Datasets:
Tasks:
Summarization
Sub-tasks:
news-articles-summarization
Languages:
Indonesian
Size:
100K<n<1M
ArXiv:
Tags:
extractive-summarization
License:
File size: 6,838 Bytes
b8bd3fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Large-scale Indonesian Summarization Dataset"""
from __future__ import absolute_import, division, print_function
import glob
import json
import logging
import os
import re
from pathlib import Path
import datasets
_CITATION = """\
@inproceedings{id_liputan6,
author = {Fajri Koto, Jey Han Lau, Timothy Baldwin},
title = {Liputan6: A Large-scale Indonesian Dataset for Text Summarization},
year = {2020},
url = {https://arxiv.org/abs/2011.00679},
}
"""
_DESCRIPTION = """\
In this paper, we introduce a large-scale Indonesian summarization dataset. We harvest articles from this http URL,
an online news portal, and obtain 215,827 document-summary pairs. We leverage pre-trained language models to develop
benchmark extractive and abstractive summarization methods over the dataset with multilingual and monolingual
BERT-based models. We include a thorough error analysis by examining machine-generated summaries that have
low ROUGE scores, and expose both issues with ROUGE it-self, as well as with extractive and abstractive
summarization models.
"""
_HOMEPAGE = "https://arxiv.org/abs/2011.00679"
_LICENSE = ""
class IdLiputan6Config(datasets.BuilderConfig):
"""BuilderConfig for IdLiputan6"""
def __init__(self, **kwargs):
"""BuilderConfig for IdLiputan6.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(IdLiputan6Config, self).__init__(**kwargs)
class IdLiputan6(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
IdLiputan6Config(
name="canonical",
version=VERSION,
description="Canonical Liputan6 dataset",
),
IdLiputan6Config(
name="xtreme",
version=VERSION,
description="Xtreme Liputan6 dataset",
),
]
@property
def manual_download_instructions(self):
return """\
You need to manually request the liputan6 dataset using the form in https://github.com/fajri91/sum_liputan6/
and uncompress it. The liputan6 dataset can then be loaded using the following command
`datasets.load_dataset("id_liputan6", 'canonical', data_dir="<path/to/uncompressed_folder>")` or
`datasets.load_dataset("id_liputan6", 'xtreme', data_dir="<path/to/uncompressed_folder>")`.
"""
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"url": datasets.Value("string"),
"clean_article": datasets.Value("string"),
"clean_summary": datasets.Value("string"),
"extractive_summary": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
if not os.path.exists(data_dir):
raise FileNotFoundError(
"{} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('id_liputan6', "
"'canonical', data_dir=...)`. Manual download instructions:\n{}".format(
data_dir, self.manual_download_instructions
)
)
split_generators = [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"article_dir": os.path.join(data_dir, "{}/dev".format(self.config.name)),
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"article_dir": os.path.join(data_dir, "{}/test".format(self.config.name)),
"split": "test",
},
),
]
if self.config.name == "canonical":
split_generators.append(
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"article_dir": os.path.join(data_dir, "{}/train".format(self.config.name)),
"split": "train",
},
)
)
return split_generators
def _generate_examples(self, article_dir, split):
detokenizers = [
[re.compile(r"([Ll])iputan6 . com "), r"\1iputan6.com"],
[re.compile(r" ([.,:])"), r"\1"],
[re.compile(r"\( ([^)]+) \)"), r"(\1)"],
[re.compile(r"\" ([^\"]+) \""), r'"\1"'],
[re.compile(r"\[ ([^]]+) ]"), r"[\1]"],
]
logging.info("⏳ Generating %s examples from = %s", split, article_dir)
guid = 0
for path in sorted(
glob.glob(os.path.join(article_dir, "**/*.json"), recursive=True), key=lambda p: int(Path(p).stem)
):
with open(path, encoding="utf-8") as f:
data = json.load(f)
clean_article = " ".join([" ".join(i) for i in data["clean_article"]])
for d in detokenizers:
clean_article = d[0].sub(d[1], clean_article)
clean_summary = " ".join([" ".join(i) for i in data["clean_summary"]])
for d in detokenizers:
clean_summary = d[0].sub(d[1], clean_summary)
extractive_summary = " ".join([" ".join(data["clean_article"][i]) for i in data["extractive_summary"]])
for d in detokenizers:
extractive_summary = d[0].sub(d[1], extractive_summary)
yield guid, {
"id": str(data["id"]),
"url": data["url"],
"clean_article": clean_article,
"clean_summary": clean_summary,
"extractive_summary": extractive_summary,
}
guid += 1
|