import datasets import pandas as pd import glob from pathlib import Path from PIL import Image, ImageOps _DESCRIPTION = """Photos of various plants with their major, above ground organs labeled. Includes labels for stem, leafs, fruits and flowers.""" _HOMEPAGE = "https://huggingface.co/datasets/jpodivin/plantorgans" _CITATION = """""" _LICENSE = "MIT" _BASE_URL = "https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/" _TRAIN_URLS = [_BASE_URL + f"sourcedata_labeled.tar.{i:02}" for i in range(0, 8)] _TEST_URLS = [_BASE_URL + f"sourcedata_labeled.tar.{i:02}" for i in range(8, 12)] _MASKS_URLS = [_BASE_URL + f"masks.tar.0{i}" for i in range(0, 2)] _SEMANTIC_MASKS_URLS = "semantic_masks.tar.gz" _SEMANTIC_METADATA_URLS = { 'train': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_semantic_train.csv', 'test': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_semantic_test.csv' } _PANOPTIC_METADATA_URLS = { 'train': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_train.csv', 'test': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_test.csv' } class PlantOrgansConfig(datasets.BuilderConfig): """Builder Config for PlantOrgans""" def __init__(self, data_urls, metadata_urls, splits, **kwargs): """BuilderConfig for PlantOrgans. Args: data_urls: list of `string`s, urls to download the zip files from. metadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs **kwargs: keyword arguments forwarded to super. """ super().__init__(version=datasets.Version("1.0.0"), **kwargs) self.data_urls = data_urls self.metadata_urls = metadata_urls self.splits = splits class PlantOrgans(datasets.GeneratorBasedBuilder): """Plantorgans dataset """ BUILDER_CONFIGS = [ PlantOrgansConfig( name="semantic_segmentation_full", description="This configuration contains segmentation masks.", data_urls=_BASE_URL, metadata_urls=_SEMANTIC_METADATA_URLS, splits=['train', 'test'], ), PlantOrgansConfig( name="instance_segmentation_full", description="This configuration contains segmentation masks.", data_urls=_BASE_URL, metadata_urls=_PANOPTIC_METADATA_URLS, splits=['train', 'test'], ), ] def _info(self): features=datasets.Features( { "image": datasets.Image(), "mask": datasets.Image(), "image_name": datasets.Value(dtype="string"), }) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=("image", "mask"), homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE, ) def _split_generators(self, dl_manager): train_archives_paths = dl_manager.download_and_extract(_TRAIN_URLS) test_archives_paths = dl_manager.download_and_extract(_TEST_URLS) train_paths = [] test_paths = [] for p in train_archives_paths: train_paths.extend(glob.glob(str(p)+'/sourcedata/labeled/**.jpg')) for p in test_archives_paths: test_paths.extend(glob.glob(str(p)+'/sourcedata/labeled/**.jpg')) if self.config.name == 'instance_segmentation_full': metadata_urls = _PANOPTIC_METADATA_URLS mask_urls = _MASKS_URLS mask_glob = '/masks/**.png' else: metadata_urls = _SEMANTIC_METADATA_URLS mask_urls = _SEMANTIC_MASKS_URLS mask_glob = '/semantic_masks/**.png' split_metadata_paths = dl_manager.download(metadata_urls) mask_archives_paths = dl_manager.download_and_extract(mask_urls) mask_paths = [] for p in mask_archives_paths: mask_paths.extend(glob.glob(str(p)+mask_glob)) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": train_paths, "metadata_path": split_metadata_paths["train"], "masks_path": mask_paths, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "images": test_paths, "metadata_path": split_metadata_paths["test"], "masks_path": mask_paths, }, ), ] def _generate_examples(self, images, metadata_path, masks_path): """ images: path to image directory metadata_path: path to metadata csv masks_path: path to masks """ # Get local image paths image_paths = pd.DataFrame( [(str(Path(*Path(e).parts[-3:])), e) for e in images], columns=['image', 'image_path']) # Get local mask paths masks_paths = pd.DataFrame( [(str(Path(*Path(e).parts[-2:])), e) for e in masks_path], columns=['mask', 'mask_path']) # Get all common about images and masks from csv metadata = pd.read_csv(metadata_path) metadata['image'] = metadata['image_path'].apply(lambda x: str(Path(x).parts[-1])) metadata['mask'] = metadata['mask_path'].apply(lambda x: str(Path(x).parts[-1])) # Merge dataframes metadata = metadata.merge(masks_paths, on='mask', how='inner') metadata = metadata.merge(image_paths, on='image', how='inner') # Make examples and yield for i, r in metadata.iterrows(): # Example contains paths to mask, source image, certainty of label, # and name of source image. example = { 'mask': r['mask_path'], 'image': r['image_path'], 'image_name': Path(r['image_path']).parts[-1], } yield i, example