edmundmiller
commited on
Commit
•
904061e
1
Parent(s):
3a6919f
Add papers
Browse files- papers.tsv +289 -0
papers.tsv
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
paper doi
|
2 |
+
Aeby2020decapping https://doi.org/10.1038/s41556-020-0558-0
|
3 |
+
Agarwal2021kdm1a https://doi.org/10.1101/gr.234559.118
|
4 |
+
Aho2019displacement https://doi.org/10.1016/j.celrep.2019.02.047
|
5 |
+
Akulenko2018transcriptional https://doi.org/10.1261/rna.062851.117
|
6 |
+
Alexander2019imprinted
|
7 |
+
Alhusini2017genomewide https://doi.org/10.1038/s41598-017-07062-6
|
8 |
+
Allen2014global https://doi.org/10.7554/eLife.02200
|
9 |
+
Anderson2020defining https://doi.org/10.1093/bioinformatics/btaa011
|
10 |
+
Andersson2014nuclear https://doi.org/10.1038/ncomms6336
|
11 |
+
Andrade2015dna https://doi.org/10.1093/nar/gkv148
|
12 |
+
Andrysik2017identification https://doi.org/10.1101/gr.220533.117
|
13 |
+
Aoi2020nelf https://doi.org/10.1016/j.molcel.2020.02.014
|
14 |
+
Aprile-garcia2019nascent https://doi.org/10.1038/s41594-018-0182-x
|
15 |
+
Ba2020ctcf https://doi.org/10.1038/s41586-020-2578-0
|
16 |
+
Bahat2019targeting https://doi.org/10.1016/j.molcel.2019.08.024
|
17 |
+
Barbieri2020rapid https://doi.org/10.1016/j.celrep.2020.108373
|
18 |
+
Barucci2020small https://doi.org/10.1038/s41556-020-0462-7
|
19 |
+
Beckedorff2020human https://doi.org/10.1016/j.celrep.2020.107917
|
20 |
+
Bi2020enhancer https://doi.org/10.1038/s41556-020-0514-z
|
21 |
+
Birkenheuer2018herpes https://doi.org/10.1128/JVI.02184-17
|
22 |
+
Birkenheuer2020rna https://doi.org/10.1128/JVI.02035-19
|
23 |
+
Blumberg2021characterizing https://doi.org/10.1186/s12915-021-00949-x
|
24 |
+
Boija2017cbp https://doi.org/10.1016/j.molcel.2017.09.031
|
25 |
+
Bonelt2019precocious https://doi.org/10.15252/embj.2018100010
|
26 |
+
Booth2016divergence https://doi.org/10.1101/gr.204578.116
|
27 |
+
Booth2018cdk9 https://doi.org/10.1038/s41467-018-03006-4
|
28 |
+
Bouvyliivrand2017analysis https://doi.org/10.1093/nar/gkx680
|
29 |
+
Boxer2020mecp2 https://doi.org/10.1016/j.molcel.2019.10.032
|
30 |
+
Busslinger2017cohesin https://doi.org/10.1038/nature22063
|
31 |
+
Cardamone2018mitochondrial https://doi.org/10.1016/j.molcel.2018.01.037
|
32 |
+
Cecere2013zfp1 https://doi.org/10.1016/j.molcel.2013.06.002
|
33 |
+
Cecere2014global https://doi.org/10.1038/nsmb.2801
|
34 |
+
Chen2014gene https://doi.org/10.1101/gad.250449.114
|
35 |
+
Chen2015paf1 https://doi.org/10.1016/j.cell.2015.07.042
|
36 |
+
Chen2016cutoff https://doi.org/10.1016/j.molcel.2016.05.010
|
37 |
+
Chen2017rchip https://doi.org/10.1016/j.molcel.2017.10.008
|
38 |
+
Chen2018augmented https://doi.org/10.1016/j.molcel.2017.12.029
|
39 |
+
Chen2018rna https://doi.org/10.1038/s41422-018-0076-9
|
40 |
+
Chivu2020unpublished
|
41 |
+
Chu2018chromatin https://doi.org/10.1038/s41588-018-0244-3
|
42 |
+
Compagno2017phosphatidylinositol https://doi.org/10.1038/nature21406
|
43 |
+
Core2008nascent https://doi.org/10.1126/science.1162228
|
44 |
+
Core2012defining https://doi.org/10.1016/j.celrep.2012.08.034
|
45 |
+
Core2014analysis https://doi.org/10.1038/ng.3142
|
46 |
+
Cosby2021recurrent https://doi.org/10.1126/science.abc6405
|
47 |
+
Cuartero2020control https://doi.org/10.1038/s41590-018-0184-1
|
48 |
+
Czimmerer2018transcription https://doi.org/10.1016/j.immuni.2017.12.010
|
49 |
+
Dai2020loop https://doi.org/10.1038/s41586-020-03121-7
|
50 |
+
Daniel2018nuclear https://doi.org/10.1016/j.immuni.2018.09.005
|
51 |
+
Danko2013signaling https://doi.org/10.1016/j.molcel.2013.02.015
|
52 |
+
Danko2015identification https://doi.org/10.1038/nmeth.3329
|
53 |
+
Danko2018dynamic https://doi.org/10.1038/s41559-017-0447-5
|
54 |
+
Delgado-benito2018chromatin https://doi.org/10.1016/j.molcel.2018.08.042
|
55 |
+
Dorighi2017mll3 https://doi.org/10.1016/j.molcel.2017.04.018
|
56 |
+
Douillet2020uncoupling https://doi.org/10.1038/s41588-020-0618-1
|
57 |
+
Duarte2016transcription https://doi.org/10.1101/gad.284430.116
|
58 |
+
Dukler2017nascent https://doi.org/10.1101/gr.222935.117
|
59 |
+
Duttke2015human https://doi.org/10.1016/j.molcel.2014.12.029
|
60 |
+
Duttke2017unpublished
|
61 |
+
Elkon2015myc https://doi.org/10.15252/embr.201540717
|
62 |
+
Elrod2019integrator https://doi.org/10.1016/j.molcel.2019.10.034
|
63 |
+
Emmett2017histone https://doi.org/10.1038/nature22819
|
64 |
+
Engreitz2016local https://doi.org/10.1038/nature20149
|
65 |
+
Erhard2015nascent https://doi.org/10.1534/genetics.115.174714
|
66 |
+
Escoubet-lozach2011mechanisms https://doi.org/10.1371/journal.pgen.1002401
|
67 |
+
Esousa2019kinetics https://doi.org/10.1101/gr.245027.118
|
68 |
+
Estaras2015smad https://doi.org/10.1016/j.molcel.2015.04.001
|
69 |
+
Etchegaray2019histone https://doi.org/10.1016/j.molcel.2019.06.034
|
70 |
+
Fan2020drb https://doi.org/10.1126/sciadv.aaz5041
|
71 |
+
Fang2014circadian https://doi.org/10.1016/j.cell.2014.10.022
|
72 |
+
Fant2020tfiid https://doi.org/10.1016/j.molcel.2020.03.008
|
73 |
+
Fei2018ndf https://doi.org/10.1101/gad.313973.118
|
74 |
+
Fleischer2017dna https://doi.org/10.1038/s41467-017-00510-x
|
75 |
+
Flynn20167skbaf https://doi.org/10.1038/nsmb.3176
|
76 |
+
Fong2014pre https://doi.org/10.1101/gad.252106.114
|
77 |
+
Fong2017rna https://doi.org/10.1016/j.molcel.2017.04.016
|
78 |
+
Fonseca2019diverse https://doi.org/10.1038/s41467-018-08236-0
|
79 |
+
Franco2015tnfalpha https://doi.org/10.1016/j.molcel.2015.02.001
|
80 |
+
Franco2018enhancer https://doi.org/10.1101/gr.226019.117
|
81 |
+
Fuda2012fcp1 https://doi.org/10.1128/MCB.00247-12
|
82 |
+
Fuda2015gaga https://doi.org/10.1371/journal.pgen.1005108
|
83 |
+
Galbraith2013hif1a https://doi.org/10.1016/j.cell.2013.04.048
|
84 |
+
Gally2020gain https://doi.org/10.1172/jci.insight.144294
|
85 |
+
Gao2017thyroid https://doi.org/10.1073/pnas.1711058114
|
86 |
+
Gao2018jmjd6 https://doi.org/10.1016/j.molcel.2018.03.006
|
87 |
+
Gardini2014integrator https://doi.org/10.1016/j.molcel.2014.08.004
|
88 |
+
Gibson2016chemical https://doi.org/10.1126/science.aaf7865
|
89 |
+
Godfrey2017mll https://doi.org/10.1016/j.exphem.2016.11.003
|
90 |
+
Guan2018diet https://doi.org/10.1016/j.cell.2018.06.031
|
91 |
+
Hah2011rapid https://doi.org/10.1016/j.cell.2011.03.042
|
92 |
+
Hah2013enhancer https://doi.org/10.1101/gr.152306.112
|
93 |
+
Hah2015inflammation https://doi.org/10.1073/pnas.1424028112
|
94 |
+
Harman2021invivo https://doi.org/10.1073/pnas.1918062118
|
95 |
+
Heinaniemi2016transcription https://doi.org/10.7554/eLife.13087
|
96 |
+
Heinz2013effect https://doi.org/10.1038/nature12615
|
97 |
+
Herold2019recruitment https://doi.org/10.1038/s41586-019-1030-9
|
98 |
+
Hetzel2016nascent https://doi.org/10.1073/pnas.1603217113
|
99 |
+
Hong2017dissociation https://doi.org/10.1038/nm.4245
|
100 |
+
Horibata2018erpositive https://doi.org/10.1371/journal.pone.0194023
|
101 |
+
Hou2019paf1c https://doi.org/10.1073/pnas.1904324116
|
102 |
+
Hu2012dicer https://doi.org/10.1038/nsmb.2400
|
103 |
+
Huang2020integrator https://doi.org/10.1016/j.molcel.2020.08.016
|
104 |
+
Ikegami2020phosphorylated https://doi.org/10.1016/j.devcel.2020.02.011
|
105 |
+
Illingworth2016polycomb https://doi.org/10.7554/eLife.14926
|
106 |
+
Incarnato2017vivo https://doi.org/10.1093/nar/gkx617
|
107 |
+
Jaeger2020selective https://doi.org/10.1038/s41588-020-0635-0
|
108 |
+
Jager2016nuclear https://doi.org/10.1074/jbc.M116.719120
|
109 |
+
Ji2011transcriptional https://doi.org/10.1038/msb.2011.69
|
110 |
+
Ji2013sr https://doi.org/10.1016/j.cell.2013.04.028
|
111 |
+
Jiang2018multi https://doi.org/10.1038/s41598-018-24039-1
|
112 |
+
Jin2013high https://doi.org/10.1038/nature12644
|
113 |
+
Jin2014chem https://doi.org/10.1073/pnas.1404303111
|
114 |
+
Johnson2017biotin https://doi.org/10.1038/nm.4406
|
115 |
+
Johnston2020nascent https://doi.org/10.1016/j.gene.2020.144758
|
116 |
+
Jones2023unpublished
|
117 |
+
Jonkers2014genome https://doi.org/10.7554/eLife.02407
|
118 |
+
Judd2020unpublished
|
119 |
+
Judd2021pioneer https://doi.org/10.1101/gad.341768.120
|
120 |
+
Kaikkonen2013remodeling https://doi.org/10.1016/j.molcel.2013.07.010
|
121 |
+
Kaikkonen2014control https://doi.org/10.1093/nar/gku1036
|
122 |
+
Kaikkonen2017genome https://doi.org/10.1161/CIRCGENETICS.117.001702
|
123 |
+
Kantidakis2016mutation https://doi.org/10.1101/gad.275453.115
|
124 |
+
Kelly2020unpublished
|
125 |
+
Khodor2011nascent https://doi.org/10.1101/gad.178962.111
|
126 |
+
Kim2018pluripotency https://doi.org/10.1038/s41586-018-0048-8
|
127 |
+
Kloetgen2020three https://doi.org/10.1038/s41588-020-0602-9
|
128 |
+
Komarov2020epigenetic https://doi.org/10.3390/cells9040922
|
129 |
+
Korkmaz2019crispr https://doi.org/10.1093/nar/gkz675
|
130 |
+
Kourtis2018oncogenic https://doi.org/10.1038/s41591-018-0105-8
|
131 |
+
Kriaucionis2019unpublished
|
132 |
+
Kristjansdottir2020population https://doi.org/10.1038/s41467-020-19829-z
|
133 |
+
Kruesi2013condensin https://doi.org/10.7554/eLife.00808
|
134 |
+
Kuosmanen2018nrf2 https://doi.org/10.1093/nar/gkx1155
|
135 |
+
Kwak2013precise https://doi.org/10.1126/science.1229386
|
136 |
+
Kwon2017locus https://doi.org/10.1038/ncomms15315
|
137 |
+
Lai2020directed https://doi.org/10.1016/j.molcel.2019.12.029
|
138 |
+
Laitem2015cdk9 https://doi.org/10.1038/nsmb.3000
|
139 |
+
Lam2013rev https://doi.org/10.1038/nature12209
|
140 |
+
Larschan2011x https://doi.org/10.1038/nature09757
|
141 |
+
Le2013mapping https://doi.org/10.1371/journal.pone.0071355
|
142 |
+
Leroy2019ledgf https://doi.org/10.1126/sciadv.aay3068
|
143 |
+
Leveille2015genome https://doi.org/10.1038/ncomms7520
|
144 |
+
Li2013functional https://doi.org/10.1038/nature12210
|
145 |
+
Li2013ncor https://doi.org/10.1016/j.cell.2013.08.054
|
146 |
+
Li2015condensin https://doi.org/10.1016/j.molcel.2015.06.002
|
147 |
+
Li2017grid https://doi.org/10.1038/nbt.3968
|
148 |
+
Li2018lncrna https://doi.org/10.1093/nar/gky087
|
149 |
+
Li2020human https://doi.org/10.1371/journal.ppat.1008402
|
150 |
+
Li2020signalosome https://doi.org/10.1161/CIRCULATIONAHA.119.044805
|
151 |
+
Li2021comprehensive https://doi.org/10.1186/s13059-021-02272-8
|
152 |
+
Liang2018targeting https://doi.org/10.1016/j.cell.2018.09.027
|
153 |
+
Lin2012global https://doi.org/10.1038/ni.2432
|
154 |
+
Link2018analysis https://doi.org/10.1016/j.cell.2018.04.018
|
155 |
+
Linnakuosmanen2020nrf2 https://doi.org/10.1093/cvr/cvaa219
|
156 |
+
Liu2013brd4 https://doi.org/10.1016/j.cell.2013.10.056
|
157 |
+
Liu2014enhancer https://doi.org/10.1016/j.cell.2014.08.027
|
158 |
+
Liu2017dynamic https://doi.org/10.1182/bloodadvances.2017008383
|
159 |
+
Liu2017identification https://doi.org/10.1093/nar/gkx318
|
160 |
+
Liu2017transcriptional https://doi.org/10.1073/pnas.1617636114
|
161 |
+
Liu2018arabidopsis https://doi.org/10.1016/j.devcel.2017.12.002
|
162 |
+
Liu2018rna-directed https://doi.org/10.1038/s41477-017-0100-y
|
163 |
+
Liu2020immediate https://doi.org/10.1111/jipb.12990
|
164 |
+
Liu2021transcription https://doi.org/10.1038/s41588-021-00798-y
|
165 |
+
Lloret-llinares2018rna https://doi.org/10.1093/nar/gky817
|
166 |
+
Lozano2018rna
|
167 |
+
Lu2017nascent https://doi.org/10.1093/nar/gkx464
|
168 |
+
Luo2014dynamic https://doi.org/10.1186/1471-2164-15-155
|
169 |
+
Ma2020super https://doi.org/10.1016/j.celrep.2020.107532
|
170 |
+
Magnuson2015identifying https://doi.org/10.1038/srep17978
|
171 |
+
Mahat2016mammalian https://doi.org/10.1016/j.molcel.2016.02.025
|
172 |
+
Malinen2017crosstalk https://doi.org/10.1093/nar/gkw855
|
173 |
+
Marazzi2012suppression https://doi.org/10.1038/nature10892
|
174 |
+
Mayer2015native https://doi.org/10.1016/j.cell.2015.03.010
|
175 |
+
Mckinlay2011genome https://doi.org/10.1534/g3.111.000810
|
176 |
+
Meng2014convergent https://doi.org/10.1016/j.cell.2014.11.014
|
177 |
+
Meyerswallen2017xx https://doi.org/10.1371/journal.pone.0186331
|
178 |
+
Miller2015senataxin https://doi.org/10.1038/ni.3132
|
179 |
+
Min2011regulating https://doi.org/10.1101/gad.2005511
|
180 |
+
Mohn2014rhino https://doi.org/10.1016/j.cell.2014.04.031
|
181 |
+
Moreau2018transcriptional https://doi.org/10.3389/fcvm.2018.00159
|
182 |
+
Mukai2020chromatin https://doi.org/10.1186/s12917-020-02395-3
|
183 |
+
Murakami2017dynamic https://doi.org/10.1101/gad.302182.117
|
184 |
+
Nair2019phase https://doi.org/10.1038/s41594-019-0190-5
|
185 |
+
Nelson2018ppar https://doi.org/10.1101/gad.312355.118
|
186 |
+
Ngoc2017human https://doi.org/10.1101/gad.293837.116
|
187 |
+
Nguyen2020dichotomous https://doi.org/10.1038/s41586-020-2576-2
|
188 |
+
Nilson2017oxidative https://doi.org/10.1093/nar/gkx724
|
189 |
+
Niskanen2015global https://doi.org/10.1186/s13059-015-0717-y
|
190 |
+
Niskanen2018endothelial https://doi.org/10.1093/nar/gkx1214
|
191 |
+
Nojima2015mammalian https://doi.org/10.1016/j.cell.2015.03.027
|
192 |
+
Oh2021enhancer https://doi.org/10.1038/s41586-021-03577-1
|
193 |
+
Oittinen2017polycomb https://doi.org/10.1002/stem.2479
|
194 |
+
Orioli2016human https://doi.org/10.1101/gr.201400.115
|
195 |
+
Parida2019nucleotide https://doi.org/10.1128/mBio.02047-18
|
196 |
+
Parikh2018critical https://doi.org/10.1074/jbc.AC118.003264
|
197 |
+
Park2020global https://doi.org/10.1073/pnas.1922216117
|
198 |
+
Parua2018cdk9-pp1 https://doi.org/10.1038/s41586-018-0214-z
|
199 |
+
Patel2020robust https://doi.org/10.1093/nar/gkaa687
|
200 |
+
Perreault2019epigenetic https://doi.org/10.1038/sdata.2019.33
|
201 |
+
Phanstiel2017static https://doi.org/10.1016/j.molcel.2017.08.006
|
202 |
+
Puc2015ligand https://doi.org/10.1016/j.cell.2014.12.023
|
203 |
+
Rahnamoun2017mutant https://doi.org/10.1038/s41467-017-01117-y
|
204 |
+
Rao2017cohesin https://doi.org/10.1016/j.cell.2017.09.026
|
205 |
+
Rozhkov2013multiple https://doi.org/10.1101/gad.209767.112
|
206 |
+
Salony2016akt https://doi.org/10.1158/1535-7163.MCT-15-0414
|
207 |
+
Santoriello2020rna https://doi.org/10.1038/s41556-020-0493-0
|
208 |
+
Saponaro2014recql5 https://doi.org/10.1016/j.cell.2014.03.048
|
209 |
+
Sasse2019nascent https://doi.org/10.1101/gr.248187.119
|
210 |
+
Sathyan2019improved https://doi.org/10.1101/gad.328237.119
|
211 |
+
Saunders2013extensive https://doi.org/10.1101/gad.215459.113
|
212 |
+
Schaaf2013genome https://doi.org/10.1371/journal.pgen.1003382
|
213 |
+
Schaukowitch2017intrinsic https://doi.org/10.1016/j.celrep.2017.01.033
|
214 |
+
Schick2021acute https://doi.org/10.1038/s41588-021-00777-3
|
215 |
+
Schoeberl2012biased https://doi.org/10.1101/gad.196493.112
|
216 |
+
Sen2019histone https://doi.org/10.1016/j.molcel.2019.01.021
|
217 |
+
Sendinc2019pcif1 https://doi.org/10.1016/j.molcel.2019.05.030
|
218 |
+
Shamie2020unpublished
|
219 |
+
Sheridan2019widespread https://doi.org/10.1016/j.molcel.2018.10.031
|
220 |
+
Sienski2012transcriptional https://doi.org/10.1016/j.cell.2012.10.040
|
221 |
+
Sigova2013divergent https://doi.org/10.1073/pnas.1221904110
|
222 |
+
Sigova2015transcription https://doi.org/10.1126/science.aad3346
|
223 |
+
Skowronskakrawczyk2014required https://doi.org/10.1038/nature13573
|
224 |
+
Slobodin2017transcription https://doi.org/10.1016/j.cell.2017.03.031
|
225 |
+
Smith2021peppro https://doi.org/10.1186/s13059-021-02349-4
|
226 |
+
Soccio2015genetic https://doi.org/10.1016/j.cell.2015.06.025
|
227 |
+
Steinparzer2019transcriptional https://doi.org/10.1016/j.molcel.2019.07.034
|
228 |
+
Stender2017structural https://doi.org/10.1016/j.molcel.2017.02.008
|
229 |
+
Stengel2019histone https://doi.org/10.1093/nar/gkz816
|
230 |
+
Stengel2020definition https://doi.org/10.1016/j.molcel.2020.12.005
|
231 |
+
Step2014antidiabetic https://doi.org/10.1101/gad.237628.114
|
232 |
+
Strikoudis2016regulation https://doi.org/10.1038/ncb3424
|
233 |
+
Sumida2018ultra https://doi.org/https://doi.org/10.1101/286583
|
234 |
+
Sun2017enhancer
|
235 |
+
Takahashi2020role https://doi.org/10.1038/s41467-020-14849-1
|
236 |
+
Tan2016stress https://doi.org/10.1016/j.molcel.2016.03.013
|
237 |
+
Tan2018dismissal https://doi.org/10.1016/j.molcel.2018.07.039
|
238 |
+
Tastemel2017transcription https://doi.org/10.1016/j.scr.2017.11.012
|
239 |
+
Telese2015lrp8 https://doi.org/10.1016/j.neuron.2015.03.033
|
240 |
+
Tena2020induction https://doi.org/10.1073/pnas.1922299117
|
241 |
+
Teppo2016genome https://doi.org/10.1101/gr.193649.115
|
242 |
+
Thomas2019interaction https://doi.org/10.1073/pnas.1910391116
|
243 |
+
Tome2018single https://doi.org/10.1038/s41588-018-0234-5
|
244 |
+
Toropainen2016global https://doi.org/10.1038/srep33510
|
245 |
+
Trizzino2018tumor https://doi.org/10.1016/j.celrep.2018.05.097
|
246 |
+
Ueberschar2019ben https://doi.org/10.1038/s41467-019-13558-8
|
247 |
+
Vaid2020release https://doi.org/10.1093/nar/gkaa234
|
248 |
+
Veloso2013genome-wide https://doi.org/10.1371/journal.pone.0078190
|
249 |
+
Vian2018energetics https://doi.org/10.1016/j.cell.2018.03.072
|
250 |
+
Vihervaara2017transcriptional https://doi.org/10.1038/s41467-017-00151-0
|
251 |
+
Vihervaara2021stress https://doi.org/10.1016/j.molcel.2021.03.007
|
252 |
+
Viiri2019extensive https://doi.org/10.1038/s41598-019-39215-0
|
253 |
+
Wan2020h2bg53d https://doi.org/10.1038/s41392-020-00219-2
|
254 |
+
Wang2011reprogramming https://doi.org/10.1038/nature10006
|
255 |
+
Wang2014rna https://doi.org/10.1016/j.celrep.2014.01.037
|
256 |
+
Wang2015epigenetic https://doi.org/10.1016/j.stem.2015.02.013
|
257 |
+
Wang2015lsd1n https://doi.org/10.1038/nn.4069
|
258 |
+
Wang2015molecular https://doi.org/10.1038/nature14482
|
259 |
+
Wang2017cell https://doi.org/10.1084/jem.20161649
|
260 |
+
Wang2018nascent https://doi.org/10.1186/s12864-018-5016-z
|
261 |
+
Wang2019identification https://doi.org/10.1101/gr.238279.118
|
262 |
+
Wang2020increased https://doi.org/10.1016/j.stem.2019.12.013
|
263 |
+
Wang2020proapoptotic https://doi.org/10.1038/s41388-020-01435-4
|
264 |
+
Wei2016long https://doi.org/10.1016/j.cell.2015.12.039
|
265 |
+
Wei2016rbfox2 https://doi.org/10.1016/j.molcel.2016.04.013
|
266 |
+
Weissmiller2019inhibition https://doi.org/10.1038/s41467-019-10022-5
|
267 |
+
Williams2015pausing https://doi.org/10.1016/j.molcel.2015.02.003
|
268 |
+
Williamson2017uv https://doi.org/10.1016/j.cell.2017.01.019
|
269 |
+
Woo2018ted https://doi.org/10.1016/j.celrep.2018.08.084
|
270 |
+
Wu2017indentifying https://doi.org/10.1038/s41598-017-00176-x
|
271 |
+
Xiao2019pervasive https://doi.org/10.1016/j.cell.2019.06.001
|
272 |
+
Yang2013lncrna https://doi.org/10.1038/nature12451
|
273 |
+
Yang2017glucocorticoid https://doi.org/10.1016/j.molcel.2017.03.019
|
274 |
+
Yu2015panoramix https://doi.org/10.1126/science.aab0700
|
275 |
+
Yu2020negative https://doi.org/10.1038/s41467-020-16209-5
|
276 |
+
Zhang2015enhancer https://doi.org/10.1073/pnas.1424228112
|
277 |
+
Zhang2016regulation https://doi.org/10.1038/srep21718
|
278 |
+
Zhang2017hepatic https://doi.org/10.1101/gad.302323.117
|
279 |
+
Zhang2018timing
|
280 |
+
Zhang2019arerg https://doi.org/10.1101/gr.230243.117
|
281 |
+
Zhang2019fundamental https://doi.org/10.1038/s41586-019-1723-0
|
282 |
+
Zhang2020bcatenin https://doi.org/10.1126/sciadv.aba1593
|
283 |
+
Zhang2021physiological https://doi.org/10.1073/pnas.2024392118
|
284 |
+
Zhao2016high https://doi.org/10.1016/j.celrep.2016.07.032
|
285 |
+
Zhao2019myod https://doi.org/10.1038/s41467-019-13598-0
|
286 |
+
Zhu2017comprehensive https://doi.org/10.1101/gad.293910.116
|
287 |
+
Zhu2018rna https://doi.org/10.1038/s41477-018-0280-0
|
288 |
+
Zhu2019non https://doi.org/10.1016/j.molcel.2019.06.010
|
289 |
+
Zhu2021calcium https://doi.org/10.1101/gad.343475.120
|