Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
Enxet
Size:
10K<n<100K
License:
Upload mnist.py
Browse files
mnist.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""MNIST Data Set"""
|
18 |
+
|
19 |
+
|
20 |
+
import struct
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
import datasets
|
25 |
+
from datasets.tasks import ImageClassification
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@article{lecun2010mnist,
|
30 |
+
title={MNIST handwritten digit database},
|
31 |
+
author={LeCun, Yann and Cortes, Corinna and Burges, CJ},
|
32 |
+
journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist},
|
33 |
+
volume={2},
|
34 |
+
year={2010}
|
35 |
+
}
|
36 |
+
"""
|
37 |
+
|
38 |
+
_DESCRIPTION = """\
|
39 |
+
The MNIST dataset consists of 70,000 28x28 black-and-white images in 10 classes (one for each digits), with 7,000
|
40 |
+
images per class. There are 60,000 training images and 10,000 test images.
|
41 |
+
"""
|
42 |
+
|
43 |
+
_URL = "https://storage.googleapis.com/cvdf-datasets/mnist/"
|
44 |
+
_URLS = {
|
45 |
+
"train_images": "train-images-idx3-ubyte.gz",
|
46 |
+
"train_labels": "train-labels-idx1-ubyte.gz",
|
47 |
+
"test_images": "t10k-images-idx3-ubyte.gz",
|
48 |
+
"test_labels": "t10k-labels-idx1-ubyte.gz",
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
class MNIST(datasets.GeneratorBasedBuilder):
|
53 |
+
"""MNIST Data Set"""
|
54 |
+
|
55 |
+
BUILDER_CONFIGS = [
|
56 |
+
datasets.BuilderConfig(
|
57 |
+
name="mnist",
|
58 |
+
version=datasets.Version("1.0.0"),
|
59 |
+
description=_DESCRIPTION,
|
60 |
+
)
|
61 |
+
]
|
62 |
+
|
63 |
+
def _info(self):
|
64 |
+
return datasets.DatasetInfo(
|
65 |
+
description=_DESCRIPTION,
|
66 |
+
features=datasets.Features(
|
67 |
+
{
|
68 |
+
"image": datasets.Image(),
|
69 |
+
"label": datasets.features.ClassLabel(names=["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]),
|
70 |
+
}
|
71 |
+
),
|
72 |
+
supervised_keys=("image", "label"),
|
73 |
+
homepage="http://yann.lecun.com/exdb/mnist/",
|
74 |
+
citation=_CITATION,
|
75 |
+
task_templates=[
|
76 |
+
ImageClassification(
|
77 |
+
image_column="image",
|
78 |
+
label_column="label",
|
79 |
+
)
|
80 |
+
],
|
81 |
+
)
|
82 |
+
|
83 |
+
def _split_generators(self, dl_manager):
|
84 |
+
urls_to_download = {key: _URL + fname for key, fname in _URLS.items()}
|
85 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
86 |
+
return [
|
87 |
+
datasets.SplitGenerator(
|
88 |
+
name=datasets.Split.TRAIN,
|
89 |
+
gen_kwargs={
|
90 |
+
"filepath": [downloaded_files["train_images"], downloaded_files["train_labels"]],
|
91 |
+
"split": "train",
|
92 |
+
},
|
93 |
+
),
|
94 |
+
datasets.SplitGenerator(
|
95 |
+
name=datasets.Split.TEST,
|
96 |
+
gen_kwargs={
|
97 |
+
"filepath": [downloaded_files["test_images"], downloaded_files["test_labels"]],
|
98 |
+
"split": "test",
|
99 |
+
},
|
100 |
+
),
|
101 |
+
]
|
102 |
+
|
103 |
+
def _generate_examples(self, filepath, split):
|
104 |
+
"""This function returns the examples in the raw form."""
|
105 |
+
# Images
|
106 |
+
with open(filepath[0], "rb") as f:
|
107 |
+
# First 16 bytes contain some metadata
|
108 |
+
_ = f.read(4)
|
109 |
+
size = struct.unpack(">I", f.read(4))[0]
|
110 |
+
_ = f.read(8)
|
111 |
+
images = np.frombuffer(f.read(), dtype=np.uint8).reshape(size, 28, 28)
|
112 |
+
|
113 |
+
# Labels
|
114 |
+
with open(filepath[1], "rb") as f:
|
115 |
+
# First 8 bytes contain some metadata
|
116 |
+
_ = f.read(8)
|
117 |
+
labels = np.frombuffer(f.read(), dtype=np.uint8)
|
118 |
+
|
119 |
+
for idx in range(size):
|
120 |
+
yield idx, {"image": images[idx], "label": str(labels[idx])}
|