel went back to the hallway.', 'Sandra moved to the garden.', 'Where is Daniel?', 'John moved to the office.', 'Sandra journeyed to the bathroom.', 'Where is Daniel?', 'Mary moved to the hallway.', 'Daniel travelled to the office.', 'Where is Daniel?', 'John went back to the garden.', 'John moved to the bedroom.', 'Where is Sandra?'], 'type': [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]}}
```

### Data Fields

- `story`: a dictionary feature containing:
  - `id`: a `string` feature, which denotes the line number in the example.
  - `type`: a classification label, with possible values including `context`, `question`, denoting whether the text is context or a question.
  - `text`: a `string` feature the text present, whether it is a question or context.
  - `supporting_ids`: a `list` of `string` features containing the line numbers of the lines in the example which support the answer.
  - `answer`: a `string` feature containing the answer to the question, or an empty string if the `type`s is not `question`.

### Data Splits

The splits and corresponding sizes are:

|                   |   train |   test |   validation |
|-------------------|---------|--------|--------------|
| en-qa1            |     200 |    200 |          -   |
| en-qa2            |     200 |    200 |          -   |
| en-qa3            |     200 |    200 |          -   |
| en-qa4            |    1000 |   1000 |          -   |
| en-qa5            |     200 |    200 |          -   |
| en-qa6            |     200 |    200 |          -   |
| en-qa7            |     200 |    200 |          -   |
| en-qa8            |     200 |    200 |          -   |
| en-qa9            |     200 |    200 |          -   |
| en-qa10           |     200 |    200 |          -   |
| en-qa11           |     200 |    200 |          -   |
| en-qa12           |     200 |    200 |          -   |
| en-qa13           |     200 |    200 |          -   |
| en-qa14           |     200 |    200 |          -   |
| en-qa15           |     250 |    250 |          -   |
| en-qa16           |    1000 |   1000 |          -   |
| en-qa17           |     125 |    125 |          -   |
| en-qa18           |     198 |    199 |          -   |
| en-qa19           |    1000 |   1000 |          -   |
| en-qa20           |      94 |     93 |          -   |
| en-10k-qa1        |    2000 |    200 |          -   |
| en-10k-qa2        |    2000 |    200 |          -   |
| en-10k-qa3        |    2000 |    200 |          -   |
| en-10k-qa4        |   10000 |   1000 |          -   |
| en-10k-qa5        |    2000 |    200 |          -   |
| en-10k-qa6        |    2000 |    200 |          -   |
| en-10k-qa7        |    2000 |    200 |          -   |
| en-10k-qa8        |    2000 |    200 |          -   |
| en-10k-qa9        |    2000 |    200 |          -   |
| en-10k-qa10       |    2000 |    200 |          -   |
| en-10k-qa11       |    2000 |    200 |          -   |
| en-10k-qa12       |    2000 |    200 |          -   |
| en-10k-qa13       |    2000 |    200 |          -   |
| en-10k-qa14       |    2000 |    200 |          -   |
| en-10k-qa15       |    2500 |    250 |          -   |
| en-10k-qa16       |   10000 |   1000 |          -   |
| en-10k-qa17       |    1250 |    125 |          -   |
| en-10k-qa18       |    1978 |    199 |          -   |
| en-10k-qa19       |   10000 |   1000 |          -   |
| en-10k-qa20       |     933 |     93 |          -   |
| en-valid-qa1      |     180 |    200 |           20 |
| en-valid-qa2      |     180 |    200 |           20 |
| en-valid-qa3      |     180 |    200 |           20 |
| en-valid-qa4      |     900 |   1000 |          100 |
| en-valid-qa5      |     180 |    200 |           20 |
| en-valid-qa6      |     180 |    200 |           20 |
| en-valid-qa7      |     180 |    200 |           20 |
| en-valid-qa8      |     180 |    200 |           20 |
| en-valid-qa9      |     180 |    200 |           20 |
| en-valid-qa10     |     180 |    200 |           20 |
| en-valid-qa11     |     180 |    200 |           20 |
| en-valid-qa12     |     180 |    200 |           20 |
| en-valid-qa13     |     180 |    200 |           20 |
| en-valid-qa14     |     180 |    200 |           20 |
| en-valid-qa15     |     225 |    250 |           25 |
| en-valid-qa16     |     900 |   1000 |          100 |
| en-valid-qa17     |     113 |    125 |           12 |
| en-valid-qa18     |     179 |    199 |           19 |
| en-valid-qa19     |     900 |   1000 |          100 |
| en-valid-qa20     |      85 |     93 |            9 |
| en-valid-10k-qa1  |    1800 |    200 |          200 |
| en-valid-10k-qa2  |    1800 |    200 |          200 |
| en-valid-10k-qa3  |    1800 |    200 |          200 |
| en-valid-10k-qa4  |    9000 |   1000 |         1000 |
| en-valid-10k-qa5  |    1800 |    200 |          200 |
| en-valid-10k-qa6  |    1800 |    200 |          200 |
| en-valid-10k-qa7  |    1800 |    200 |          200 |
| en-valid-10k-qa8  |    1800 |    200 |          200 |
| en-valid-10k-qa9  |    1800 |    200 |          200 |
| en-valid-10k-qa10 |    1800 |    200 |          200 |
| en-valid-10k-qa11 |    1800 |    200 |          200 |
| en-valid-10k-qa12 |    1800 |    200 |          200 |
| en-valid-10k-qa13 |    1800 |    200 |          200 |
| en-valid-10k-qa14 |    1800 |    200 |          200 |
| en-valid-10k-qa15 |    2250 |    250 |          250 |
| en-valid-10k-qa16 |    9000 |   1000 |         1000 |
| en-valid-10k-qa17 |    1125 |    125 |          125 |
| en-valid-10k-qa18 |    1781 |    199 |          197 |
| en-valid-10k-qa19 |    9000 |   1000 |         1000 |
| en-valid-10k-qa20 |     840 |     93 |           93 |
| hn-qa1            |     200 |    200 |          -   |
| hn-qa2            |     200 |    200 |          -   |
| hn-qa3            |     167 |    167 |          -   |
| hn-qa4            |    1000 |   1000 |          -   |
| hn-qa5            |     200 |    200 |          -   |
| hn-qa6            |     200 |    200 |          -   |
| hn-qa7            |     200 |    200 |          -   |
| hn-qa8            |     200 |    200 |          -   |
| hn-qa9            |     200 |    200 |          -   |
| hn-qa10           |     200 |    200 |          -   |
| hn-qa11           |     200 |    200 |          -   |
| hn-qa12           |     200 |    200 |          -   |
| hn-qa13           |     125 |    125 |          -   |
| hn-qa14           |     200 |    200 |          -   |
| hn-qa15           |     250 |    250 |          -   |
| hn-qa16           |    1000 |   1000 |          -   |
| hn-qa17           |     125 |    125 |          -   |
| hn-qa18           |     198 |    198 |          -   |
| hn-qa19           |    1000 |   1000 |          -   |
| hn-qa20           |      93 |     94 |          -   |
| hn-10k-qa1        |    2000 |    200 |          -   |
| hn-10k-qa2        |    2000 |    200 |          -   |
| hn-10k-qa3        |    1667 |    167 |          -   |
| hn-10k-qa4        |   10000 |   1000 |          -   |
| hn-10k-qa5        |    2000 |    200 |          -   |
| hn-10k-qa6        |    2000 |    200 |          -   |
| hn-10k-qa7        |    2000 |    200 |          -   |
| hn-10k-qa8        |    2000 |    200 |          -   |
| hn-10k-qa9        |    2000 |    200 |          -   |
| hn-10k-qa10       |    2000 |    200 |          -   |
| hn-10k-qa11       |    2000 |    200 |          -   |
| hn-10k-qa12       |    2000 |    200 |          -   |
| hn-10k-qa13       |    1250 |    125 |          -   |
| hn-10k-qa14       |    2000 |    200 |          -   |
| hn-10k-qa15       |    2500 |    250 |          -   |
| hn-10k-qa16       |   10000 |   1000 |          -   |
| hn-10k-qa17       |    1250 |    125 |          -   |
| hn-10k-qa18       |    1977 |    198 |          -   |
| hn-10k-qa19       |   10000 |   1000 |          -   |
| hn-10k-qa20       |     934 |     94 |          -   |
| shuffled-qa1      |     200 |    200 |          -   |
| shuffled-qa2      |     200 |    200 |          -   |
| shuffled-qa3      |     200 |    200 |          -   |
| shuffled-qa4      |    1000 |   1000 |          -   |
| shuffled-qa5      |     200 |    200 |          -   |
| shuffled-qa6      |     200 |    200 |          -   |
| shuffled-qa7      |     200 |    200 |          -   |
| shuffled-qa8      |     200 |    200 |          -   |
| shuffled-qa9      |     200 |    200 |          -   |
| shuffled-qa10     |     200 |    200 |          -   |
| shuffled-qa11     |     200 |    200 |          -   |
| shuffled-qa12     |     200 |    200 |          -   |
| shuffled-qa13     |     200 |    200 |          -   |
| shuffled-qa14     |     200 |    200 |          -   |
| shuffled-qa15     |     250 |    250 |          -   |
| shuffled-qa16     |    1000 |   1000 |          -   |
| shuffled-qa17     |     125 |    125 |          -   |
| shuffled-qa18     |     198 |    199 |          -   |
| shuffled-qa19     |    1000 |   1000 |          -   |
| shuffled-qa20     |      94 |     93 |          -   |
| shuffled-10k-qa1  |    2000 |    200 |          -   |
| shuffled-10k-qa2  |    2000 |    200 |          -   |
| shuffled-10k-qa3  |    2000 |    200 |          -   |
| shuffled-10k-qa4  |   10000 |   1000 |          -   |
| shuffled-10k-qa5  |    2000 |    200 |          -   |
| shuffled-10k-qa6  |    2000 |    200 |          -   |
| shuffled-10k-qa7  |    2000 |    200 |          -   |
| shuffled-10k-qa8  |    2000 |    200 |          -   |
| shuffled-10k-qa9  |    2000 |    200 |          -   |
| shuffled-10k-qa10 |    2000 |    200 |          -   |
| shuffled-10k-qa11 |    2000 |    200 |          -   |
| shuffled-10k-qa12 |    2000 |    200 |          -   |
| shuffled-10k-qa13 |    2000 |    200 |          -   |
| shuffled-10k-qa14 |    2000 |    200 |          -   |
| shuffled-10k-qa15 |    2500 |    250 |          -   |
| shuffled-10k-qa16 |   10000 |   1000 |          -   |
| shuffled-10k-qa17 |    1250 |    125 |          -   |
| shuffled-10k-qa18 |    1978 |    199 |          -   |
| shuffled-10k-qa19 |   10000 |   1000 |          -   |
| shuffled-10k-qa20 |     933 |     93 |          -   |


## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

Code to generate tasks is available on [github](https://github.com/facebook/bAbI-tasks)

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

Jesse Dodge and Andreea Gane and Xiang Zhang and Antoine Bordes and Sumit Chopra and Alexander Miller and Arthur Szlam and Jason Weston, at Facebook Research.

### Licensing Information

```
Creative Commons Attribution 3.0 License
```

### Citation Information

```
@misc{dodge2016evaluating,
      title={Evaluating Prerequisite Qualities for Learning End-to-End Dialog Systems}, 
      author={Jesse Dodge and Andreea Gane and Xiang Zhang and Antoine Bordes and Sumit Chopra and Alexander Miller and Arthur Szlam and Jason Weston},
      year={2016},
      eprint={1511.06931},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```


### Contributions

Thanks to [@gchhablani](https://github.com/gchhablani) for adding this dataset.