Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
adamnarozniak commited on
Commit
df739a2
1 Parent(s): 5c61774

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +134 -4
README.md CHANGED
@@ -35,7 +35,7 @@ dataset_info:
35
  '20': K
36
  '21': L
37
  '22': M
38
- '23': N
39
  '24': O
40
  '25': P
41
  '26': Q
@@ -46,7 +46,7 @@ dataset_info:
46
  '31': V
47
  '32': W
48
  '33': X
49
- '34': Y
50
  '35': Z
51
  '36': a
52
  '37': b
@@ -61,7 +61,7 @@ dataset_info:
61
  '46': k
62
  '47': l
63
  '48': m
64
- '49': n
65
  '50': o
66
  '51': p
67
  '52': q
@@ -72,7 +72,7 @@ dataset_info:
72
  '57': v
73
  '58': w
74
  '59': x
75
- '60': y
76
  '61': z
77
  splits:
78
  - name: train
@@ -85,4 +85,134 @@ configs:
85
  data_files:
86
  - split: train
87
  path: data/train-*
 
 
 
 
88
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  '20': K
36
  '21': L
37
  '22': M
38
+ '23': 'N'
39
  '24': O
40
  '25': P
41
  '26': Q
 
46
  '31': V
47
  '32': W
48
  '33': X
49
+ '34': 'Y'
50
  '35': Z
51
  '36': a
52
  '37': b
 
61
  '46': k
62
  '47': l
63
  '48': m
64
+ '49': 'n'
65
  '50': o
66
  '51': p
67
  '52': q
 
72
  '57': v
73
  '58': w
74
  '59': x
75
+ '60': 'y'
76
  '61': z
77
  splits:
78
  - name: train
 
85
  data_files:
86
  - split: train
87
  path: data/train-*
88
+ task_categories:
89
+ - image-classification
90
+ size_categories:
91
+ - 100K<n<1M
92
  ---
93
+
94
+ # Dataset Card for FEMNIST
95
+
96
+ The FEMNIST dataset is a part of the [LEAF](https://leaf.cmu.edu/) benchmark.
97
+ It represents image classification of handwritten digits, lower and uppercase letters, giving 62 unique labels.
98
+
99
+ ## Dataset Details
100
+
101
+ ### Dataset Description
102
+
103
+ Each sample is comprised of a (28x28) grayscale image, writer_id, hsf_id, and character.
104
+
105
+ - **Curated by:** [LEAF](https://leaf.cmu.edu/)
106
+ - **License:** BSD 2-Clause License
107
+
108
+ ### Dataset Sources
109
+
110
+ The FEMNIST is a preprocessed (in a way that resembles preprocessing for MNIST) version of [NIST SD 19](https://www.nist.gov/srd/nist-special-database-19).
111
+
112
+ ## Uses
113
+
114
+ This dataset is intended to be used in Federated Learning settings.
115
+
116
+ ### Direct Use
117
+
118
+ We recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) and [Flower](https://flower.ai/docs/framework/) (flwr).
119
+
120
+ To partition the dataset, do the following.
121
+ 1. Install the package.
122
+ ```bash
123
+ pip install flwr-datasets[vision]
124
+ ```
125
+ 2. Use the HF Dataset under the hood in Flower Datasets.
126
+ ```python
127
+ from flwr_datasets import FederatedDataset
128
+ from flwr_datasets.partitioner import NaturalIdPartitioner
129
+
130
+ fds = FederatedDataset(
131
+ dataset="flwrlabs/femnist",
132
+ partitioners={"train": NaturalIdPartitioner(partition_by="writer_id")}
133
+ )
134
+ partition = fds.load_partition(partition_id=0)
135
+ ```
136
+
137
+ ## Dataset Structure
138
+
139
+
140
+ The whole dataset is kept in the train split. If you want to leave out some part of the dataset for centralized evaluation, use Resplitter. (The full example is coming soon here)
141
+ Dataset fields:
142
+
143
+ * image: grayscale of size (28, 28), PIL Image,
144
+ * writer_id: string, unique value per each writer,
145
+ * hsf_id: string, corresponds to the way that the data was collected (see more details [here](https://www.nist.gov/srd/nist-special-database-19),
146
+ * character: ClassLabel (it means it's int if you access it in the dataset, but you can convert it to the original value by `femnist["train"].features["character"].int2str(value)`.
147
+
148
+
149
+ ## Dataset Creation
150
+
151
+ ### Curation Rationale
152
+
153
+ This dataset was created as a part of the [LEAF](https://leaf.cmu.edu/) benchmark.
154
+ We make it available in the HuggingFace Hub to facilitate its seamless use in FlowerDatasets.
155
+
156
+ ### Source Data
157
+
158
+ [NIST SD 19](https://www.nist.gov/srd/nist-special-database-19)
159
+
160
+ #### Data Collection and Processing
161
+
162
+ For the preprocessing details, please refer to the original paper, the source code and [NIST SD 19](https://www.nist.gov/srd/nist-special-database-19)
163
+
164
+ #### Who are the source data producers?
165
+
166
+ For the preprocessing details, please refer to the original paper, the source code and [NIST SD 19](https://www.nist.gov/srd/nist-special-database-19)
167
+
168
+
169
+ ## Citation
170
+
171
+ When working on the LEAF benchmark, please cite the original paper. If you're using this dataset with Flower Datasets, you can cite Flower.
172
+
173
+ **BibTeX:**
174
+ ```
175
+ @article{DBLP:journals/corr/abs-1812-01097,
176
+ author = {Sebastian Caldas and
177
+ Peter Wu and
178
+ Tian Li and
179
+ Jakub Kone{\v{c}}n{\'y} and
180
+ H. Brendan McMahan and
181
+ Virginia Smith and
182
+ Ameet Talwalkar},
183
+ title = {{LEAF:} {A} Benchmark for Federated Settings},
184
+ journal = {CoRR},
185
+ volume = {abs/1812.01097},
186
+ year = {2018},
187
+ url = {http://arxiv.org/abs/1812.01097},
188
+ eprinttype = {arXiv},
189
+ eprint = {1812.01097},
190
+ timestamp = {Wed, 23 Dec 2020 09:35:18 +0100},
191
+ biburl = {https://dblp.org/rec/journals/corr/abs-1812-01097.bib},
192
+ bibsource = {dblp computer science bibliography, https://dblp.org}
193
+ }
194
+ ```
195
+ ```
196
+ @article{DBLP:journals/corr/abs-2007-14390,
197
+ author = {Daniel J. Beutel and
198
+ Taner Topal and
199
+ Akhil Mathur and
200
+ Xinchi Qiu and
201
+ Titouan Parcollet and
202
+ Nicholas D. Lane},
203
+ title = {Flower: {A} Friendly Federated Learning Research Framework},
204
+ journal = {CoRR},
205
+ volume = {abs/2007.14390},
206
+ year = {2020},
207
+ url = {https://arxiv.org/abs/2007.14390},
208
+ eprinttype = {arXiv},
209
+ eprint = {2007.14390},
210
+ timestamp = {Mon, 03 Aug 2020 14:32:13 +0200},
211
+ biburl = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
212
+ bibsource = {dblp computer science bibliography, https://dblp.org}
213
+ }
214
+ ```
215
+
216
+ ## Dataset Card Contact
217
+
218
+ In case of any doubts, please contact [Flower Labs](https://flower.ai/).