Datasets:
Tasks:
Visual Question Answering
Sub-tasks:
visual-question-answering
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
File size: 5,024 Bytes
2a14e5d f309767 2a14e5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TextVQA dataset"""
import copy
import json
import os
import datasets
_CITATION = """
@inproceedings{singh2019towards,
title={Towards VQA Models That Can Read},
author={Singh, Amanpreet and Natarjan, Vivek and Shah, Meet and Jiang, Yu and Chen, Xinlei and Batra, Dhruv and Parikh, Devi and Rohrbach, Marcus},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={8317-8326},
year={2019}
}
"""
_DESCRIPTION = """\
TextVQA requires models to read and reason about text in images to answer questions about them.
Specifically, models need to incorporate a new modality of text present in the images and reason
over it to answer TextVQA questions. TextVQA dataset contains 45,336 questions over 28,408 images
from the OpenImages dataset.
"""
_HOMEPAGE = "https://textvqa.org"
_LICENSE = "CC BY 4.0"
_SPLITS = ["train", "val", "test"]
_URLS = {
f"{split}_annotations": f"https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_{split}.json"
for split in _SPLITS
}
# TextVQA val and train images are packed together
_URLS["train_val_images"] = "https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip"
_URLS["test_images"] = "https://dl.fbaipublicfiles.com/textvqa/images/test_images.zip"
_NUM_ANSWERS_PER_QUESTION = 10
class Textvqa(datasets.GeneratorBasedBuilder):
"""TextVQA dataset."""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="textvqa",
version=datasets.Version("0.5.1"),
description=_DESCRIPTION,
)
]
DEFAULT_CONFIG_NAME = "textvqa"
def _info(self):
features = datasets.Features(
{
"image_id": datasets.Value("string"),
"question_id": datasets.Value("int32"),
"question": datasets.Value("string"),
"question_tokens": datasets.Sequence(datasets.Value("string")),
"image": datasets.Image(),
"image_width": datasets.Value("int32"),
"image_height": datasets.Value("int32"),
"flickr_original_url": datasets.Value("string"),
"flickr_300k_url": datasets.Value("string"),
"answers": datasets.Sequence(datasets.Value("string")),
"image_classes": datasets.Sequence(datasets.Value("string")),
"set_name": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"annotations_path": downloaded_files["train_annotations"],
"images_path": downloaded_files["train_val_images"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"annotations_path": downloaded_files["val_annotations"],
"images_path": downloaded_files["train_val_images"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"annotations_path": downloaded_files["test_annotations"],
"images_path": downloaded_files["test_images"],
},
),
]
def _generate_examples(self, annotations_path: str, images_path: str):
with open(annotations_path, "r", encoding="utf-8") as f:
data = json.load(f)["data"]
idx = 0
for item in data:
item = copy.deepcopy(item)
item["answers"] = item.get("answers", ["" for _ in range(_NUM_ANSWERS_PER_QUESTION)])
image_id = item["image_id"]
image_subfolder = "train_images" if item["set_name"] != "test" else "test_images"
item["image"] = os.path.join(images_path, image_subfolder, f"{image_id}.jpg")
yield idx, item
idx += 1
|