File size: 6,285 Bytes
b8bd3fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
---
annotations_creators:
- no-annotation
language_creators:
- found
languages:
- id
licenses:
- unknown
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- conditional-text-generation
task_ids:
- summarization
---

# Dataset Card for Large-scale Indonesian Summarization

## Table of Contents

- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-instances)
  - [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [IndoLEM (Indonesian Language Evaluation Montage)](https://indolem.github.io/)
- **Repository:** [Liputan6: Summarization Corpus for Indonesian](https://github.com/fajri91/sum_liputan6/)
- **Paper:** https://arxiv.org/abs/2011.00679
- **Leaderboard:**
- **Point of Contact:** [Fajri Koto](mailto:[email protected]),
[Jey Han Lau](mailto:[email protected]), [Timothy Baldwin](mailto:[email protected]), 

### Dataset Summary

In this paper, we introduce a large-scale Indonesian summarization dataset. We harvest articles from this http URL,
an online news portal, and obtain 215,827 document-summary pairs. We leverage pre-trained language models to develop
benchmark extractive and abstractive summarization methods over the dataset with multilingual and monolingual
BERT-based models. We include a thorough error analysis by examining machine-generated summaries that have
low ROUGE scores, and expose both issues with ROUGE it-self, as well as with extractive and abstractive
summarization models.

The dataset has two variants: "canonical" and "xtreme". The "xtreme" variant discards development and test 
document–summary pairs where the summary has fewer than 90% novel 4-grams (the training data remains the same 
as the canonical variant).

You need to manually request the liputan6 dataset using the form in https://github.com/fajri91/sum_liputan6/
and uncompress it. The liputan6 dataset can then be loaded using the following command 
`datasets.load_dataset("id_liputan6", 'canonical', data_dir="<path/to/uncompressed_folder>")` or
`datasets.load_dataset("id_liputan6", 'xtreme', data_dir="<path/to/uncompressed_folder>")`.
### Supported Tasks and Leaderboards

[More Information Needed]

### Languages
Indonesian

## Dataset Structure
```
{
  'id': 'string',
  'url': 'string',
  'clean_article': 'string',
  'clean_article': 'string',
  'extractive_summary': 'string'
}
```
### Data Instances

An example of the dataset:
```
{
  'clean_article': 'Liputan6.com, Ambon: Partai Bulan Bintang wilayah Maluku bertekad membantu pemerintah menyelesaikan konflik di provinsi tersebut. Syaratnya, penanganan penyelesaian konflik Maluku harus dimulai dari awal kerusuhan, yakni 19 Januari 1999. Demikian hasil Musyawarah Wilayah I PBB Maluku yang dimulai Sabtu pekan silam dan berakhir Senin (31/12) di Ambon. Menurut seorang fungsionaris PBB Ridwan Hasan, persoalan di Maluku bisa selesai asalkan pemerintah dan aparat keamanan serius menangani setiap persoalan di Maluku secara komprehensif dan bijaksana. Itulah sebabnya, PBB wilayah Maluku akan menjadikan penyelesaian konflik sebagai agenda utama partai. PBB Maluku juga akan mendukung penegakan hukum secara terpadu dan tanpa pandang bulu. Siapa saja yang melanggar hukum harus ditindak. Ridwan berharap, Ketua PBB Maluku yang baru, Ali Fauzi, dapat menindak lanjuti agenda politik partai yang telah diamanatkan dan mau mendukung penegakan hukum di Maluku. (ULF/Sahlan Heluth).',
  'clean_summary': 'Konflik Ambon telah berlangsung selama tiga tahun. Partai Bulan Bintang wilayah Maluku siap membantu pemerintah menyelesaikan kasus di provinsi tersebut.',
  'extractive_summary': 'Liputan6.com, Ambon: Partai Bulan Bintang wilayah Maluku bertekad membantu pemerintah menyelesaikan konflik di provinsi tersebut. Siapa saja yang melanggar hukum harus ditindak.',
  'id': '26408',
  'url': 'https://www.liputan6.com/news/read/26408/pbb-siap-membantu-penyelesaian-konflik-ambon'
}

```

### Data Fields
- `id`: id of the sample
- `url`: the url to the original article
- `clean_article`: the original article
- `clean_article`: the abstractive summarization
- `extractive_summary`: the extractive summarization

### Data Splits

The dataset is splitted in to train, validation and test sets.

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?
[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information
```
@inproceedings{Koto2020Liputan6AL,
  title={Liputan6: A Large-scale Indonesian Dataset for Text Summarization},
  author={Fajri Koto and Jey Han Lau and Timothy Baldwin},
  booktitle={AACL/IJCNLP},
  year={2020}
}
```
### Contributions

Thanks to [@cahya-wirawan](https://github.com/cahya-wirawan) for adding this dataset.