|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""XNLI: The Cross-Lingual NLI Corpus.""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import collections |
|
import csv |
|
import os |
|
|
|
import six |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{conneau2018xnli, |
|
author = {Conneau, Alexis |
|
and Rinott, Ruty |
|
and Lample, Guillaume |
|
and Williams, Adina |
|
and Bowman, Samuel R. |
|
and Schwenk, Holger |
|
and Stoyanov, Veselin}, |
|
title = {XNLI: Evaluating Cross-lingual Sentence Representations}, |
|
booktitle = {Proceedings of the 2018 Conference on Empirical Methods |
|
in Natural Language Processing}, |
|
year = {2018}, |
|
publisher = {Association for Computational Linguistics}, |
|
location = {Brussels, Belgium}, |
|
}""" |
|
|
|
_DESCRIPTION = """\ |
|
XNLI is a subset of a few thousand examples from MNLI which has been translated |
|
into a 14 different languages (some low-ish resource). As with MNLI, the goal is |
|
to predict textual entailment (does sentence A imply/contradict/neither sentence |
|
B) and is a classification task (given two sentences, predict one of three |
|
labels). |
|
""" |
|
|
|
_DATA_URL = "https://www.nyu.edu/projects/bowman/xnli/XNLI-1.0.zip" |
|
|
|
_LANGUAGES = ("ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh") |
|
|
|
|
|
class Xnli(datasets.GeneratorBasedBuilder): |
|
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="plain_text", |
|
version=datasets.Version("1.0.0", ""), |
|
description="Plain text import of XNLI", |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"premise": datasets.features.Translation( |
|
languages=_LANGUAGES, |
|
), |
|
"hypothesis": datasets.features.TranslationVariableLanguages( |
|
languages=_LANGUAGES, |
|
), |
|
"label": datasets.features.ClassLabel(names=["entailment", "neutral", "contradiction"]), |
|
} |
|
), |
|
|
|
|
|
supervised_keys=None, |
|
homepage="https://www.nyu.edu/projects/bowman/xnli/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dl_dir = dl_manager.download_and_extract(_DATA_URL) |
|
data_dir = os.path.join(dl_dir, "XNLI-1.0") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "xnli.test.tsv")} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "xnli.dev.tsv")} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
rows_per_pair_id = collections.defaultdict(list) |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
rows_per_pair_id[row["pairID"]].append(row) |
|
|
|
for rows in six.itervalues(rows_per_pair_id): |
|
premise = {row["language"]: row["sentence1"] for row in rows} |
|
hypothesis = {row["language"]: row["sentence2"] for row in rows} |
|
yield rows[0]["pairID"], { |
|
"premise": premise, |
|
"hypothesis": hypothesis, |
|
"label": rows[0]["gold_label"], |
|
} |
|
|