File size: 6,838 Bytes
b8bd3fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Large-scale Indonesian Summarization Dataset"""

from __future__ import absolute_import, division, print_function

import glob
import json
import logging
import os
import re
from pathlib import Path

import datasets


_CITATION = """\
@inproceedings{id_liputan6,
  author    = {Fajri Koto, Jey Han Lau, Timothy Baldwin},
  title     = {Liputan6: A Large-scale Indonesian Dataset for Text Summarization},
  year      = {2020},
  url       = {https://arxiv.org/abs/2011.00679},
}
"""

_DESCRIPTION = """\
In this paper, we introduce a large-scale Indonesian summarization dataset. We harvest articles from this http URL,
an online news portal, and obtain 215,827 document-summary pairs. We leverage pre-trained language models to develop
benchmark extractive and abstractive summarization methods over the dataset with multilingual and monolingual
BERT-based models. We include a thorough error analysis by examining machine-generated summaries that have
low ROUGE scores, and expose both issues with ROUGE it-self, as well as with extractive and abstractive
summarization models.
"""

_HOMEPAGE = "https://arxiv.org/abs/2011.00679"

_LICENSE = ""


class IdLiputan6Config(datasets.BuilderConfig):
    """BuilderConfig for IdLiputan6"""

    def __init__(self, **kwargs):
        """BuilderConfig for IdLiputan6.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(IdLiputan6Config, self).__init__(**kwargs)


class IdLiputan6(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        IdLiputan6Config(
            name="canonical",
            version=VERSION,
            description="Canonical Liputan6 dataset",
        ),
        IdLiputan6Config(
            name="xtreme",
            version=VERSION,
            description="Xtreme Liputan6 dataset",
        ),
    ]

    @property
    def manual_download_instructions(self):
        return """\
            You need to manually request the liputan6 dataset using the form in https://github.com/fajri91/sum_liputan6/
            and uncompress it.  The liputan6 dataset can then be loaded using the following command
            `datasets.load_dataset("id_liputan6", 'canonical', data_dir="<path/to/uncompressed_folder>")` or
            `datasets.load_dataset("id_liputan6", 'xtreme', data_dir="<path/to/uncompressed_folder>")`.
            """

    def _info(self):
        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "url": datasets.Value("string"),
                "clean_article": datasets.Value("string"),
                "clean_summary": datasets.Value("string"),
                "extractive_summary": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
        if not os.path.exists(data_dir):
            raise FileNotFoundError(
                "{} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('id_liputan6', "
                "'canonical', data_dir=...)`. Manual download instructions:\n{}".format(
                    data_dir, self.manual_download_instructions
                )
            )
        split_generators = [
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "article_dir": os.path.join(data_dir, "{}/dev".format(self.config.name)),
                    "split": "dev",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "article_dir": os.path.join(data_dir, "{}/test".format(self.config.name)),
                    "split": "test",
                },
            ),
        ]
        if self.config.name == "canonical":
            split_generators.append(
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "article_dir": os.path.join(data_dir, "{}/train".format(self.config.name)),
                        "split": "train",
                    },
                )
            )
        return split_generators

    def _generate_examples(self, article_dir, split):
        detokenizers = [
            [re.compile(r"([Ll])iputan6 . com "), r"\1iputan6.com"],
            [re.compile(r" ([.,:])"), r"\1"],
            [re.compile(r"\( ([^)]+) \)"), r"(\1)"],
            [re.compile(r"\" ([^\"]+) \""), r'"\1"'],
            [re.compile(r"\[ ([^]]+) ]"), r"[\1]"],
        ]
        logging.info("⏳ Generating %s examples from = %s", split, article_dir)
        guid = 0
        for path in sorted(
            glob.glob(os.path.join(article_dir, "**/*.json"), recursive=True), key=lambda p: int(Path(p).stem)
        ):
            with open(path, encoding="utf-8") as f:
                data = json.load(f)
                clean_article = " ".join([" ".join(i) for i in data["clean_article"]])
                for d in detokenizers:
                    clean_article = d[0].sub(d[1], clean_article)
                clean_summary = " ".join([" ".join(i) for i in data["clean_summary"]])
                for d in detokenizers:
                    clean_summary = d[0].sub(d[1], clean_summary)
                extractive_summary = " ".join([" ".join(data["clean_article"][i]) for i in data["extractive_summary"]])
                for d in detokenizers:
                    extractive_summary = d[0].sub(d[1], extractive_summary)
                yield guid, {
                    "id": str(data["id"]),
                    "url": data["url"],
                    "clean_article": clean_article,
                    "clean_summary": clean_summary,
                    "extractive_summary": extractive_summary,
                }
            guid += 1