ju-resplande
commited on
Commit
•
c114718
1
Parent(s):
bb36a31
Upload fakebr.py
Browse files
fakebr.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""Fake.br dataset"""
|
15 |
+
|
16 |
+
|
17 |
+
import os
|
18 |
+
from pprint import pprint
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
|
23 |
+
_CITATION = """\
|
24 |
+
@article{silva:20,
|
25 |
+
title = "Towards automatically filtering fake news in Portuguese",
|
26 |
+
journal = "Expert Systems with Applications",
|
27 |
+
volume = "146",
|
28 |
+
pages = "113199",
|
29 |
+
year = "2020",
|
30 |
+
issn = "0957-4174",
|
31 |
+
doi = "https://doi.org/10.1016/j.eswa.2020.113199",
|
32 |
+
url = "http://www.sciencedirect.com/science/article/pii/S0957417420300257",
|
33 |
+
author = "Renato M. Silva and Roney L.S. Santos and Tiago A. Almeida and Thiago A.S. Pardo",
|
34 |
+
}
|
35 |
+
"""
|
36 |
+
|
37 |
+
|
38 |
+
_DESCRIPTION = """\
|
39 |
+
Fake.Br Corpus is composed of aligned true and fake news written in Brazilian Portuguese.
|
40 |
+
"""
|
41 |
+
|
42 |
+
_HOMEPAGE = "https://github.com/roneysco/Fake.br-Corpus"
|
43 |
+
|
44 |
+
# TODO: Add the licence for the dataset here if you can find it
|
45 |
+
_LICENSE = ""
|
46 |
+
|
47 |
+
|
48 |
+
_URL = "https://github.com/roneysco/Fake.br-Corpus/archive/refs/heads/master.zip"
|
49 |
+
|
50 |
+
# column names in metadata texts
|
51 |
+
_METADATA_COLS = [
|
52 |
+
"author",
|
53 |
+
"link",
|
54 |
+
"category",
|
55 |
+
"date of publication",
|
56 |
+
"number of tokens",
|
57 |
+
"number of words without punctuation",
|
58 |
+
"number of types",
|
59 |
+
"number of links inside the news",
|
60 |
+
"number of words in upper case",
|
61 |
+
"number of verbs",
|
62 |
+
"number of subjuntive and imperative verbs",
|
63 |
+
"number of nouns",
|
64 |
+
"number of adjectives",
|
65 |
+
"number of adverbs",
|
66 |
+
"number of modal verbs (mainly auxiliary verbs)",
|
67 |
+
"number of singular first and second personal pronouns",
|
68 |
+
"number of plural first personal pronouns",
|
69 |
+
"number of pronouns",
|
70 |
+
"pausality",
|
71 |
+
"number of characters",
|
72 |
+
"average sentence length",
|
73 |
+
"average word length",
|
74 |
+
"percentage of news with speeling errors",
|
75 |
+
"emotiveness",
|
76 |
+
"diversity",
|
77 |
+
]
|
78 |
+
|
79 |
+
|
80 |
+
class Fakebr(datasets.GeneratorBasedBuilder):
|
81 |
+
"""Fake.Br Corpus is composed of aligned true and fake news written in Brazilian Portuguese."""
|
82 |
+
|
83 |
+
VERSION = datasets.Version("1.0.0")
|
84 |
+
|
85 |
+
BUILDER_CONFIGS = [
|
86 |
+
datasets.BuilderConfig(
|
87 |
+
name="full_texts",
|
88 |
+
version=VERSION,
|
89 |
+
description="full texts, as collected from their websites",
|
90 |
+
),
|
91 |
+
datasets.BuilderConfig(
|
92 |
+
name="size_normalized_texts",
|
93 |
+
version=VERSION,
|
94 |
+
description="in each fake-true pair, the longer text is truncated (in number of words) to the size of the shorter text",
|
95 |
+
),
|
96 |
+
]
|
97 |
+
|
98 |
+
DEFAULT_CONFIG_NAME = "full_texts"
|
99 |
+
|
100 |
+
def _info(self):
|
101 |
+
if self.config.name == "full_texts":
|
102 |
+
features = datasets.Features(
|
103 |
+
{
|
104 |
+
"text": datasets.Value("string"),
|
105 |
+
"label": datasets.ClassLabel(num_classes=2, names=["fake", "true"]),
|
106 |
+
"author": datasets.Value("string"),
|
107 |
+
"link": datasets.Value("string"),
|
108 |
+
"category": datasets.Value("string"),
|
109 |
+
"date of publication": datasets.Value("string"),
|
110 |
+
"number of tokens": datasets.Value("int32"),
|
111 |
+
"number of words without punctuation": datasets.Value("int32"),
|
112 |
+
"number of types": datasets.Value("int32"),
|
113 |
+
"number of links inside the news": datasets.Value("int32"),
|
114 |
+
"number of words in upper case": datasets.Value("int32"),
|
115 |
+
"number of verbs": datasets.Value("int32"),
|
116 |
+
"number of subjuntive and imperative verbs": datasets.Value(
|
117 |
+
"int32"
|
118 |
+
),
|
119 |
+
"number of nouns": datasets.Value("int32"),
|
120 |
+
"number of adjectives": datasets.Value("int32"),
|
121 |
+
"number of adverbs": datasets.Value("int32"),
|
122 |
+
"number of modal verbs (mainly auxiliary verbs)": datasets.Value(
|
123 |
+
"int32"
|
124 |
+
),
|
125 |
+
"number of singular first and second personal pronouns": datasets.Value(
|
126 |
+
"int32"
|
127 |
+
),
|
128 |
+
"number of plural first personal pronouns": datasets.Value("int32"),
|
129 |
+
"number of pronouns": datasets.Value("int32"),
|
130 |
+
"pausality": datasets.Value("float"),
|
131 |
+
"number of characters": datasets.Value("int32"),
|
132 |
+
"average sentence length": datasets.Value("float"),
|
133 |
+
"average word length": datasets.Value("float"),
|
134 |
+
"percentage of news with speeling errors": datasets.Value("float"),
|
135 |
+
"emotiveness": datasets.Value("float"),
|
136 |
+
"diversity": datasets.Value("float"),
|
137 |
+
}
|
138 |
+
)
|
139 |
+
elif self.config.name == "size_normalized_texts":
|
140 |
+
features = datasets.Features(
|
141 |
+
{
|
142 |
+
"text": datasets.Value("string"),
|
143 |
+
"label": datasets.ClassLabel(num_classes=2, names=["fake", "true"]),
|
144 |
+
}
|
145 |
+
)
|
146 |
+
return datasets.DatasetInfo(
|
147 |
+
description=_DESCRIPTION,
|
148 |
+
features=features,
|
149 |
+
supervised_keys=("text", "label"),
|
150 |
+
homepage=_HOMEPAGE,
|
151 |
+
license=_LICENSE,
|
152 |
+
citation=_CITATION,
|
153 |
+
)
|
154 |
+
|
155 |
+
def _split_generators(self, dl_manager):
|
156 |
+
urls = _URL
|
157 |
+
data_dir = dl_manager.download_and_extract(urls)
|
158 |
+
return [
|
159 |
+
datasets.SplitGenerator(
|
160 |
+
name=datasets.Split.TRAIN,
|
161 |
+
gen_kwargs={
|
162 |
+
"data_dir": os.path.join(data_dir, "Fake.br-Corpus-master"),
|
163 |
+
},
|
164 |
+
),
|
165 |
+
]
|
166 |
+
|
167 |
+
def _generate_examples(self, data_dir):
|
168 |
+
config_dir = os.path.join(data_dir, self.config.name)
|
169 |
+
|
170 |
+
for label in ["fake", "true"]:
|
171 |
+
label_dir = os.path.join(config_dir, label)
|
172 |
+
|
173 |
+
for example in os.listdir(label_dir):
|
174 |
+
key = label + "_" + example.replace(".txt", "")
|
175 |
+
example_path = os.path.join(label_dir, example)
|
176 |
+
|
177 |
+
with open(example_path, "r") as f:
|
178 |
+
text = f.read()
|
179 |
+
|
180 |
+
row = {"text": text, "label": label}
|
181 |
+
|
182 |
+
if self.config.name == "full_texts":
|
183 |
+
metadata_path = os.path.join(
|
184 |
+
config_dir,
|
185 |
+
f"{label}-meta-information",
|
186 |
+
example.replace(".txt", "-meta.txt"),
|
187 |
+
)
|
188 |
+
|
189 |
+
with open(metadata_path, "r") as f:
|
190 |
+
metadata = f.read().split("\n")
|
191 |
+
|
192 |
+
metadata = dict(zip(_METADATA_COLS, metadata))
|
193 |
+
|
194 |
+
if metadata["author"] == "None":
|
195 |
+
metadata["author"] = ""
|
196 |
+
|
197 |
+
if metadata["number of links inside the news"] == "None":
|
198 |
+
metadata["number of links inside the news"] = "0"
|
199 |
+
|
200 |
+
row.update(metadata)
|
201 |
+
|
202 |
+
yield key, row
|