Removing download script
Browse filesSigned-off-by: Jiri Podivin <[email protected]>
- plantorgans.py +0 -168
plantorgans.py
DELETED
@@ -1,168 +0,0 @@
|
|
1 |
-
import datasets
|
2 |
-
import pandas as pd
|
3 |
-
import glob
|
4 |
-
from pathlib import Path
|
5 |
-
from PIL import Image, ImageOps
|
6 |
-
|
7 |
-
_DESCRIPTION = """Photos of various plants with their major, above ground organs labeled. Includes labels for stem, leafs, fruits and flowers."""
|
8 |
-
|
9 |
-
_HOMEPAGE = "https://huggingface.co/datasets/jpodivin/plantorgans"
|
10 |
-
|
11 |
-
_CITATION = """"""
|
12 |
-
|
13 |
-
_LICENSE = "MIT"
|
14 |
-
|
15 |
-
_BASE_URL = "https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/"
|
16 |
-
_TRAIN_URLS = [_BASE_URL + f"sourcedata_labeled.tar.{i:02}" for i in range(0, 8)]
|
17 |
-
_TEST_URLS = [_BASE_URL + f"sourcedata_labeled.tar.{i:02}" for i in range(8, 12)]
|
18 |
-
_MASKS_URLS = [_BASE_URL + f"masks.tar.0{i}" for i in range(0, 2)]
|
19 |
-
_SEMANTIC_MASKS_URLS = "semantic_masks.tar.gz"
|
20 |
-
|
21 |
-
_SEMANTIC_METADATA_URLS = {
|
22 |
-
'train': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_semantic_train.csv',
|
23 |
-
'test': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_semantic_test.csv'
|
24 |
-
}
|
25 |
-
|
26 |
-
_PANOPTIC_METADATA_URLS = {
|
27 |
-
'train': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_train.csv',
|
28 |
-
'test': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_test.csv'
|
29 |
-
}
|
30 |
-
|
31 |
-
|
32 |
-
class PlantOrgansConfig(datasets.BuilderConfig):
|
33 |
-
"""Builder Config for PlantOrgans"""
|
34 |
-
|
35 |
-
def __init__(self, data_urls, metadata_urls, splits, **kwargs):
|
36 |
-
"""BuilderConfig for PlantOrgans.
|
37 |
-
Args:
|
38 |
-
data_urls: list of `string`s, urls to download the zip files from.
|
39 |
-
metadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
|
40 |
-
**kwargs: keyword arguments forwarded to super.
|
41 |
-
"""
|
42 |
-
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
|
43 |
-
self.data_urls = data_urls
|
44 |
-
self.metadata_urls = metadata_urls
|
45 |
-
self.splits = splits
|
46 |
-
|
47 |
-
|
48 |
-
class PlantOrgans(datasets.GeneratorBasedBuilder):
|
49 |
-
"""Plantorgans dataset
|
50 |
-
"""
|
51 |
-
BUILDER_CONFIGS = [
|
52 |
-
PlantOrgansConfig(
|
53 |
-
name="semantic_segmentation_full",
|
54 |
-
description="This configuration contains segmentation masks.",
|
55 |
-
data_urls=_BASE_URL,
|
56 |
-
metadata_urls=_SEMANTIC_METADATA_URLS,
|
57 |
-
splits=['train', 'test'],
|
58 |
-
),
|
59 |
-
PlantOrgansConfig(
|
60 |
-
name="instance_segmentation_full",
|
61 |
-
description="This configuration contains segmentation masks.",
|
62 |
-
data_urls=_BASE_URL,
|
63 |
-
metadata_urls=_PANOPTIC_METADATA_URLS,
|
64 |
-
splits=['train', 'test'],
|
65 |
-
),
|
66 |
-
]
|
67 |
-
|
68 |
-
def _info(self):
|
69 |
-
features=datasets.Features(
|
70 |
-
{
|
71 |
-
"image": datasets.Image(),
|
72 |
-
"mask": datasets.Image(),
|
73 |
-
"image_name": datasets.Value(dtype="string"),
|
74 |
-
})
|
75 |
-
return datasets.DatasetInfo(
|
76 |
-
description=_DESCRIPTION,
|
77 |
-
features=features,
|
78 |
-
supervised_keys=("image", "mask"),
|
79 |
-
homepage=_HOMEPAGE,
|
80 |
-
citation=_CITATION,
|
81 |
-
license=_LICENSE,
|
82 |
-
)
|
83 |
-
|
84 |
-
|
85 |
-
def _split_generators(self, dl_manager):
|
86 |
-
|
87 |
-
train_archives_paths = dl_manager.download_and_extract(_TRAIN_URLS)
|
88 |
-
test_archives_paths = dl_manager.download_and_extract(_TEST_URLS)
|
89 |
-
|
90 |
-
train_paths = []
|
91 |
-
test_paths = []
|
92 |
-
|
93 |
-
for p in train_archives_paths:
|
94 |
-
train_paths.extend(glob.glob(str(p)+'/sourcedata/labeled/**.jpg'))
|
95 |
-
for p in test_archives_paths:
|
96 |
-
test_paths.extend(glob.glob(str(p)+'/sourcedata/labeled/**.jpg'))
|
97 |
-
|
98 |
-
if self.config.name == 'instance_segmentation_full':
|
99 |
-
metadata_urls = _PANOPTIC_METADATA_URLS
|
100 |
-
mask_urls = _MASKS_URLS
|
101 |
-
mask_glob = '/masks/**.png'
|
102 |
-
else:
|
103 |
-
metadata_urls = _SEMANTIC_METADATA_URLS
|
104 |
-
mask_urls = _SEMANTIC_MASKS_URLS
|
105 |
-
mask_glob = '/semantic_masks/**.png'
|
106 |
-
|
107 |
-
split_metadata_paths = dl_manager.download(metadata_urls)
|
108 |
-
|
109 |
-
mask_archives_paths = dl_manager.download_and_extract(mask_urls)
|
110 |
-
|
111 |
-
mask_paths = []
|
112 |
-
for p in mask_archives_paths:
|
113 |
-
mask_paths.extend(glob.glob(str(p)+mask_glob))
|
114 |
-
|
115 |
-
return [
|
116 |
-
datasets.SplitGenerator(
|
117 |
-
name=datasets.Split.TRAIN,
|
118 |
-
gen_kwargs={
|
119 |
-
"images": train_paths,
|
120 |
-
"metadata_path": split_metadata_paths["train"],
|
121 |
-
"masks_path": mask_paths,
|
122 |
-
},
|
123 |
-
),
|
124 |
-
datasets.SplitGenerator(
|
125 |
-
name=datasets.Split.TEST,
|
126 |
-
gen_kwargs={
|
127 |
-
"images": test_paths,
|
128 |
-
"metadata_path": split_metadata_paths["test"],
|
129 |
-
"masks_path": mask_paths,
|
130 |
-
},
|
131 |
-
),
|
132 |
-
]
|
133 |
-
|
134 |
-
|
135 |
-
def _generate_examples(self, images, metadata_path, masks_path):
|
136 |
-
"""
|
137 |
-
images: path to image directory
|
138 |
-
metadata_path: path to metadata csv
|
139 |
-
masks_path: path to masks
|
140 |
-
"""
|
141 |
-
|
142 |
-
# Get local image paths
|
143 |
-
image_paths = pd.DataFrame(
|
144 |
-
[(str(Path(*Path(e).parts[-3:])), e) for e in images], columns=['image', 'image_path'])
|
145 |
-
|
146 |
-
# Get local mask paths
|
147 |
-
masks_paths = pd.DataFrame(
|
148 |
-
[(str(Path(*Path(e).parts[-2:])), e) for e in masks_path], columns=['mask', 'mask_path'])
|
149 |
-
|
150 |
-
# Get all common about images and masks from csv
|
151 |
-
metadata = pd.read_csv(metadata_path)
|
152 |
-
metadata['image'] = metadata['image_path'].apply(lambda x: str(Path(x).parts[-1]))
|
153 |
-
metadata['mask'] = metadata['mask_path'].apply(lambda x: str(Path(x).parts[-1]))
|
154 |
-
|
155 |
-
# Merge dataframes
|
156 |
-
metadata = metadata.merge(masks_paths, on='mask', how='inner')
|
157 |
-
metadata = metadata.merge(image_paths, on='image', how='inner')
|
158 |
-
|
159 |
-
# Make examples and yield
|
160 |
-
for i, r in metadata.iterrows():
|
161 |
-
# Example contains paths to mask, source image, certainty of label,
|
162 |
-
# and name of source image.
|
163 |
-
example = {
|
164 |
-
'mask': r['mask_path'],
|
165 |
-
'image': r['image_path'],
|
166 |
-
'image_name': Path(r['image_path']).parts[-1],
|
167 |
-
}
|
168 |
-
yield i, example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|