Add dataset script
Browse files- README.md +33 -1
- multiscale_rt_critics.py +360 -0
README.md
CHANGED
@@ -1,3 +1,35 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
license: cc0-1.0
|
7 |
+
multilinguality:
|
8 |
+
- monolingual
|
9 |
+
size_categories:
|
10 |
+
- 100K<n<1M
|
11 |
+
tags:
|
12 |
+
- reviews
|
13 |
+
- ratings
|
14 |
+
- ordinal
|
15 |
+
- text
|
16 |
+
task_categories:
|
17 |
+
- text-classification
|
18 |
+
task_ids:
|
19 |
+
- text-scoring
|
20 |
+
- sentiment-scoring
|
21 |
---
|
22 |
+
|
23 |
+
Cleaned up version of the rotten tomatoes critic reviews dataset. The original
|
24 |
+
is obtained from Kaggle:
|
25 |
+
https://www.kaggle.com/datasets/stefanoleone992/rotten-tomatoes-movies-and-critic-reviews-dataset
|
26 |
+
|
27 |
+
Data has been scraped from the publicly available website
|
28 |
+
https://www.rottentomatoes.com as of 2020-10-31.
|
29 |
+
|
30 |
+
The clean up process drops anything without both a review and a rating, as well
|
31 |
+
as standardising the ratings onto several integer, ordinal scales.
|
32 |
+
|
33 |
+
Requires the `kaggle` library to be installed, and kaggle API keys passed
|
34 |
+
through environment variables or in ~/.kaggle/kaggle.json. See [the Kaggle
|
35 |
+
docs](https://www.kaggle.com/docs/api#authentication).
|
multiscale_rt_critics.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Frankie Robertson and The HuggingFace Datasets Authors
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
Cleaned up version of the rotten tomatoes critic reviews dataset. The original
|
17 |
+
is obtained from Kaggle:
|
18 |
+
https://www.kaggle.com/datasets/stefanoleone992/rotten-tomatoes-movies-and-critic-reviews-dataset
|
19 |
+
|
20 |
+
Data has been scraped from the publicly available website
|
21 |
+
https://www.rottentomatoes.com as of 2020-10-31.
|
22 |
+
|
23 |
+
The clean up process drops anything without both a review and a rating, as well
|
24 |
+
as standardising the ratings onto several integer, ordinal scales.
|
25 |
+
"""
|
26 |
+
|
27 |
+
import datasets
|
28 |
+
from dataclasses import dataclass
|
29 |
+
from fractions import Fraction
|
30 |
+
from typing import Callable, Any
|
31 |
+
import operator
|
32 |
+
import shutil
|
33 |
+
import os
|
34 |
+
import sys
|
35 |
+
import pandas
|
36 |
+
import numpy
|
37 |
+
from os.path import join as pjoin
|
38 |
+
from datasets import Dataset
|
39 |
+
|
40 |
+
|
41 |
+
KAGGLE_REPO = "stefanoleone992/rotten-tomatoes-movies-and-critic-reviews-dataset"
|
42 |
+
SHORT_LETTER_SCALE = ["F", "E", "D", "C", "B", "A"]
|
43 |
+
LONG_LETTER_SCALE = ["F-", "F", "F+" "E-", "E", "E+", "D-", "D", "D+", "C-", "C", "C+", "B-", "B", "B+", "A-", "A", "A+"]
|
44 |
+
|
45 |
+
|
46 |
+
_kaggle_api = None
|
47 |
+
|
48 |
+
|
49 |
+
def get_kaggle_api():
|
50 |
+
global _kaggle_api
|
51 |
+
if _kaggle_api is not None:
|
52 |
+
return _kaggle_api
|
53 |
+
from kaggle.api.kaggle_api_extended import KaggleApi
|
54 |
+
_kaggle_api = KaggleApi()
|
55 |
+
_kaggle_api.authenticate()
|
56 |
+
return _kaggle_api
|
57 |
+
|
58 |
+
|
59 |
+
@dataclass
|
60 |
+
class KaggleSrc:
|
61 |
+
name: str
|
62 |
+
file: str
|
63 |
+
|
64 |
+
def load(self):
|
65 |
+
if hasattr(self, "_cached"):
|
66 |
+
return self._cached
|
67 |
+
kaggle_api = get_kaggle_api()
|
68 |
+
dir_name = self.name.replace("/", "__")
|
69 |
+
if os.path.exists(dir_name):
|
70 |
+
shutil.rmtree(dir_name)
|
71 |
+
os.mkdir(dir_name)
|
72 |
+
try:
|
73 |
+
file_path = pjoin(dir_name, self.file.rsplit("/", 1)[-1])
|
74 |
+
kaggle_api.dataset_download_file(self.name, self.file, path=dir_name)
|
75 |
+
return pandas.read_csv(file_path + ".zip")
|
76 |
+
finally:
|
77 |
+
shutil.rmtree(dir_name)
|
78 |
+
|
79 |
+
|
80 |
+
def is_floatable(f):
|
81 |
+
try:
|
82 |
+
float(f)
|
83 |
+
return True
|
84 |
+
except ValueError:
|
85 |
+
return False
|
86 |
+
|
87 |
+
|
88 |
+
def is_frac_str(s):
|
89 |
+
bits = s.split("/")
|
90 |
+
return len(bits) == 2 and is_floatable(bits[0]) and is_floatable(bits[1])
|
91 |
+
|
92 |
+
|
93 |
+
def is_barenum_str(s):
|
94 |
+
return s.count("/") == 0 and is_floatable(s)
|
95 |
+
|
96 |
+
|
97 |
+
def is_dec_denom(s):
|
98 |
+
bits = s.split("/")
|
99 |
+
return len(bits) == 2 and "." in bits[1]
|
100 |
+
|
101 |
+
|
102 |
+
def drop_because(df, pred, reason):
|
103 |
+
print(f"Dropping {pred.sum()} ({pred.mean() * 100:.2f}%) of reviews with {reason}")
|
104 |
+
return df[~pred]
|
105 |
+
|
106 |
+
|
107 |
+
def drop_unrated(df):
|
108 |
+
df = drop_because(df, df["review_score"].isna(), "no rating")
|
109 |
+
df = drop_because(df, df["review_content"].isna(), "missing review")
|
110 |
+
return df
|
111 |
+
|
112 |
+
|
113 |
+
def drop_odd_grade_types(df):
|
114 |
+
is_any_letter = df["review_score"].isin(LONG_LETTER_SCALE)
|
115 |
+
is_frac = df["review_score"].map(is_frac_str)
|
116 |
+
is_barenum = df["review_score"].map(is_barenum_str)
|
117 |
+
assert len(df[~is_frac & ~is_any_letter & ~is_barenum]) == 0
|
118 |
+
df = drop_because(df, is_barenum, "bare number rating (i.e. no denominator)")
|
119 |
+
is_frac_denom = df["review_score"].map(is_dec_denom)
|
120 |
+
return drop_because(df, is_frac_denom, "fractional denominator")
|
121 |
+
|
122 |
+
|
123 |
+
def split_scores(df):
|
124 |
+
nums = numpy.empty(len(df))
|
125 |
+
denoms = numpy.empty(len(df))
|
126 |
+
for idx, score in enumerate(df["review_score"]):
|
127 |
+
if "/" in score:
|
128 |
+
num, denom = score.split("/", 1)
|
129 |
+
nums[idx] = float(num)
|
130 |
+
denoms[idx] = float(denom)
|
131 |
+
else:
|
132 |
+
nums[idx] = nan
|
133 |
+
denoms[idx] = nan
|
134 |
+
df.insert(len(df.columns), "orig_num", nums)
|
135 |
+
df.insert(len(df.columns), "orig_denom", denoms)
|
136 |
+
|
137 |
+
|
138 |
+
nan = float("nan")
|
139 |
+
|
140 |
+
|
141 |
+
def np_round(arr):
|
142 |
+
return (arr + 0.5).astype(numpy.int32)
|
143 |
+
|
144 |
+
|
145 |
+
def common_denom_grades(group_df):
|
146 |
+
if group_df.iloc[0]["is_any_letter"]:
|
147 |
+
group_df["multiplier"] = 1
|
148 |
+
group_df["non_neg_error"] = False
|
149 |
+
if group_df.iloc[0]["letter_implies_short"]:
|
150 |
+
group_df["num"] = SHORT_LETTER_SCALE.index(group_df.iloc[0]["review_score"]) + 1
|
151 |
+
group_df["denom"] = len(SHORT_LETTER_SCALE)
|
152 |
+
else:
|
153 |
+
group_df["num"] = LONG_LETTER_SCALE.index(group_df.iloc[0]["review_score"]) + 1
|
154 |
+
group_df["denom"] = len(LONG_LETTER_SCALE)
|
155 |
+
return group_df
|
156 |
+
denoms = numpy.empty(len(group_df), dtype=numpy.int32)
|
157 |
+
for idx, num in enumerate(group_df["orig_num"]):
|
158 |
+
frac = Fraction.from_float(num)
|
159 |
+
denoms[idx] = frac.limit_denominator(100).denominator
|
160 |
+
common_denom = numpy.lcm.reduce(denoms)
|
161 |
+
group_df["multiplier"] = common_denom
|
162 |
+
num = common_denom * group_df["orig_num"].to_numpy()
|
163 |
+
denom = common_denom * group_df["orig_denom"].to_numpy()
|
164 |
+
group_df["num"] = np_round(num)
|
165 |
+
group_df["denom"] = np_round(denom)
|
166 |
+
group_df["non_neg_error"] = (abs(group_df["num"] - num) >= 0.05) | (abs(group_df["denom"] - denom) >= 0.05)
|
167 |
+
return group_df
|
168 |
+
|
169 |
+
|
170 |
+
def normalize_reviews(review_df):
|
171 |
+
# Drop unrated
|
172 |
+
review_df = drop_unrated(review_df)
|
173 |
+
|
174 |
+
# Strip whitespace from grades
|
175 |
+
review_df["review_score"] = review_df["review_score"].str.replace("\s+", "", regex=True)
|
176 |
+
|
177 |
+
# Copy to get version to do calculations with
|
178 |
+
working_review_df = review_df.copy()
|
179 |
+
|
180 |
+
# Drop all rows where the review score occurs 2 or less times in the whole data set
|
181 |
+
working_review_df = working_review_df.groupby("review_score").filter(lambda x: len(x) > 2)
|
182 |
+
|
183 |
+
# Check/ensure that all grades are short letter, long letter, fraction or barenum
|
184 |
+
working_review_df = drop_odd_grade_types(working_review_df)
|
185 |
+
|
186 |
+
# Split fraction scores into numerator and denominator
|
187 |
+
split_scores(working_review_df)
|
188 |
+
|
189 |
+
# Divide letter scales into short and long
|
190 |
+
# If a publisher has a mix of short and long, they're using long, otherwise short
|
191 |
+
is_any_letter = working_review_df["review_score"].isin(LONG_LETTER_SCALE)
|
192 |
+
is_short_letter = working_review_df["review_score"].isin(SHORT_LETTER_SCALE)
|
193 |
+
#is_long_letter = is_any_letter & ~is_short_letter
|
194 |
+
publisher_letter_implies_short = pandas.DataFrame.from_dict(dict(
|
195 |
+
publisher_name=working_review_df["publisher_name"],
|
196 |
+
letter_implies_short=is_short_letter | ~is_any_letter
|
197 |
+
)).groupby("publisher_name").all()
|
198 |
+
working_review_df = working_review_df.join(publisher_letter_implies_short, on="publisher_name")
|
199 |
+
working_review_df["is_any_letter"] = is_any_letter
|
200 |
+
|
201 |
+
# Now divide everything into grade types: either short letter, long letter
|
202 |
+
# or the denominator of the fraction
|
203 |
+
def get_orig_grade_type(row):
|
204 |
+
if row["is_any_letter"]:
|
205 |
+
if row["letter_implies_short"]:
|
206 |
+
return "short_letter"
|
207 |
+
else:
|
208 |
+
return "long_letter"
|
209 |
+
else:
|
210 |
+
return str(int(row["orig_denom"]))
|
211 |
+
|
212 |
+
working_review_df["orig_grade_type"] = working_review_df.apply(get_orig_grade_type, axis="columns")
|
213 |
+
|
214 |
+
# Now we can filter out rare grade types
|
215 |
+
working_review_df = working_review_df.join(working_review_df["orig_grade_type"].value_counts().rename("grade_type_count"), on="orig_grade_type")
|
216 |
+
working_review_df = drop_because(working_review_df, working_review_df["grade_type_count"] < 50, "grade type with less than 50 reviews")
|
217 |
+
|
218 |
+
# Print out some summary stats
|
219 |
+
print("grades type counts", working_review_df["orig_grade_type"].value_counts())
|
220 |
+
print("unique grades", working_review_df["orig_grade_type"].nunique())
|
221 |
+
print("unique publishers", working_review_df["publisher_name"].nunique())
|
222 |
+
print("unique grade/publisher combinations", working_review_df.groupby(["orig_grade_type", "publisher_name"]).ngroups)
|
223 |
+
|
224 |
+
# Now we can find common denominators on a (publisher, grade type) combination basis
|
225 |
+
working_review_df = working_review_df.groupby(["publisher_name", "orig_grade_type"], group_keys=False).apply(common_denom_grades)
|
226 |
+
working_review_df = drop_because(working_review_df, working_review_df["multiplier"] > 500, "multiplier > 500")
|
227 |
+
assert working_review_df["non_neg_error"].sum() == 0
|
228 |
+
|
229 |
+
# More summary stats
|
230 |
+
print("non-neg error count", working_review_df["non_neg_error"].sum())
|
231 |
+
print("multipliers", working_review_df["multiplier"].value_counts())
|
232 |
+
|
233 |
+
# TODO: Add back in rare review_scores dropped at the beginning when they
|
234 |
+
# are compatible with some common denominator + grade type from the same
|
235 |
+
# publisher
|
236 |
+
|
237 |
+
print("number of reviews left", len(working_review_df))
|
238 |
+
print("reviews per publisher", working_review_df.groupby(["publisher_name", "orig_grade_type"].value_counts()))
|
239 |
+
|
240 |
+
# Delete working columns
|
241 |
+
del working_review_df["letter_implies_short"]
|
242 |
+
del working_review_df["is_any_letter"]
|
243 |
+
del working_review_df["grade_type_count"]
|
244 |
+
del working_review_df["non_neg_error"]
|
245 |
+
|
246 |
+
return working_review_df
|
247 |
+
|
248 |
+
|
249 |
+
def save_normalised(output_path):
|
250 |
+
review_df = KaggleSrc(KAGGLE_REPO, "rotten_tomatoes_critic_reviews.csv").load()
|
251 |
+
review_df = normalize_reviews(review_df)
|
252 |
+
review_df.to_csv(output_path)
|
253 |
+
|
254 |
+
|
255 |
+
def get_datasets():
|
256 |
+
movies_df = KaggleSrc(KAGGLE_REPO, "rotten_tomatoes_movies.csv").load()
|
257 |
+
review_df = KaggleSrc(KAGGLE_REPO, "rotten_tomatoes_critic_reviews.csv").load()
|
258 |
+
review_df = normalize_reviews(review_df)
|
259 |
+
joined_df = review_df.join(movies_df.set_index("rotten_tomatoes_link"), "rotten_tomatoes_link")
|
260 |
+
train_dfs = []
|
261 |
+
test_dfs = []
|
262 |
+
for group_df in review_df.groupby("publisher_name", "orig_grade_type"):
|
263 |
+
if len(group_df) >= 50:
|
264 |
+
train_df, test_df = train_test_split(group_df, test_size=0.2)
|
265 |
+
train_dfs.append(train_df)
|
266 |
+
test_dfs.append(test_df)
|
267 |
+
else:
|
268 |
+
train_dfs.append(group_df)
|
269 |
+
return (
|
270 |
+
Dataset.from_pandas(joined_df),
|
271 |
+
Dataset.from_pandas(pandas.concat(train_dfs)),
|
272 |
+
Dataset.from_pandas(pandas.concat(test_dfs)),
|
273 |
+
)
|
274 |
+
|
275 |
+
|
276 |
+
_DESCRIPTION = __doc__
|
277 |
+
|
278 |
+
_HOMEPAGE = ""
|
279 |
+
|
280 |
+
_LICENSE = "CC0"
|
281 |
+
|
282 |
+
|
283 |
+
class MultiscaleRTCritics(datasets.GeneratorBasedBuilder):
|
284 |
+
_DESCRIPTION
|
285 |
+
|
286 |
+
VERSION = datasets.Version("1.0.0")
|
287 |
+
|
288 |
+
def _info(self):
|
289 |
+
features = datasets.Features(
|
290 |
+
{
|
291 |
+
#"rotten_tomatoes_link": datasets.Value("string"),
|
292 |
+
#"rating": datasets.Value("uint8"),
|
293 |
+
#"out_of": datasets.Value("uint8"),
|
294 |
+
#"dataset": datasets.Value("string")
|
295 |
+
"movie_title"
|
296 |
+
"movie_info"
|
297 |
+
"critics_consensus"
|
298 |
+
"content_rating"
|
299 |
+
"genres"
|
300 |
+
"directors"
|
301 |
+
"authors"
|
302 |
+
"actors"
|
303 |
+
"original_release_date"
|
304 |
+
"critic_name"
|
305 |
+
"top_critic"
|
306 |
+
"publisher_name"
|
307 |
+
"review_type"
|
308 |
+
"review_score"
|
309 |
+
"review_date"
|
310 |
+
"review_content"
|
311 |
+
}
|
312 |
+
)
|
313 |
+
return datasets.DatasetInfo(
|
314 |
+
# This is the description that will appear on the datasets page.
|
315 |
+
description=_DESCRIPTION,
|
316 |
+
# This defines the different columns of the dataset and their types
|
317 |
+
features=features, # Here we define them above because they are different between the two configurations
|
318 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
319 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
320 |
+
supervised_keys=("text", "rating"),
|
321 |
+
# Homepage of the dataset for documentation
|
322 |
+
homepage=_HOMEPAGE,
|
323 |
+
# License for the dataset if available
|
324 |
+
license=_LICENSE,
|
325 |
+
# Citation for the dataset
|
326 |
+
citation="",
|
327 |
+
)
|
328 |
+
|
329 |
+
def _split_generators(self, dl_manager):
|
330 |
+
return [
|
331 |
+
datasets.SplitGenerator(
|
332 |
+
name=datasets.Split.TRAIN,
|
333 |
+
gen_kwargs={
|
334 |
+
"split": "train",
|
335 |
+
},
|
336 |
+
),
|
337 |
+
datasets.SplitGenerator(
|
338 |
+
name=datasets.Split.TEST,
|
339 |
+
gen_kwargs={
|
340 |
+
"split": "test"
|
341 |
+
},
|
342 |
+
),
|
343 |
+
datasets.SplitGenerator(
|
344 |
+
name=datasets.Split.ALL,
|
345 |
+
gen_kwargs={
|
346 |
+
"split": "all",
|
347 |
+
},
|
348 |
+
),
|
349 |
+
]
|
350 |
+
|
351 |
+
def _generate_examples(self, split):
|
352 |
+
if not hasattr(self, "_datasets"):
|
353 |
+
self._datasets = get_datasets()
|
354 |
+
all_dataset, train_dataset, test_dataset = self._datasets
|
355 |
+
if split == "train":
|
356 |
+
yield from train_dataset
|
357 |
+
elif split == "test":
|
358 |
+
yield from test_dataset
|
359 |
+
else:
|
360 |
+
yield from all_dataset
|