Datasets:
Tasks:
Text Classification
Languages:
English
Size:
100K<n<1M
ArXiv:
Tags:
knowledge-verification
License:
"""FEVEROUS dataset.""" | |
import json | |
import textwrap | |
import datasets | |
class FeverousConfig(datasets.BuilderConfig): | |
"""BuilderConfig for FEVER.""" | |
def __init__(self, homepage: str = None, citation: str = None, base_url: str = None, urls: dict = None, **kwargs): | |
"""BuilderConfig for FEVEROUS. | |
Args: | |
homepage (`str`): Homepage. | |
citation (`str`): Citation reference. | |
base_url (`str`): Data base URL that precedes all data URLs. | |
urls (`dict`): Data URLs (each URL will pe preceded by `base_url`). | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super().__init__(**kwargs) | |
self.homepage = homepage | |
self.citation = citation | |
self.base_url = base_url | |
self.urls = {key: f"{base_url}/{url}" for key, url in urls.items()} | |
class FeverOUS(datasets.GeneratorBasedBuilder): | |
"""FEVEROUS dataset.""" | |
BUILDER_CONFIGS = [ | |
FeverousConfig( | |
version=datasets.Version("1.0.0"), | |
description=textwrap.dedent( | |
"FEVEROUS:\n" | |
"FEVEROUS (Fact Extraction and VERification Over Unstructured and Structured information) is a fact " | |
"verification dataset which consists of 87,026 verified claims. Each claim is annotated with evidence " | |
"in the form of sentences and/or cells from tables in Wikipedia, as well as a label indicating whether " | |
"this evidence supports, refutes, or does not provide enough information to reach a verdict. The " | |
"dataset also contains annotation metadata such as annotator actions (query keywords, clicks on page, " | |
"time signatures), and the type of challenge each claim poses." | |
), | |
homepage="https://fever.ai/dataset/feverous.html", | |
citation=textwrap.dedent( | |
"""\ | |
@inproceedings{Aly21Feverous, | |
author = {Aly, Rami and Guo, Zhijiang and Schlichtkrull, Michael Sejr and Thorne, James and Vlachos, Andreas and Christodoulopoulos, Christos and Cocarascu, Oana and Mittal, Arpit}, | |
title = {{FEVEROUS}: Fact Extraction and {VERification} Over Unstructured and Structured information}, | |
eprint={2106.05707}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL}, | |
year = {2021} | |
}""" | |
), | |
base_url="https://fever.ai/download/feverous", | |
urls={ | |
datasets.Split.TRAIN: "feverous_train_challenges.jsonl", | |
datasets.Split.VALIDATION: "feverous_dev_challenges.jsonl", | |
datasets.Split.TEST: "feverous_test_unlabeled.jsonl", | |
}, | |
), | |
] | |
def _info(self): | |
features = { | |
"id": datasets.Value("int32"), | |
"label": datasets.ClassLabel(names=["SUPPORTS", "REFUTES", "NOT ENOUGH INFO"]), | |
"claim": datasets.Value("string"), | |
"evidence": [ | |
{ | |
"content": [datasets.Value("string")], | |
"context": [[datasets.Value("string")]], | |
} | |
], | |
"annotator_operations": [ | |
{ | |
"operation": datasets.Value("string"), | |
"value": datasets.Value("string"), | |
"time": datasets.Value("float"), | |
} | |
], | |
"expected_challenge": datasets.Value("string"), | |
"challenge": datasets.Value("string"), | |
} | |
return datasets.DatasetInfo( | |
description=self.config.description, | |
features=datasets.Features(features), | |
homepage=self.config.homepage, | |
citation=self.config.citation, | |
) | |
def _split_generators(self, dl_manager): | |
dl_paths = dl_manager.download_and_extract(self.config.urls) | |
return [ | |
datasets.SplitGenerator( | |
name=split, | |
gen_kwargs={ | |
"filepath": dl_paths[split], | |
}, | |
) | |
for split in dl_paths.keys() | |
] | |
def _generate_examples(self, filepath): | |
with open(filepath, encoding="utf-8") as f: | |
for id_, row in enumerate(f): | |
data = json.loads(row) | |
# First item in "train" has all values equal to empty strings | |
if [value for value in data.values() if value]: | |
evidence = data.get("evidence", []) | |
if evidence: | |
for evidence_set in evidence: | |
# Transform "context" from dict to list (analogue to "content") | |
evidence_set["context"] = [ | |
evidence_set["context"][element_id] for element_id in evidence_set["content"] | |
] | |
yield id_, { | |
"id": data.get("id"), | |
"label": data.get("label", -1), | |
"claim": data.get("claim", ""), | |
"evidence": evidence, | |
"annotator_operations": data.get("annotator_operations", []), | |
"expected_challenge": data.get("expected_challenge", ""), | |
"challenge": data.get("challenge", ""), | |
} | |