Datasets:

Modalities:
Audio
Text
ArXiv:
Libraries:
Datasets
License:
voxpopuli / voxpopuli.py
polinaeterna's picture
polinaeterna HF staff
fix reading meta func name
7f5e50e
raw
history blame
7.78 kB
from collections import defaultdict
import os
import glob
import csv
from tqdm.auto import tqdm
import datasets
_DESCRIPTION = """
A large-scale multilingual speech corpus for representation learning, semi-supervised learning and interpretation.
"""
_CITATION = """
@inproceedings{wang-etal-2021-voxpopuli,
title = "{V}ox{P}opuli: A Large-Scale Multilingual Speech Corpus for Representation Learning,
Semi-Supervised Learning and Interpretation",
author = "Wang, Changhan and
Riviere, Morgane and
Lee, Ann and
Wu, Anne and
Talnikar, Chaitanya and
Haziza, Daniel and
Williamson, Mary and
Pino, Juan and
Dupoux, Emmanuel",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.80",
doi = "10.18653/v1/2021.acl-long.80",
pages = "993--1003",
}
"""
_HOMEPAGE = "https://github.com/facebookresearch/voxpopuli"
_LICENSE = "CC0, also see https://www.europarl.europa.eu/legal-notice/en/"
_LANGUAGES = sorted(
[
"en", "de", "fr", "es", "pl", "it", "ro", "hu", "cs", "nl", "fi", "hr",
"sk", "sl", "et", "lt", "pt", "bg", "el", "lv", "mt", "sv", "da"
]
)
_LANGUAGES_V2 = [f"{x}_v2" for x in _LANGUAGES]
_ASR_LANGUAGES = [
"en", "de", "fr", "es", "pl", "it", "ro", "hu", "cs", "nl", "fi", "hr",
"sk", "sl", "et", "lt"
]
_ASR_ACCENTED_LANGUAGES = [
"en_accented"
]
_YEARS = list(range(2009, 2020 + 1))
# unnecessary
_CONFIG_TO_LANGS = {
"400k": _LANGUAGES,
"100k": _LANGUAGES,
"10k": _LANGUAGES,
"asr": _ASR_LANGUAGES, # + _ASR_ACCENTED_LANGUAGES
}
_CONFIG_TO_YEARS = {
"400k": _YEARS + [f"{y}_2" for y in _YEARS],
"100k": _YEARS,
"10k": [2019, 2020],
"asr": _YEARS,
}
for lang in _LANGUAGES:
_CONFIG_TO_YEARS[lang] = _YEARS
# _CONFIG_TO_YEARS[lang] = [2020]
for lang in _LANGUAGES_V2:
_CONFIG_TO_YEARS[lang] = _YEARS + [f"{y}_2" for y in _YEARS]
_BASE_URL = "https://dl.fbaipublicfiles.com/voxpopuli/"
_DATA_URL = _BASE_URL + "audios/{lang}_{year}.tar"
_ASR_DATA_URL = _BASE_URL + "audios/original_{year}.tar"
_UNLABELLED_META_URL = _BASE_URL + "annotations/unlabelled_v2.tsv.gz"
_ASR_META_URL = _BASE_URL + "annotations/asr/asr_{lang}.tsv.gz"
class VoxpopuliConfig(datasets.BuilderConfig):
"""BuilderConfig for VoxPopuli."""
def __init__(self, name, **kwargs):
"""
Args:
name: `string`, name of dataset config
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(name=name, **kwargs)
name = name.split("_")[0]
self.languages = [name] if name in _LANGUAGES else _CONFIG_TO_LANGS[name]
self.years = _CONFIG_TO_YEARS[name]
class Voxpopuli(datasets.GeneratorBasedBuilder):
"""The VoxPopuli dataset."""
VERSION = datasets.Version("1.3.0") # not sure
BUILDER_CONFIGS = [
VoxpopuliConfig(
name=name,
version=datasets.Version("1.3.0"),
)
for name in _LANGUAGES + _LANGUAGES_V2 + ["10k", "100k", "400k"]
]
# DEFAULT_CONFIG_NAME = "400k"
DEFAULT_WRITER_BATCH_SIZE = 256 # SET THIS TO A LOWER VALUE IF IT USES TOO MUCH RAM SPACE
def _info(self):
try:
import torch
import torchaudio
except ImportError as e:
raise ValueError(
f"{str(e)}.\n" +
"Loading voxpopuli requires `torchaudio` to be installed."
"You can install torchaudio with `pip install torchaudio`."
)
global torchaudio
features = datasets.Features(
{
"path": datasets.Value("string"),
"language": datasets.ClassLabel(names=_LANGUAGES),
"year": datasets.Value("int16"),
"audio": datasets.Audio(sampling_rate=16_000),
"segment_id": datasets.Value("int16"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _read_metadata_unlabelled(self, metadata_path):
# from https://github.com/facebookresearch/voxpopuli/blob/main/voxpopuli/get_unlabelled_data.py#L34
def predicate(id_):
is_plenary = id_.find("PLENARY") > -1
if self.config.name == "10k": # in {"10k", "10k_sd"}
return is_plenary and 20190101 <= int(id_[:8]) < 20200801
elif self.config.name == "100k":
return is_plenary
elif self.config.name in _LANGUAGES:
return is_plenary and id_.endswith(self.config.name)
elif self.config.name in _LANGUAGES_V2:
return id_.endswith(self.config.name.split("_")[0])
return True
metadata = defaultdict(list)
with open(metadata_path, encoding="utf-8") as csv_file:
csv_reader = csv.reader(csv_file, delimiter="\t")
for i, row in tqdm(enumerate(csv_reader)):
if i == 0:
continue
event_id, segment_id, start, end = row
_, lang = event_id.rsplit("_", 1)[-2:]
if lang in self.config.languages and predicate(event_id):
metadata[event_id].append((float(start), float(end)))
return metadata
def _read_metadata_asr(self, metadata_paths):
pass
def _split_generators(self, dl_manager):
metadata_path = dl_manager.download_and_extract(_UNLABELLED_META_URL)
urls = [_DATA_URL.format(lang=language, year=year) for language in self.config.languages for year in self.config.years]
dl_manager.download_config.num_proc = len(urls)
data_dirs = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_dirs": data_dirs,
"metadata_path": metadata_path,
}
),
]
def _generate_examples(self, data_dirs, metadata_path):
metadata = self._read_metadata_unlabelled(metadata_path)
for data_dir in data_dirs:
for file in glob.glob(f"{data_dir}/**/*.ogg", recursive=True):
path_components = file.split(os.sep)
language, year, audio_filename = path_components[-3:]
audio_id, _ = os.path.splitext(audio_filename)
if audio_id not in metadata:
continue
timestamps = metadata[audio_id]
waveform, sr = torchaudio.load(file)
duration = waveform.size(1)
# split audio on the fly and yield segments as arrays - they will be converted to bytes by Audio feature
for segment_id, (start, stop) in enumerate(timestamps):
segment = waveform[:, int(start * sr): min(int(stop * sr), duration)]
yield f"{audio_filename}_{segment_id}", {
"path": file,
"language": language,
"year": year,
"audio": {
"array": segment[0], # segment is a 2-dim array
"sampling_rate": 16_000
},
"segment_id": segment_id,
}