Multiple configs
Browse filesSigned-off-by: Jiri Podivin <[email protected]>
- plantorgans.py +42 -16
plantorgans.py
CHANGED
@@ -31,15 +31,15 @@ _PANOPTIC_METADATA_URLS = {
|
|
31 |
class PlantOrgansConfig(datasets.BuilderConfig):
|
32 |
"""Builder Config for PlantOrgans"""
|
33 |
|
34 |
-
def __init__(self,
|
35 |
"""BuilderConfig for PlantOrgans.
|
36 |
Args:
|
37 |
-
|
38 |
metadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
|
39 |
**kwargs: keyword arguments forwarded to super.
|
40 |
"""
|
41 |
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
|
42 |
-
self.
|
43 |
self.metadata_urls = metadata_urls
|
44 |
self.splits = splits
|
45 |
|
@@ -51,23 +51,36 @@ class PlantOrgans(datasets.GeneratorBasedBuilder):
|
|
51 |
PlantOrgansConfig(
|
52 |
name="semantic_segmentation_full",
|
53 |
description="This configuration contains segmentation masks.",
|
54 |
-
|
55 |
metadata_urls=_SEMANTIC_METADATA_URLS,
|
56 |
splits=['train', 'test'],
|
57 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
]
|
59 |
|
60 |
def _info(self):
|
61 |
-
|
62 |
-
description=_DESCRIPTION,
|
63 |
-
features=datasets.Features(
|
64 |
{
|
65 |
"image": datasets.Image(),
|
66 |
"mask": datasets.Image(),
|
67 |
"image_name": datasets.Value(dtype="string"),
|
68 |
-
"class": datasets.
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
supervised_keys=("image", "mask"),
|
72 |
homepage=_HOMEPAGE,
|
73 |
citation=_CITATION,
|
@@ -82,18 +95,28 @@ class PlantOrgans(datasets.GeneratorBasedBuilder):
|
|
82 |
|
83 |
train_paths = []
|
84 |
test_paths = []
|
85 |
-
|
86 |
for p in train_archives_paths:
|
87 |
train_paths.extend(glob.glob(str(p)+'/sourcedata/labeled/**.jpg'))
|
88 |
for p in test_archives_paths:
|
89 |
test_paths.extend(glob.glob(str(p)+'/sourcedata/labeled/**.jpg'))
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
mask_paths = []
|
95 |
for p in mask_archives_paths:
|
96 |
-
mask_paths.extend(glob.glob(str(p)+
|
97 |
|
98 |
return [
|
99 |
datasets.SplitGenerator(
|
@@ -147,5 +170,8 @@ class PlantOrgans(datasets.GeneratorBasedBuilder):
|
|
147 |
'image_name': Path(r['image_path']).parts[-1],
|
148 |
'class': r['class']
|
149 |
}
|
150 |
-
|
|
|
|
|
|
|
151 |
yield i, example
|
|
|
31 |
class PlantOrgansConfig(datasets.BuilderConfig):
|
32 |
"""Builder Config for PlantOrgans"""
|
33 |
|
34 |
+
def __init__(self, data_urls, metadata_urls, splits, **kwargs):
|
35 |
"""BuilderConfig for PlantOrgans.
|
36 |
Args:
|
37 |
+
data_urls: list of `string`s, urls to download the zip files from.
|
38 |
metadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
|
39 |
**kwargs: keyword arguments forwarded to super.
|
40 |
"""
|
41 |
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
|
42 |
+
self.data_urls = data_urls
|
43 |
self.metadata_urls = metadata_urls
|
44 |
self.splits = splits
|
45 |
|
|
|
51 |
PlantOrgansConfig(
|
52 |
name="semantic_segmentation_full",
|
53 |
description="This configuration contains segmentation masks.",
|
54 |
+
data_urls=_BASE_URL,
|
55 |
metadata_urls=_SEMANTIC_METADATA_URLS,
|
56 |
splits=['train', 'test'],
|
57 |
),
|
58 |
+
PlantOrgansConfig(
|
59 |
+
name="instance_segmentation_full",
|
60 |
+
description="This configuration contains segmentation masks.",
|
61 |
+
data_urls=_BASE_URL,
|
62 |
+
metadata_urls=_PANOPTIC_METADATA_URLS,
|
63 |
+
splits=['train', 'test'],
|
64 |
+
),
|
65 |
]
|
66 |
|
67 |
def _info(self):
|
68 |
+
features=datasets.Features(
|
|
|
|
|
69 |
{
|
70 |
"image": datasets.Image(),
|
71 |
"mask": datasets.Image(),
|
72 |
"image_name": datasets.Value(dtype="string"),
|
73 |
+
"class": datasets.ClassLabel(
|
74 |
+
names=['Fruit', 'Leaf', 'Flower', 'Stem']),
|
75 |
+
})
|
76 |
+
if self.config.name == 'instance_segmentation_full':
|
77 |
+
features['score'] = datasets.Value(dtype="double")
|
78 |
+
else:
|
79 |
+
features['class'] = datasets.ClassLabel(
|
80 |
+
names=['Fruit', 'Leaf', 'Flower', 'Stem'])
|
81 |
+
return datasets.DatasetInfo(
|
82 |
+
description=_DESCRIPTION,
|
83 |
+
features=features,
|
84 |
supervised_keys=("image", "mask"),
|
85 |
homepage=_HOMEPAGE,
|
86 |
citation=_CITATION,
|
|
|
95 |
|
96 |
train_paths = []
|
97 |
test_paths = []
|
98 |
+
|
99 |
for p in train_archives_paths:
|
100 |
train_paths.extend(glob.glob(str(p)+'/sourcedata/labeled/**.jpg'))
|
101 |
for p in test_archives_paths:
|
102 |
test_paths.extend(glob.glob(str(p)+'/sourcedata/labeled/**.jpg'))
|
103 |
+
|
104 |
+
if self.config.name == 'instance_segmentation_full':
|
105 |
+
metadata_urls = _PANOPTIC_METADATA_URLS
|
106 |
+
mask_urls = _MASKS_URLS
|
107 |
+
mask_glob = '/_masks/**.png'
|
108 |
+
else:
|
109 |
+
metadata_urls = _SEMANTIC_METADATA_URLS
|
110 |
+
mask_urls = _SEMANTIC_MASKS_URLS
|
111 |
+
mask_glob = '/semantic_masks/**.png'
|
112 |
+
|
113 |
+
split_metadata_paths = dl_manager.download(metadata_urls)
|
114 |
+
|
115 |
+
mask_archives_paths = dl_manager.download_and_extract(mask_urls)
|
116 |
|
117 |
mask_paths = []
|
118 |
for p in mask_archives_paths:
|
119 |
+
mask_paths.extend(glob.glob(str(p)+mask_glob))
|
120 |
|
121 |
return [
|
122 |
datasets.SplitGenerator(
|
|
|
170 |
'image_name': Path(r['image_path']).parts[-1],
|
171 |
'class': r['class']
|
172 |
}
|
173 |
+
if self.config.name == 'instance_segmentation_full':
|
174 |
+
example['score'] = r['score']
|
175 |
+
else:
|
176 |
+
example['class'] = r['class']
|
177 |
yield i, example
|