Datasets:
Tasks:
Question Answering
Modalities:
Text
Languages:
English
Size:
10K - 100K
ArXiv:
Tags:
chained-qa
License:
File size: 18,469 Bytes
ee37a6d 07549ca ee37a6d a98d44e ee37a6d a98d44e 87a8578 ee37a6d 87a8578 ee37a6d b1e4001 87a8578 ee37a6d b1e4001 ee37a6d ab3777b ee37a6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
---
pretty_name: BabiQa
annotations_creators:
- machine-generated
language_creators:
- machine-generated
language:
- en
license:
- cc-by-3.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
- 1K<n<10K
- n<1K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- question-answering-other-chained-qa
paperswithcode_id: babi-1
configs:
- en-10k-qa1
- en-10k-qa10
- en-10k-qa11
- en-10k-qa12
- en-10k-qa13
- en-10k-qa14
- en-10k-qa15
- en-10k-qa16
- en-10k-qa17
- en-10k-qa18
- en-10k-qa19
- en-10k-qa2
- en-10k-qa20
- en-10k-qa3
- en-10k-qa4
- en-10k-qa5
- en-10k-qa6
- en-10k-qa7
- en-10k-qa8
- en-10k-qa9
- en-qa1
- en-qa10
- en-qa11
- en-qa12
- en-qa13
- en-qa14
- en-qa15
- en-qa16
- en-qa17
- en-qa18
- en-qa19
- en-qa2
- en-qa20
- en-qa3
- en-qa4
- en-qa5
- en-qa6
- en-qa7
- en-qa8
- en-qa9
- en-valid-10k-qa1
- en-valid-10k-qa10
- en-valid-10k-qa11
- en-valid-10k-qa12
- en-valid-10k-qa13
- en-valid-10k-qa14
- en-valid-10k-qa15
- en-valid-10k-qa16
- en-valid-10k-qa17
- en-valid-10k-qa18
- en-valid-10k-qa19
- en-valid-10k-qa2
- en-valid-10k-qa20
- en-valid-10k-qa3
- en-valid-10k-qa4
- en-valid-10k-qa5
- en-valid-10k-qa6
- en-valid-10k-qa7
- en-valid-10k-qa8
- en-valid-10k-qa9
- en-valid-qa1
- en-valid-qa10
- en-valid-qa11
- en-valid-qa12
- en-valid-qa13
- en-valid-qa14
- en-valid-qa15
- en-valid-qa16
- en-valid-qa17
- en-valid-qa18
- en-valid-qa19
- en-valid-qa2
- en-valid-qa20
- en-valid-qa3
- en-valid-qa4
- en-valid-qa5
- en-valid-qa6
- en-valid-qa7
- en-valid-qa8
- en-valid-qa9
- hn-10k-qa1
- hn-10k-qa10
- hn-10k-qa11
- hn-10k-qa12
- hn-10k-qa13
- hn-10k-qa14
- hn-10k-qa15
- hn-10k-qa16
- hn-10k-qa17
- hn-10k-qa18
- hn-10k-qa19
- hn-10k-qa2
- hn-10k-qa20
- hn-10k-qa3
- hn-10k-qa4
- hn-10k-qa5
- hn-10k-qa6
- hn-10k-qa7
- hn-10k-qa8
- hn-10k-qa9
- hn-qa1
- hn-qa10
- hn-qa11
- hn-qa12
- hn-qa13
- hn-qa14
- hn-qa15
- hn-qa16
- hn-qa17
- hn-qa18
- hn-qa19
- hn-qa2
- hn-qa20
- hn-qa3
- hn-qa4
- hn-qa5
- hn-qa6
- hn-qa7
- hn-qa8
- hn-qa9
- shuffled-10k-qa1
- shuffled-10k-qa10
- shuffled-10k-qa11
- shuffled-10k-qa12
- shuffled-10k-qa13
- shuffled-10k-qa14
- shuffled-10k-qa15
- shuffled-10k-qa16
- shuffled-10k-qa17
- shuffled-10k-qa18
- shuffled-10k-qa19
- shuffled-10k-qa2
- shuffled-10k-qa20
- shuffled-10k-qa3
- shuffled-10k-qa4
- shuffled-10k-qa5
- shuffled-10k-qa6
- shuffled-10k-qa7
- shuffled-10k-qa8
- shuffled-10k-qa9
- shuffled-qa1
- shuffled-qa10
- shuffled-qa11
- shuffled-qa12
- shuffled-qa13
- shuffled-qa14
- shuffled-qa15
- shuffled-qa16
- shuffled-qa17
- shuffled-qa18
- shuffled-qa19
- shuffled-qa2
- shuffled-qa20
- shuffled-qa3
- shuffled-qa4
- shuffled-qa5
- shuffled-qa6
- shuffled-qa7
- shuffled-qa8
- shuffled-qa9
---
# Dataset Card for bAbi QA
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**[The bAbI project](https://research.fb.com/downloads/babi/)
- **Repository:**
- **Paper:** [arXiv Paper](https://arxiv.org/pdf/1502.05698.pdf)
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The (20) QA bAbI tasks are a set of proxy tasks that evaluate reading comprehension via question answering. Our tasks measure understanding in several ways: whether a system is able to answer questions via chaining facts, simple induction, deduction and many more. The tasks are designed to be prerequisites for any system that aims to be capable of conversing with a human. The aim is to classify these tasks into skill sets,so that researchers can identify (and then rectify) the failings of their systems.
### Supported Tasks and Leaderboards
The dataset supports a set of 20 proxy story-based question answering tasks for various "types" in English and Hindi. The tasks are:
|task_no|task_name|
|----|------------|
|qa1 |single-supporting-fact|
|qa2 |two-supporting-facts|
|qa3 |three-supporting-facts|
|qa4 |two-arg-relations|
|qa5 |three-arg-relations|
|qa6 |yes-no-questions|
|qa7 |counting|
|qa8 |lists-sets|
|qa9 |simple-negation|
|qa10| indefinite-knowledge|
|qa11| basic-coreference|
|qa12| conjunction|
|qa13| compound-coreference|
|qa14| time-reasoning|
|qa15| basic-deduction|
|qa16| basic-induction|
|qa17| positional-reasoning|
|qa18| size-reasoning|
|qa19| path-finding|
|qa20| agents-motivations|
The "types" are are:
- `en`
- the tasks in English, readable by humans.
- `hn`
- the tasks in Hindi, readable by humans.
- `shuffled`
- the same tasks with shuffled letters so they are not readable by humans, and for existing parsers and taggers cannot be used in a straight-forward fashion to leverage extra resources-- in this case the learner is more forced to rely on the given training data. This mimics a learner being first presented a language and having to learn from scratch.
- `en-10k`, `shuffled-10k` and `hn-10k`
- the same tasks in the three formats, but with 10,000 training examples, rather than 1000 training examples.
- `en-valid` and `en-valid-10k`
- are the same as `en` and `en10k` except the train sets have been conveniently split into train and valid portions (90% and 10% split).
To get a particular dataset, use `load_dataset('babi_qa',type=f'{type}',task_no=f'{task_no}')` where `type` is one of the types, and `task_no` is one of the task numbers. For example, `load_dataset('babi_qa', type='en', task_no='qa1')`.
### Languages
## Dataset Structure
### Data Instances
An instance from the `en-qa1` config's `train` split:
```
{'story': {'answer': ['', '', 'bathroom', '', '', 'hallway', '', '', 'hallway', '', '', 'office', '', '', 'bathroom'], 'id': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15'], 'supporting_ids': [[], [], ['1'], [], [], ['4'], [], [], ['4'], [], [], ['11'], [], [], ['8']], 'text': ['Mary moved to the bathroom.', 'John went to the hallway.', 'Where is Mary?', 'Daniel went back to the hallway.', 'Sandra moved to the garden.', 'Where is Daniel?', 'John moved to the office.', 'Sandra journeyed to the bathroom.', 'Where is Daniel?', 'Mary moved to the hallway.', 'Daniel travelled to the office.', 'Where is Daniel?', 'John went back to the garden.', 'John moved to the bedroom.', 'Where is Sandra?'], 'type': [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]}}
```
### Data Fields
- `story`: a dictionary feature containing:
- `id`: a `string` feature, which denotes the line number in the example.
- `type`: a classification label, with possible values including `context`, `question`, denoting whether the text is context or a question.
- `text`: a `string` feature the text present, whether it is a question or context.
- `supporting_ids`: a `list` of `string` features containing the line numbers of the lines in the example which support the answer.
- `answer`: a `string` feature containing the answer to the question, or an empty string if the `type`s is not `question`.
### Data Splits
The splits and corresponding sizes are:
| | train | test | validation |
|-------------------|---------|--------|--------------|
| en-qa1 | 200 | 200 | - |
| en-qa2 | 200 | 200 | - |
| en-qa3 | 200 | 200 | - |
| en-qa4 | 1000 | 1000 | - |
| en-qa5 | 200 | 200 | - |
| en-qa6 | 200 | 200 | - |
| en-qa7 | 200 | 200 | - |
| en-qa8 | 200 | 200 | - |
| en-qa9 | 200 | 200 | - |
| en-qa10 | 200 | 200 | - |
| en-qa11 | 200 | 200 | - |
| en-qa12 | 200 | 200 | - |
| en-qa13 | 200 | 200 | - |
| en-qa14 | 200 | 200 | - |
| en-qa15 | 250 | 250 | - |
| en-qa16 | 1000 | 1000 | - |
| en-qa17 | 125 | 125 | - |
| en-qa18 | 198 | 199 | - |
| en-qa19 | 1000 | 1000 | - |
| en-qa20 | 94 | 93 | - |
| en-10k-qa1 | 2000 | 200 | - |
| en-10k-qa2 | 2000 | 200 | - |
| en-10k-qa3 | 2000 | 200 | - |
| en-10k-qa4 | 10000 | 1000 | - |
| en-10k-qa5 | 2000 | 200 | - |
| en-10k-qa6 | 2000 | 200 | - |
| en-10k-qa7 | 2000 | 200 | - |
| en-10k-qa8 | 2000 | 200 | - |
| en-10k-qa9 | 2000 | 200 | - |
| en-10k-qa10 | 2000 | 200 | - |
| en-10k-qa11 | 2000 | 200 | - |
| en-10k-qa12 | 2000 | 200 | - |
| en-10k-qa13 | 2000 | 200 | - |
| en-10k-qa14 | 2000 | 200 | - |
| en-10k-qa15 | 2500 | 250 | - |
| en-10k-qa16 | 10000 | 1000 | - |
| en-10k-qa17 | 1250 | 125 | - |
| en-10k-qa18 | 1978 | 199 | - |
| en-10k-qa19 | 10000 | 1000 | - |
| en-10k-qa20 | 933 | 93 | - |
| en-valid-qa1 | 180 | 200 | 20 |
| en-valid-qa2 | 180 | 200 | 20 |
| en-valid-qa3 | 180 | 200 | 20 |
| en-valid-qa4 | 900 | 1000 | 100 |
| en-valid-qa5 | 180 | 200 | 20 |
| en-valid-qa6 | 180 | 200 | 20 |
| en-valid-qa7 | 180 | 200 | 20 |
| en-valid-qa8 | 180 | 200 | 20 |
| en-valid-qa9 | 180 | 200 | 20 |
| en-valid-qa10 | 180 | 200 | 20 |
| en-valid-qa11 | 180 | 200 | 20 |
| en-valid-qa12 | 180 | 200 | 20 |
| en-valid-qa13 | 180 | 200 | 20 |
| en-valid-qa14 | 180 | 200 | 20 |
| en-valid-qa15 | 225 | 250 | 25 |
| en-valid-qa16 | 900 | 1000 | 100 |
| en-valid-qa17 | 113 | 125 | 12 |
| en-valid-qa18 | 179 | 199 | 19 |
| en-valid-qa19 | 900 | 1000 | 100 |
| en-valid-qa20 | 85 | 93 | 9 |
| en-valid-10k-qa1 | 1800 | 200 | 200 |
| en-valid-10k-qa2 | 1800 | 200 | 200 |
| en-valid-10k-qa3 | 1800 | 200 | 200 |
| en-valid-10k-qa4 | 9000 | 1000 | 1000 |
| en-valid-10k-qa5 | 1800 | 200 | 200 |
| en-valid-10k-qa6 | 1800 | 200 | 200 |
| en-valid-10k-qa7 | 1800 | 200 | 200 |
| en-valid-10k-qa8 | 1800 | 200 | 200 |
| en-valid-10k-qa9 | 1800 | 200 | 200 |
| en-valid-10k-qa10 | 1800 | 200 | 200 |
| en-valid-10k-qa11 | 1800 | 200 | 200 |
| en-valid-10k-qa12 | 1800 | 200 | 200 |
| en-valid-10k-qa13 | 1800 | 200 | 200 |
| en-valid-10k-qa14 | 1800 | 200 | 200 |
| en-valid-10k-qa15 | 2250 | 250 | 250 |
| en-valid-10k-qa16 | 9000 | 1000 | 1000 |
| en-valid-10k-qa17 | 1125 | 125 | 125 |
| en-valid-10k-qa18 | 1781 | 199 | 197 |
| en-valid-10k-qa19 | 9000 | 1000 | 1000 |
| en-valid-10k-qa20 | 840 | 93 | 93 |
| hn-qa1 | 200 | 200 | - |
| hn-qa2 | 200 | 200 | - |
| hn-qa3 | 167 | 167 | - |
| hn-qa4 | 1000 | 1000 | - |
| hn-qa5 | 200 | 200 | - |
| hn-qa6 | 200 | 200 | - |
| hn-qa7 | 200 | 200 | - |
| hn-qa8 | 200 | 200 | - |
| hn-qa9 | 200 | 200 | - |
| hn-qa10 | 200 | 200 | - |
| hn-qa11 | 200 | 200 | - |
| hn-qa12 | 200 | 200 | - |
| hn-qa13 | 125 | 125 | - |
| hn-qa14 | 200 | 200 | - |
| hn-qa15 | 250 | 250 | - |
| hn-qa16 | 1000 | 1000 | - |
| hn-qa17 | 125 | 125 | - |
| hn-qa18 | 198 | 198 | - |
| hn-qa19 | 1000 | 1000 | - |
| hn-qa20 | 93 | 94 | - |
| hn-10k-qa1 | 2000 | 200 | - |
| hn-10k-qa2 | 2000 | 200 | - |
| hn-10k-qa3 | 1667 | 167 | - |
| hn-10k-qa4 | 10000 | 1000 | - |
| hn-10k-qa5 | 2000 | 200 | - |
| hn-10k-qa6 | 2000 | 200 | - |
| hn-10k-qa7 | 2000 | 200 | - |
| hn-10k-qa8 | 2000 | 200 | - |
| hn-10k-qa9 | 2000 | 200 | - |
| hn-10k-qa10 | 2000 | 200 | - |
| hn-10k-qa11 | 2000 | 200 | - |
| hn-10k-qa12 | 2000 | 200 | - |
| hn-10k-qa13 | 1250 | 125 | - |
| hn-10k-qa14 | 2000 | 200 | - |
| hn-10k-qa15 | 2500 | 250 | - |
| hn-10k-qa16 | 10000 | 1000 | - |
| hn-10k-qa17 | 1250 | 125 | - |
| hn-10k-qa18 | 1977 | 198 | - |
| hn-10k-qa19 | 10000 | 1000 | - |
| hn-10k-qa20 | 934 | 94 | - |
| shuffled-qa1 | 200 | 200 | - |
| shuffled-qa2 | 200 | 200 | - |
| shuffled-qa3 | 200 | 200 | - |
| shuffled-qa4 | 1000 | 1000 | - |
| shuffled-qa5 | 200 | 200 | - |
| shuffled-qa6 | 200 | 200 | - |
| shuffled-qa7 | 200 | 200 | - |
| shuffled-qa8 | 200 | 200 | - |
| shuffled-qa9 | 200 | 200 | - |
| shuffled-qa10 | 200 | 200 | - |
| shuffled-qa11 | 200 | 200 | - |
| shuffled-qa12 | 200 | 200 | - |
| shuffled-qa13 | 200 | 200 | - |
| shuffled-qa14 | 200 | 200 | - |
| shuffled-qa15 | 250 | 250 | - |
| shuffled-qa16 | 1000 | 1000 | - |
| shuffled-qa17 | 125 | 125 | - |
| shuffled-qa18 | 198 | 199 | - |
| shuffled-qa19 | 1000 | 1000 | - |
| shuffled-qa20 | 94 | 93 | - |
| shuffled-10k-qa1 | 2000 | 200 | - |
| shuffled-10k-qa2 | 2000 | 200 | - |
| shuffled-10k-qa3 | 2000 | 200 | - |
| shuffled-10k-qa4 | 10000 | 1000 | - |
| shuffled-10k-qa5 | 2000 | 200 | - |
| shuffled-10k-qa6 | 2000 | 200 | - |
| shuffled-10k-qa7 | 2000 | 200 | - |
| shuffled-10k-qa8 | 2000 | 200 | - |
| shuffled-10k-qa9 | 2000 | 200 | - |
| shuffled-10k-qa10 | 2000 | 200 | - |
| shuffled-10k-qa11 | 2000 | 200 | - |
| shuffled-10k-qa12 | 2000 | 200 | - |
| shuffled-10k-qa13 | 2000 | 200 | - |
| shuffled-10k-qa14 | 2000 | 200 | - |
| shuffled-10k-qa15 | 2500 | 250 | - |
| shuffled-10k-qa16 | 10000 | 1000 | - |
| shuffled-10k-qa17 | 1250 | 125 | - |
| shuffled-10k-qa18 | 1978 | 199 | - |
| shuffled-10k-qa19 | 10000 | 1000 | - |
| shuffled-10k-qa20 | 933 | 93 | - |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
Code to generate tasks is available on [github](https://github.com/facebook/bAbI-tasks)
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Jesse Dodge and Andreea Gane and Xiang Zhang and Antoine Bordes and Sumit Chopra and Alexander Miller and Arthur Szlam and Jason Weston, at Facebook Research.
### Licensing Information
```
Creative Commons Attribution 3.0 License
```
### Citation Information
```
@misc{dodge2016evaluating,
title={Evaluating Prerequisite Qualities for Learning End-to-End Dialog Systems},
author={Jesse Dodge and Andreea Gane and Xiang Zhang and Antoine Bordes and Sumit Chopra and Alexander Miller and Arthur Szlam and Jason Weston},
year={2016},
eprint={1511.06931},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### Contributions
Thanks to [@gchhablani](https://github.com/gchhablani) for adding this dataset.
|