Datasets:

Languages:
English
ArXiv:
License:
system HF staff commited on
Commit
3951475
1 Parent(s): f7fc144

Update files from the datasets library (from 1.16.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.16.0

Files changed (2) hide show
  1. README.md +1 -0
  2. md_gender_bias.py +62 -38
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  annotations_creators:
3
  convai2_inferred:
4
  - machine-generated
 
1
  ---
2
+ pretty_name: Multi-Dimensional Gender Bias Classification
3
  annotations_creators:
4
  convai2_inferred:
5
  - machine-generated
md_gender_bias.py CHANGED
@@ -16,7 +16,6 @@
16
 
17
 
18
  import json
19
- import os
20
 
21
  import datasets
22
 
@@ -299,7 +298,8 @@ class MdGenderBias(datasets.GeneratorBasedBuilder):
299
 
300
  def _split_generators(self, dl_manager):
301
  """Returns SplitGenerators."""
302
- data_dir = os.path.join(dl_manager.download_and_extract(_URL), "data_to_release")
 
303
  if self.config.name == "gendered_words":
304
  return [
305
  datasets.SplitGenerator(
@@ -307,9 +307,10 @@ class MdGenderBias(datasets.GeneratorBasedBuilder):
307
  gen_kwargs={
308
  "filepath": None,
309
  "filepath_pair": (
310
- os.path.join(data_dir, "word_list/male_word_file.txt"),
311
- os.path.join(data_dir, "word_list/female_word_file.txt"),
312
  ),
 
313
  },
314
  )
315
  ]
@@ -318,8 +319,9 @@ class MdGenderBias(datasets.GeneratorBasedBuilder):
318
  datasets.SplitGenerator(
319
  name=f"yob{yob}",
320
  gen_kwargs={
321
- "filepath": os.path.join(data_dir, f"names/yob{yob}.txt"),
322
  "filepath_pair": None,
 
323
  },
324
  )
325
  for yob in range(1880, 2019)
@@ -329,8 +331,9 @@ class MdGenderBias(datasets.GeneratorBasedBuilder):
329
  datasets.SplitGenerator(
330
  name=datasets.Split.TRAIN,
331
  gen_kwargs={
332
- "filepath": os.path.join(data_dir, "new_data/data.jsonl"),
333
  "filepath_pair": None,
 
334
  },
335
  )
336
  ]
@@ -339,8 +342,9 @@ class MdGenderBias(datasets.GeneratorBasedBuilder):
339
  datasets.SplitGenerator(
340
  name=spl,
341
  gen_kwargs={
342
- "filepath": os.path.join(data_dir, fname),
343
  "filepath_pair": None,
 
344
  },
345
  )
346
  for spl, fname in _CONF_FILES[self.config.name].items()
@@ -352,45 +356,62 @@ class MdGenderBias(datasets.GeneratorBasedBuilder):
352
  gen_kwargs={
353
  "filepath": None,
354
  "filepath_pair": (
355
- os.path.join(data_dir, fname_1),
356
- os.path.join(data_dir, fname_2),
357
  ),
 
358
  },
359
  )
360
  for spl, (fname_1, fname_2) in _CONF_FILES[self.config.name].items()
361
  ]
362
 
363
- def _generate_examples(self, filepath, filepath_pair):
364
  if self.config.name == "gendered_words":
365
- with open(filepath_pair[0], encoding="utf-8") as f_m:
366
- with open(filepath_pair[1], encoding="utf-8") as f_f:
367
- for id_, (l_m, l_f) in enumerate(zip(f_m, f_f)):
 
 
 
 
 
368
  yield id_, {
369
  "word_masculine": l_m.strip(),
370
  "word_feminine": l_f.strip(),
371
  }
 
372
  elif self.config.name == "name_genders":
373
- with open(filepath, encoding="utf-8") as f:
374
- for id_, line in enumerate(f):
375
- name, g, ct = line.strip().split(",")
376
- yield id_, {
377
- "name": name,
378
- "assigned_gender": g,
379
- "count": int(ct),
380
- }
381
- elif "_inferred" in self.config.name:
382
- with open(filepath_pair[0], encoding="utf-8") as f_b:
383
- if "yelp" in self.config.name:
384
- for id_, line_b in enumerate(f_b):
385
- text_b, label_b, score_b = line_b.split("\t")
386
  yield id_, {
387
- "text": text_b,
388
- "binary_label": label_b,
389
- "binary_score": float(score_b.strip()),
390
  }
391
- else:
392
- with open(filepath_pair[1], encoding="utf-8") as f_t:
393
- for id_, (line_b, line_t) in enumerate(zip(f_b, f_t)):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394
  text_b, label_b, score_b = line_b.split("\t")
395
  text_t, label_t, score_t = line_t.split("\t")
396
  yield id_, {
@@ -400,10 +421,13 @@ class MdGenderBias(datasets.GeneratorBasedBuilder):
400
  "ternary_label": label_t,
401
  "ternary_score": float(score_t.strip()),
402
  }
 
403
  else:
404
- with open(filepath, encoding="utf-8") as f:
405
- for id_, line in enumerate(f):
406
- example = json.loads(line.strip())
407
- if "turker_gender" in example and example["turker_gender"] is None:
408
- example["turker_gender"] = "no answer"
409
- yield id_, example
 
 
 
16
 
17
 
18
  import json
 
19
 
20
  import datasets
21
 
 
298
 
299
  def _split_generators(self, dl_manager):
300
  """Returns SplitGenerators."""
301
+ archive = dl_manager.download(_URL)
302
+ data_dir = "data_to_release"
303
  if self.config.name == "gendered_words":
304
  return [
305
  datasets.SplitGenerator(
 
307
  gen_kwargs={
308
  "filepath": None,
309
  "filepath_pair": (
310
+ data_dir + "/" + "word_list/male_word_file.txt",
311
+ data_dir + "/" + "word_list/female_word_file.txt",
312
  ),
313
+ "files": dl_manager.iter_archive(archive),
314
  },
315
  )
316
  ]
 
319
  datasets.SplitGenerator(
320
  name=f"yob{yob}",
321
  gen_kwargs={
322
+ "filepath": data_dir + "/" + f"names/yob{yob}.txt",
323
  "filepath_pair": None,
324
+ "files": dl_manager.iter_archive(archive),
325
  },
326
  )
327
  for yob in range(1880, 2019)
 
331
  datasets.SplitGenerator(
332
  name=datasets.Split.TRAIN,
333
  gen_kwargs={
334
+ "filepath": data_dir + "/" + "new_data/data.jsonl",
335
  "filepath_pair": None,
336
+ "files": dl_manager.iter_archive(archive),
337
  },
338
  )
339
  ]
 
342
  datasets.SplitGenerator(
343
  name=spl,
344
  gen_kwargs={
345
+ "filepath": data_dir + "/" + fname,
346
  "filepath_pair": None,
347
+ "files": dl_manager.iter_archive(archive),
348
  },
349
  )
350
  for spl, fname in _CONF_FILES[self.config.name].items()
 
356
  gen_kwargs={
357
  "filepath": None,
358
  "filepath_pair": (
359
+ data_dir + "/" + fname_1,
360
+ data_dir + "/" + fname_2,
361
  ),
362
+ "files": dl_manager.iter_archive(archive),
363
  },
364
  )
365
  for spl, (fname_1, fname_2) in _CONF_FILES[self.config.name].items()
366
  ]
367
 
368
+ def _generate_examples(self, filepath, filepath_pair, files):
369
  if self.config.name == "gendered_words":
370
+ male_data, female_data = None, None
371
+ for path, f in files:
372
+ if path == filepath_pair[0]:
373
+ male_data = f.read().decode("utf-8").splitlines()
374
+ elif path == filepath_pair[1]:
375
+ female_data = f.read().decode("utf-8").splitlines()
376
+ if male_data is not None and female_data is not None:
377
+ for id_, (l_m, l_f) in enumerate(zip(male_data, female_data)):
378
  yield id_, {
379
  "word_masculine": l_m.strip(),
380
  "word_feminine": l_f.strip(),
381
  }
382
+ break
383
  elif self.config.name == "name_genders":
384
+ for path, f in files:
385
+ if path == filepath:
386
+ for id_, line in enumerate(f):
387
+ name, g, ct = line.decode("utf-8").strip().split(",")
 
 
 
 
 
 
 
 
 
388
  yield id_, {
389
+ "name": name,
390
+ "assigned_gender": g,
391
+ "count": int(ct),
392
  }
393
+ break
394
+ elif "_inferred" in self.config.name:
395
+ if "yelp" in self.config.name:
396
+ for path, f in files:
397
+ if path == filepath_pair[0]:
398
+ for id_, line_b in enumerate(f):
399
+ text_b, label_b, score_b = line_b.decode("utf-8").split("\t")
400
+ yield id_, {
401
+ "text": text_b,
402
+ "binary_label": label_b,
403
+ "binary_score": float(score_b.strip()),
404
+ }
405
+ break
406
+ else:
407
+ binary_data, ternary_data = None, None
408
+ for path, f in files:
409
+ if path == filepath_pair[0]:
410
+ binary_data = f.read().decode("utf-8").splitlines()
411
+ elif path == filepath_pair[1]:
412
+ ternary_data = f.read().decode("utf-8").splitlines()
413
+ if binary_data is not None and ternary_data is not None:
414
+ for id_, (line_b, line_t) in enumerate(zip(binary_data, ternary_data)):
415
  text_b, label_b, score_b = line_b.split("\t")
416
  text_t, label_t, score_t = line_t.split("\t")
417
  yield id_, {
 
421
  "ternary_label": label_t,
422
  "ternary_score": float(score_t.strip()),
423
  }
424
+ break
425
  else:
426
+ for path, f in files:
427
+ if path == filepath:
428
+ for id_, line in enumerate(f):
429
+ example = json.loads(line.decode("utf-8").strip())
430
+ if "turker_gender" in example and example["turker_gender"] is None:
431
+ example["turker_gender"] = "no answer"
432
+ yield id_, example
433
+ break