Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,124 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
tags:
|
4 |
+
- chemistry
|
5 |
+
- materials
|
6 |
+
---
|
7 |
+
|
8 |
+
<h1 align="center" style="font-size: 36px;">Meta Open Materials 2024 (OMat24) Dataset</h1>
|
9 |
+
|
10 |
+
<p align="center">
|
11 |
+
<img width="559" height="200" src="https://cdn-uploads.huggingface.co/production/uploads/67004f02d66ad0efb0d494c3/yYySyR4CZjnRr09MB33bS.png"?
|
12 |
+
</p>
|
13 |
+
|
14 |
+
## Overview
|
15 |
+
Several datasets were utilized in this work. We provide open access to all datasets used to help accelerate research in the community.
|
16 |
+
This includes the OMat24 dataset as well as our modified sAlex dataset. Details on the different datasets are provided below.
|
17 |
+
|
18 |
+
## Datasets
|
19 |
+
|
20 |
+
### OMat24 Dataset
|
21 |
+
The OMat24 dataset contains a mix of single point calculations of non-equilibrium structures and
|
22 |
+
structural relaxations. The dataset contains structures labeled with total energy (eV), forces (eV/A)
|
23 |
+
and stress (eV/A^3). The dataset is provided in ASE DB compatible lmdb files.
|
24 |
+
|
25 |
+
The OMat24 train and val splits are fully compatible with the Matbench Discovery benchmark test set.
|
26 |
+
1. The splits do not contain any structure that has a protostructure label present in the initial or relaxed
|
27 |
+
structures of the WBM dataset.
|
28 |
+
2. The splits do not include any structure that was generated starting from an Alexandria relaxed structure with
|
29 |
+
protostructure lable in the intitial or relaxed structures of the WBM datset.
|
30 |
+
|
31 |
+
We provide two splits - train and val. Each split is comprised of several subdatasets based on the different input generation strategies, see paper for more details.
|
32 |
+
##### Train
|
33 |
+
| Sub-dataset | Size | Download |
|
34 |
+
| :-----: | :--: | :------: |
|
35 |
+
| rattled-1000 | 11,388,510 | [rattled-1000.tar.gz](https://dl.fbaipublicfiles.com/opencatalystproject/data/omat/241018/omat/train/rattled-1000.tar.gz) |
|
36 |
+
| rattled-1000-subsampled | 3,879,741 | [rattled-1000-subsampled.tar.gz](https://dl.fbaipublicfiles.com/opencatalystproject/data/omat/241018/omat/train/rattled-1000-subsampled.tar.gz) |
|
37 |
+
| rattled-500 | 6,922,197 | [rattled-500.tar.gz](https://dl.fbaipublicfiles.com/opencatalystproject/data/omat/241018/omat/train/rattled-500.tar.gz) |
|
38 |
+
| rattled-500-subsampled | 3,975,416 | [rattled-500-subsampled.tar.gz](https://dl.fbaipublicfiles.com/opencatalystproject/data/omat/241018/omat/train/rattled-500-subsampled.tar.gz) |
|
39 |
+
| rattled-300 | 6,319,139 | [rattled-300.tar.gz](https://dl.fbaipublicfiles.com/opencatalystproject/data/omat/241018/omat/train/rattled-300.tar.gz) |
|
40 |
+
| rattled-300-subsampled | 3,464,007 | [rattled-300-subsampled.tar.gz](https://dl.fbaipublicfiles.com/opencatalystproject/data/omat/241018/omat/train/rattled-300-subsampled.tar.gz) |
|
41 |
+
| aimd-from-PBE-1000-npt | 21,269,486 | [aimd-from-PBE-1000-npt.tar.gz](https://dl.fbaipublicfiles.com/opencatalystproject/data/omat/241018/omat/train/aimd-from-PBE-1000-npt.tar.gz) |
|
42 |
+
| aimd-from-PBE-1000-nvt | 20,256,650 | [aimd-from-PBE-1000-nvt.tar.gz](https://dl.fbaipublicfiles.com/opencatalystproject/data/omat/241018/omat/train/aimd-from-PBE-1000-nvt.tar.gz) |
|
43 |
+
| aimd-from-PBE-3000-npt | 6,076,290 | [aimd-from-PBE-3000-npt.tar.gz](https://dl.fbaipublicfiles.com/opencatalystproject/data/omat/241018/omat/train/aimd-from-PBE-3000-npt.tar.gz) |
|
44 |
+
| aimd-from-PBE-3000-nvt | 7,839,846 | [aimd-from-PBE-3000-nvt.tar.gz](https://dl.fbaipublicfiles.com/opencatalystproject/data/omat/241018/omat/train/aimd-from-PBE-3000-nvt.tar.gz) |
|
45 |
+
| rattled-relax | 9,433,303 | [rattled-relax.tar.gz](https://dl.fbaipublicfiles.com/opencatalystproject/data/omat/241018/omat/train/rattled-relax.tar.gz) |
|
46 |
+
| Total | 100,824,585 | - |
|
47 |
+
|
48 |
+
##### Val
|
49 |
+
| Sub-dataset | Size | Download |
|
50 |
+
| :-----: | :--: | :------: |
|
51 |
+
| rattled-1000 | TODO | TODO |
|
52 |
+
| rattled-1000-subsampled | TODO | TODO |
|
53 |
+
| rattled-500 | TODO | TODO |
|
54 |
+
| rattled-500-subsampled | TODO | TODO |
|
55 |
+
| rattled-300 | TODO | TODO |
|
56 |
+
| rattled-300-subsampled | TODO | TODO |
|
57 |
+
| aimd-from-PBE-1000-npt | TODO | TODO |
|
58 |
+
| aimd-from-PBE-1000-nvt | TODO | TODO |
|
59 |
+
| aimd-from-PBE-3000-npt | TODO | TODO |
|
60 |
+
| aimd-from-PBE-3000-nvt | TODO | TODO |
|
61 |
+
| rattled-relax | TODO | TODO |
|
62 |
+
| Total | TODO | - |
|
63 |
+
|
64 |
+
### sAlex Dataset
|
65 |
+
We also provide the sAlex dataset used for fine-tuning of our OMat models. sAlex is a subsampled, Matbench-Discovery compliant, version of the original [Alexandria](https://alexandria.icams.rub.de/).
|
66 |
+
sAlex was created by removing structures matched in WBM and only sampling structure along a trajectory with an energy difference greater than 10 meV/atom. For full details,
|
67 |
+
please see the manuscript.
|
68 |
+
| Dataset | Split | Size | Download |
|
69 |
+
| :-----: | :---: | :--: | :------: |
|
70 |
+
| sAlex | train | 10,447,765 | [train.tar.gz](dl.fbaipublicfiles.com/opencatalystproject/data/omat/241018/sAlex/train.tar.gz) |
|
71 |
+
| sAlex | val | 553,218 | [val.tar.gz](dl.fbaipublicfiles.com/opencatalystproject/data/omat/241018/sAlex/val.tar.gz) |
|
72 |
+
|
73 |
+
## How to read the data
|
74 |
+
The OMat24 and sAlex datasets can be accessed with the [fairchem](https://github.com/FAIR-Chem/fairchem) library. This package can be installed with:
|
75 |
+
```
|
76 |
+
pip install fairchem-core
|
77 |
+
```
|
78 |
+
|
79 |
+
Dataset files are written as `AseLMDBDatabase` objects which are an implementation of an [ASE Database](https://wiki.fysik.dtu.dk/ase/ase/db/db.html),
|
80 |
+
in LMDB format. A single **.aselmdb* file can be read and queried like any other ASE DB (not recommended as there are many files!).
|
81 |
+
|
82 |
+
You can also read many DB files at once and access atoms objects using the `AseDBDataset` class.
|
83 |
+
|
84 |
+
For example to read the **rattled-relax** subdataset,
|
85 |
+
```python
|
86 |
+
from fairchem.core.datasets import AseDBDataset
|
87 |
+
|
88 |
+
dataset_path = "/path/to/omat24/train/rattled-relax"
|
89 |
+
config_kwargs = {} # see tutorial on additional configuration
|
90 |
+
|
91 |
+
dataset = AseDBDataset(config=dict(src=dataset_path, **config_kwargs))
|
92 |
+
|
93 |
+
# atoms objects can be retrieved by index
|
94 |
+
atoms = dataset.get_atoms(0)
|
95 |
+
```
|
96 |
+
|
97 |
+
To read more than one subdataset you can simply pass a list of subdataset paths,
|
98 |
+
```python
|
99 |
+
from fairchem.core.datasets import AseDBDataset
|
100 |
+
|
101 |
+
config_kwargs = {} # see tutorial on additional configuration
|
102 |
+
dataset_paths = [
|
103 |
+
"/path/to/omat24/train/rattled-relax",
|
104 |
+
"/path/to/omat24/train/rattled-1000-subsampled",
|
105 |
+
"/path/to/omat24/train/rattled-1000"
|
106 |
+
]
|
107 |
+
dataset = AseDBDataset(config=dict(src=dataset_paths, **config_kwargs))
|
108 |
+
```
|
109 |
+
To read all of the OMat24 training or validations splits simply pass the paths to all subdatasets.
|
110 |
+
|
111 |
+
## Citation
|
112 |
+
|
113 |
+
The OMat24 dataset is licensed under a [Creative Commons Attribution 4.0 License](https://creativecommons.org/licenses/by/4.0/legalcode). If you use this work, please cite:
|
114 |
+
```
|
115 |
+
@misc{barroso_omat24,
|
116 |
+
title={Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models},
|
117 |
+
author={Luis Barroso-Luque and Muhammed Shuaibi and Xiang Fu and Brandon M. Wood and Misko Dzamba and Meng Gao and Ammar Rizvi and C. Lawrence Zitnick and Zachary W. Ulissi},
|
118 |
+
year={2024},
|
119 |
+
eprint={2410.12771},
|
120 |
+
archivePrefix={arXiv},
|
121 |
+
primaryClass={cond-mat.mtrl-sci},
|
122 |
+
url={https://arxiv.org/abs/2410.12771},
|
123 |
+
}
|
124 |
+
```
|