edmundmiller
commited on
Commit
•
90f526e
1
Parent(s):
91d9093
Add Biostar Handbook code
Browse files- rnaseq/code/combine_genes.r +75 -0
- rnaseq/code/combine_transcripts.r +60 -0
- rnaseq/code/compare_results.r +54 -0
- rnaseq/code/create_heatmap.r +79 -0
- rnaseq/code/create_pca.r +112 -0
- rnaseq/code/create_tx2gene.r +38 -0
- rnaseq/code/deseq2.r +137 -0
- rnaseq/code/edger.r +134 -0
- rnaseq/code/filter_counts.r +55 -0
- rnaseq/code/mission-impossible.mk +92 -0
- rnaseq/code/parse_featurecounts.r +49 -0
rnaseq/code/combine_genes.r
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Combine transcripts into genes with the tximport package.
|
3 |
+
#
|
4 |
+
# https://bioconductor.org/packages/release/bioc/html/tximport.html
|
5 |
+
#
|
6 |
+
|
7 |
+
# Load the packages
|
8 |
+
library(tximport)
|
9 |
+
|
10 |
+
# The directory where the counts for each sample are located.
|
11 |
+
data_dir <- 'salmon'
|
12 |
+
|
13 |
+
# The sample file is in CSV format and must have the headers "sample" and "condition".
|
14 |
+
design_file = "design.csv"
|
15 |
+
|
16 |
+
# What software created the mappings.
|
17 |
+
method <- "salmon"
|
18 |
+
|
19 |
+
# The ouput file name.
|
20 |
+
output_file = "counts.csv"
|
21 |
+
|
22 |
+
# The name of the file that contains transcript to gene mapping.
|
23 |
+
# See our guide on how to make a mapping file.
|
24 |
+
tx2gene_file = "tx2gene.csv"
|
25 |
+
|
26 |
+
# Inform the user.
|
27 |
+
print("# Tool: Combine genes")
|
28 |
+
print(paste("# Sample: ", design_file))
|
29 |
+
print(paste("# Data dir: ", data_dir))
|
30 |
+
print(paste("# Gene map: ", tx2gene_file))
|
31 |
+
|
32 |
+
# Read the sample file
|
33 |
+
sample_data <- read.csv(design_file, stringsAsFactors=F)
|
34 |
+
|
35 |
+
# Isolate the sample names.
|
36 |
+
sample_names <- sample_data$sample
|
37 |
+
|
38 |
+
# Generate the file names that contain the quantification data.
|
39 |
+
files <- file.path(data_dir, sample_names, "quant.sf")
|
40 |
+
|
41 |
+
# Read the transcript to gene mapping file.
|
42 |
+
tx2gene = read.csv(tx2gene_file)
|
43 |
+
|
44 |
+
# Summarize over transcripts.
|
45 |
+
tx <- tximport(files, type=method, tx2gene=tx2gene)
|
46 |
+
|
47 |
+
# Transform into a dataframe.
|
48 |
+
df <- data.frame(tx$counts)
|
49 |
+
|
50 |
+
# Set the column names
|
51 |
+
colnames(df) <- sample_names
|
52 |
+
|
53 |
+
# Add a rowname by gene id
|
54 |
+
df$ensembl_gene_id = row.names(df)
|
55 |
+
|
56 |
+
# Create a smaller data frame that connects gene to name.
|
57 |
+
id2name = tx2gene[, c("ensembl_gene_id", "external_gene_name")]
|
58 |
+
|
59 |
+
# Need to de-duplicate so the merge won't create new entries.
|
60 |
+
id2name = id2name[!duplicated(id2name),]
|
61 |
+
|
62 |
+
# Add the gene names to the list
|
63 |
+
df = merge(df, id2name, by="ensembl_gene_id", all.x = TRUE, all.y = FALSE)
|
64 |
+
|
65 |
+
# This will be the new column order.
|
66 |
+
cols <- c("ensembl_gene_id", "external_gene_name", sample_names)
|
67 |
+
|
68 |
+
# Reorganize the columns.
|
69 |
+
df <- df[, cols]
|
70 |
+
|
71 |
+
# Save the resulting summarized counts.
|
72 |
+
write.csv(df, file=output_file, row.names = FALSE, quote = FALSE)
|
73 |
+
|
74 |
+
# Inform the user.
|
75 |
+
print(paste("# Results: ", output_file))
|
rnaseq/code/combine_transcripts.r
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Combine transcripts with the tximport package.
|
3 |
+
#
|
4 |
+
# https://bioconductor.org/packages/release/bioc/html/tximport.html
|
5 |
+
#
|
6 |
+
# Transcript level summarization.
|
7 |
+
#
|
8 |
+
|
9 |
+
# Load the packages
|
10 |
+
library(tximport)
|
11 |
+
|
12 |
+
# The directory where the counts for each sample are located.
|
13 |
+
data_dir <- 'salmon'
|
14 |
+
|
15 |
+
# The sample file must be in CSV format and must have the headers "sample" and "condition".
|
16 |
+
desing_file = "design.csv"
|
17 |
+
|
18 |
+
# What software created the mappings.
|
19 |
+
method <- "salmon"
|
20 |
+
|
21 |
+
# The output file name.
|
22 |
+
output_file = "counts.csv"
|
23 |
+
|
24 |
+
# Inform the user.
|
25 |
+
print("# Tool: Combine transcripts")
|
26 |
+
print(paste("# Sample: ", desing_file))
|
27 |
+
print(paste("# Data dir: ", data_dir))
|
28 |
+
|
29 |
+
# Read the sample file
|
30 |
+
sample_data <- read.csv(desing_file, stringsAsFactors=F)
|
31 |
+
|
32 |
+
# Isolate the sample names.
|
33 |
+
sample_names <- sample_data$sample
|
34 |
+
|
35 |
+
# Generate the file names that contain the quantification data.
|
36 |
+
files <- file.path(data_dir, sample_names, "quant.sf")
|
37 |
+
|
38 |
+
# Summarize over transcripts.
|
39 |
+
tx <- tximport(files, type=method, txOut=TRUE)
|
40 |
+
|
41 |
+
# Transform counts into a dataframe.
|
42 |
+
df <- data.frame(tx$counts)
|
43 |
+
|
44 |
+
# Set the column names.
|
45 |
+
colnames(df) <- sample_names
|
46 |
+
|
47 |
+
# Create a new column for transcript ids.
|
48 |
+
df$ensembl_transcript_id = rownames(df)
|
49 |
+
|
50 |
+
# List the desired column order.
|
51 |
+
cols <- c("ensembl_transcript_id", sample_names)
|
52 |
+
|
53 |
+
# Reorganize the columns.
|
54 |
+
df <- df[, cols]
|
55 |
+
|
56 |
+
# Save the resulting summarized counts.
|
57 |
+
write.csv(df, file=output_file, row.names = FALSE, quote = FALSE)
|
58 |
+
|
59 |
+
# Inform the user.
|
60 |
+
print(paste("# Results: ", output_file))
|
rnaseq/code/compare_results.r
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Compare two RNA seq data analysis result files.
|
3 |
+
#
|
4 |
+
|
5 |
+
# The results files to be compared.
|
6 |
+
file1 = "results1.csv"
|
7 |
+
file2 = "results2.csv"
|
8 |
+
|
9 |
+
# Read the data files.
|
10 |
+
data1 <- read.csv(file1)
|
11 |
+
data2 <- read.csv(file2)
|
12 |
+
|
13 |
+
# Select the rows where the FDR is under a cutoff.
|
14 |
+
sig1 <- subset(data1, FDR <= 0.5)
|
15 |
+
sig2 <- subset(data2, FDR <= 0.5)
|
16 |
+
|
17 |
+
# Extract the gene names only
|
18 |
+
name1 = sig1$name
|
19 |
+
name2 = sig2$name
|
20 |
+
|
21 |
+
# Intersect: common elements.
|
22 |
+
isect <- intersect(name1, name2)
|
23 |
+
|
24 |
+
# Elements from both.
|
25 |
+
uni <- union(name1, name2)
|
26 |
+
|
27 |
+
# Elements in file 1 only.
|
28 |
+
only1 <- setdiff(name1, name2)
|
29 |
+
|
30 |
+
# Elements in file 2 only.
|
31 |
+
only2 <- setdiff(name2, name1)
|
32 |
+
|
33 |
+
# Report the differences
|
34 |
+
print("# Tool: compare_results.r")
|
35 |
+
print("")
|
36 |
+
print(paste("# File 1:", length(name1), file1))
|
37 |
+
print(paste("# File 2:", length(name2), file2))
|
38 |
+
print("")
|
39 |
+
print(paste("# Union:", length(uni)))
|
40 |
+
print(paste("# Intersect:", length(isect)))
|
41 |
+
print(paste("# File 1 only:", length(only1)))
|
42 |
+
print(paste("# File 2 only:", length(only2)))
|
43 |
+
|
44 |
+
print("----")
|
45 |
+
|
46 |
+
print("Only 1:")
|
47 |
+
print(paste( only1))
|
48 |
+
|
49 |
+
print("----")
|
50 |
+
|
51 |
+
print("Only 2:")
|
52 |
+
print(paste( only2))
|
53 |
+
|
54 |
+
expect = subset(data1, grepl("UP|DOWN", name))$name
|
rnaseq/code/create_heatmap.r
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Create heat map from a differential expression count table.
|
3 |
+
#
|
4 |
+
# Load the library.
|
5 |
+
suppressPackageStartupMessages(library(gplots))
|
6 |
+
|
7 |
+
# The name of the file that contains the counts.
|
8 |
+
count_file = "results.csv"
|
9 |
+
|
10 |
+
# The name of the output file.
|
11 |
+
output_file = "heatmap.pdf"
|
12 |
+
|
13 |
+
# Inform the user.
|
14 |
+
print("# Tool: Create Heatmap ")
|
15 |
+
print(paste("# Input: ", count_file))
|
16 |
+
print(paste("# Output: ", output_file))
|
17 |
+
|
18 |
+
# FDR cutoff.
|
19 |
+
MIN_FDR = 0.05
|
20 |
+
|
21 |
+
# Plot width
|
22 |
+
WIDTH = 12
|
23 |
+
|
24 |
+
# Plot height.
|
25 |
+
HEIGHT = 13
|
26 |
+
|
27 |
+
# Set the margins
|
28 |
+
MARGINS = c(9, 12)
|
29 |
+
|
30 |
+
# Relative heights of the rows in the plot.
|
31 |
+
LHEI = c(1, 5)
|
32 |
+
|
33 |
+
# Read normalized counts from the standard input.
|
34 |
+
data = read.csv(count_file, header=T, as.is=TRUE)
|
35 |
+
|
36 |
+
# Subset data for values under a treshold.
|
37 |
+
data = subset(data, data$FDR <= MIN_FDR)
|
38 |
+
|
39 |
+
# The heatmap row names will be taken from the first column.
|
40 |
+
row_names = data[, 1]
|
41 |
+
|
42 |
+
# The code assumes that the normalized data matrix is listed to the right of the falsePos column.
|
43 |
+
idx = which(colnames(data) == "falsePos") + 1
|
44 |
+
|
45 |
+
# The normalized counts are on the right size.
|
46 |
+
counts = data[, idx : ncol(data)]
|
47 |
+
|
48 |
+
# Load the data from the second column on.
|
49 |
+
values = as.matrix(counts)
|
50 |
+
|
51 |
+
# Adds a little noise to each element to avoid the
|
52 |
+
# clustering function failure on zero variance rows.
|
53 |
+
values = jitter(values, factor = 1, amount = 0.00001)
|
54 |
+
|
55 |
+
# Normalize each row to a z-score
|
56 |
+
zscores = NULL
|
57 |
+
for (i in 1 : nrow(values)) {
|
58 |
+
row = values[i,]
|
59 |
+
zrow = (row - mean(row)) / sd(row)
|
60 |
+
zscores = rbind(zscores, zrow)
|
61 |
+
}
|
62 |
+
|
63 |
+
# Set the row names on the zscores.
|
64 |
+
row.names(zscores) = row_names
|
65 |
+
|
66 |
+
# Turn the data into a matrix for heatmap2.
|
67 |
+
zscores = as.matrix(zscores)
|
68 |
+
|
69 |
+
# Set the color palette.
|
70 |
+
col = greenred
|
71 |
+
|
72 |
+
# Create a PDF device
|
73 |
+
pdf(output_file, width = WIDTH, height = HEIGHT)
|
74 |
+
|
75 |
+
heatmap.2(zscores, col=col, density.info="none", Colv=NULL,
|
76 |
+
dendrogram="row", trace="none", margins=MARGINS, lhei=LHEI)
|
77 |
+
|
78 |
+
#dev.off()
|
79 |
+
|
rnaseq/code/create_pca.r
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env Rscript
|
2 |
+
#
|
3 |
+
# This script makes a pca of all samples and a heatmap of sample distances.
|
4 |
+
#
|
5 |
+
|
6 |
+
# The inputs to the script are counts file, design file and the number of samples.
|
7 |
+
#
|
8 |
+
# How to run?
|
9 |
+
# Rscript summary_plots.r <counts_file> <design_file> <number_of_samples>
|
10 |
+
# Example: Rscript summary_plots.r counts.txt design.txt 6
|
11 |
+
# Design file example:
|
12 |
+
# Sample Condition
|
13 |
+
# MCVS450 MCVS
|
14 |
+
# MCVS515 MCVS
|
15 |
+
# MCVS520 MCVS
|
16 |
+
# MNS456 MNS
|
17 |
+
# MNS486 MNS
|
18 |
+
# MNS580 MNS
|
19 |
+
|
20 |
+
|
21 |
+
read <- function(counts_file, design_file,number_of_samples){
|
22 |
+
counts = read.table(counts_file, header=TRUE, sep="\t", row.names=1 )
|
23 |
+
idx = ncol(counts) - number_of_samples
|
24 |
+
|
25 |
+
# Cut out the valid columns.
|
26 |
+
if (idx > 0) counts = counts[-c(1:idx)] else counts=counts
|
27 |
+
|
28 |
+
numeric_idx = sapply(counts, mode) == 'numeric'
|
29 |
+
counts[numeric_idx] = round(counts[numeric_idx], 0)
|
30 |
+
|
31 |
+
colData = read.table(design_file, header=TRUE, sep="\t", row.names=1 )
|
32 |
+
|
33 |
+
# Create DESEq2 dataset.
|
34 |
+
dds = DESeqDataSetFromMatrix(countData=counts, colData=colData, design = ~1)
|
35 |
+
|
36 |
+
# Variance Stabilizing Transformation.
|
37 |
+
vsd = vst(dds)
|
38 |
+
names = colnames(counts)
|
39 |
+
groups = colnames(colData)
|
40 |
+
|
41 |
+
rlist <- list("vsd" = vsd, "names"=names, "groups" =groups)
|
42 |
+
return(rlist)
|
43 |
+
|
44 |
+
}
|
45 |
+
|
46 |
+
# Command line argument.
|
47 |
+
args = commandArgs(trailingOnly=TRUE)
|
48 |
+
|
49 |
+
|
50 |
+
if (length(args)!=3) {
|
51 |
+
stop("Counts file, Design file and the number of samples must be specified at the commandline", call.=FALSE)
|
52 |
+
}
|
53 |
+
|
54 |
+
|
55 |
+
# Load the library while suppressing verbose messages.
|
56 |
+
suppressPackageStartupMessages(library(DESeq2))
|
57 |
+
suppressPackageStartupMessages(library(ggplot2))
|
58 |
+
|
59 |
+
# Set the plot dimensions.
|
60 |
+
WIDTH = 12
|
61 |
+
HEIGHT = 8
|
62 |
+
|
63 |
+
|
64 |
+
# The first argument to the script -counts file
|
65 |
+
infile = args[1]
|
66 |
+
|
67 |
+
# The second argument to the script - design file
|
68 |
+
coldata_file = args[2]
|
69 |
+
|
70 |
+
# The third argument to the script - total number of samples.
|
71 |
+
sno = args[3]
|
72 |
+
sno= as.numeric(sno)
|
73 |
+
|
74 |
+
res = read(infile, coldata_file, sno)
|
75 |
+
vsd= res$vsd
|
76 |
+
names = res$names
|
77 |
+
groups = res$groups
|
78 |
+
|
79 |
+
# Open the drawing device.
|
80 |
+
pdf('pca.pdf', width = WIDTH, height = HEIGHT)
|
81 |
+
par(mfrow = c(2,1))
|
82 |
+
nudge <- position_nudge(y = 0.5)
|
83 |
+
|
84 |
+
z=plotPCA(vsd, intgroup=c(groups))
|
85 |
+
z+ geom_text(aes(label = names), position=nudge, size = 2.5) +ggtitle(aes("PCA"))
|
86 |
+
dev.off()
|
87 |
+
|
88 |
+
#
|
89 |
+
# Plot heatmap of sample distances
|
90 |
+
#
|
91 |
+
library(pheatmap)
|
92 |
+
library("RColorBrewer")
|
93 |
+
|
94 |
+
sampleDists = dist(t(assay(vsd)))
|
95 |
+
sampleDistMatrix = as.matrix(sampleDists)
|
96 |
+
|
97 |
+
colnames(sampleDistMatrix) = NULL
|
98 |
+
|
99 |
+
colors = colorRampPalette( rev(brewer.pal(9, "Blues")) )(255)
|
100 |
+
|
101 |
+
|
102 |
+
# Open the drawing device.
|
103 |
+
|
104 |
+
pdf('heatmap.pdf', width = 8, height = HEIGHT)
|
105 |
+
|
106 |
+
pheatmap(sampleDistMatrix,
|
107 |
+
clustering_distance_rows=sampleDists,
|
108 |
+
clustering_distance_cols=sampleDists,
|
109 |
+
col=colors) + geom_label(aes(label = names))
|
110 |
+
|
111 |
+
dev.off()
|
112 |
+
|
rnaseq/code/create_tx2gene.r
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Obtain gene names for transcripts with the biomaRt package.
|
3 |
+
#
|
4 |
+
# https://bioconductor.org/packages/release/bioc/html/biomaRt.html
|
5 |
+
#
|
6 |
+
|
7 |
+
# Load the biomart manager
|
8 |
+
library(biomaRt)
|
9 |
+
|
10 |
+
# The biomaRt dataset name.
|
11 |
+
dataset <- "drerio_gene_ensembl"
|
12 |
+
|
13 |
+
# The ouput file name.
|
14 |
+
output_file = "tx2gene.csv"
|
15 |
+
|
16 |
+
# Make a connection to the validated dataset.
|
17 |
+
mart <- useEnsembl(dataset = dataset, biomart = 'ensembl')
|
18 |
+
|
19 |
+
# The attributes that we want to obtain.
|
20 |
+
# The first column must match the feature id used during quantification.
|
21 |
+
attributes <- c(
|
22 |
+
"ensembl_transcript_id_version",
|
23 |
+
"ensembl_gene_id",
|
24 |
+
"ensembl_transcript_id",
|
25 |
+
"transcript_length",
|
26 |
+
"external_gene_name"
|
27 |
+
)
|
28 |
+
|
29 |
+
# Perform the query.
|
30 |
+
data <- biomaRt::getBM(attributes = attributes, mart = mart)
|
31 |
+
|
32 |
+
# Save the data into a file.
|
33 |
+
write.csv(data, file=output_file, row.names=FALSE, quote=FALSE)
|
34 |
+
|
35 |
+
# Inform the user.
|
36 |
+
print("# Tool: Create tx2gene mapping")
|
37 |
+
print(paste("# Dataset: ", dataset))
|
38 |
+
print(paste("# Output: ", output_file))
|
rnaseq/code/deseq2.r
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Differential expression analysis with the DESeq2 package.
|
3 |
+
#
|
4 |
+
# https://bioconductor.org/packages/release/bioc/html/DESeq2.html
|
5 |
+
#
|
6 |
+
|
7 |
+
# Load the library.
|
8 |
+
suppressPackageStartupMessages(library(DESeq2))
|
9 |
+
|
10 |
+
# The name of the file that contains the counts.
|
11 |
+
counts_file = "counts.csv"
|
12 |
+
|
13 |
+
# The sample file is in CSV format and must have the headers "sample" and "condition".
|
14 |
+
design_file = "design.csv"
|
15 |
+
|
16 |
+
# The final result file.
|
17 |
+
output_file = "results.csv"
|
18 |
+
|
19 |
+
# Read the sample file.
|
20 |
+
colData <- read.csv(design_file, stringsAsFactors=F)
|
21 |
+
|
22 |
+
# Turn conditions into factors.
|
23 |
+
colData$condition = factor(colData$condition)
|
24 |
+
|
25 |
+
# The first level should correspond to the first entry in the file!
|
26 |
+
# Required later when building a model.
|
27 |
+
colData$condition = relevel(colData$condition, toString(colData$condition[1]))
|
28 |
+
|
29 |
+
# Isolate the sample names.
|
30 |
+
sample_names <- colData$sample
|
31 |
+
|
32 |
+
# Read the data from the standard input.
|
33 |
+
df = read.csv(counts_file, header=TRUE, row.names=1 )
|
34 |
+
|
35 |
+
# Created rounded integers for the count data
|
36 |
+
countData = round(df[, sample_names])
|
37 |
+
|
38 |
+
# Other columns in the dataframe that are not sample information.
|
39 |
+
otherCols = df[!(names(df) %in% sample_names)]
|
40 |
+
|
41 |
+
#
|
42 |
+
# Running DESeq2
|
43 |
+
#
|
44 |
+
|
45 |
+
# Create DESEq2 dataset.
|
46 |
+
dds = DESeqDataSetFromMatrix(countData=countData, colData=colData, design = ~condition)
|
47 |
+
|
48 |
+
# Run deseq
|
49 |
+
dse = DESeq(dds)
|
50 |
+
|
51 |
+
# Format the results.
|
52 |
+
res = results(dse)
|
53 |
+
|
54 |
+
#
|
55 |
+
# The rest of the code is about formatting the output dataframe.
|
56 |
+
#
|
57 |
+
|
58 |
+
# Turn the DESeq2 results into a data frame.
|
59 |
+
data = cbind(otherCols, data.frame(res))
|
60 |
+
|
61 |
+
# Create the foldChange column.
|
62 |
+
data$foldChange = 2 ^ data$log2FoldChange
|
63 |
+
|
64 |
+
# Rename columns to better reflect reality.
|
65 |
+
names(data)[names(data)=="pvalue"] <-"PValue"
|
66 |
+
names(data)[names(data)=="padj"] <- "FDR"
|
67 |
+
|
68 |
+
# Create a real adjusted pvalue
|
69 |
+
data$PAdj = p.adjust(data$PValue, method="hochberg")
|
70 |
+
|
71 |
+
# Sort the data by PValue to compute false discovery counts.
|
72 |
+
data = data[with(data, order(PValue, -foldChange)), ]
|
73 |
+
|
74 |
+
# Compute the false discovery counts on the sorted table.
|
75 |
+
data$falsePos = 1:nrow(data) * data$FDR
|
76 |
+
|
77 |
+
# Create the additional columns that we wish to present.
|
78 |
+
data$baseMeanA = 1
|
79 |
+
data$baseMeanB = 1
|
80 |
+
|
81 |
+
# Get the normalized counts.
|
82 |
+
normed = counts(dse, normalized=TRUE)
|
83 |
+
|
84 |
+
# Round normalized counts to a single digit.
|
85 |
+
normed = round(normed, 1)
|
86 |
+
|
87 |
+
# Merge the two datasets by row names.
|
88 |
+
total <- merge(data, normed, by=0)
|
89 |
+
|
90 |
+
# Sort again for output.
|
91 |
+
total = total[with(total, order(PValue, -foldChange)), ]
|
92 |
+
|
93 |
+
# Sample names for condition A
|
94 |
+
col_names_A = data.frame(split(colData, colData$condition)[1])[,1]
|
95 |
+
|
96 |
+
# Sample names for condition B
|
97 |
+
col_names_B = data.frame(split(colData, colData$condition)[2])[,1]
|
98 |
+
|
99 |
+
# Create the individual baseMean columns.
|
100 |
+
total$baseMeanA = rowMeans(total[, col_names_A])
|
101 |
+
total$baseMeanB = rowMeans(total[, col_names_B])
|
102 |
+
|
103 |
+
# Bringing some sanity to numbers. Round columns to fewer digits.
|
104 |
+
total$foldChange = round(total$foldChange, 3)
|
105 |
+
total$log2FoldChange = round(total$log2FoldChange, 1)
|
106 |
+
total$baseMean = round(total$baseMean, 1)
|
107 |
+
total$baseMeanA = round(total$baseMeanA, 1)
|
108 |
+
total$baseMeanB = round(total$baseMeanB, 1)
|
109 |
+
total$lfcSE = round(total$lfcSE, 2)
|
110 |
+
total$stat = round(total$stat, 2)
|
111 |
+
total$FDR = round(total$FDR, 4)
|
112 |
+
total$falsePos = round(total$falsePos, 0)
|
113 |
+
|
114 |
+
# Reformat these columns as string.
|
115 |
+
total$PAdj = formatC(total$PAdj, format = "e", digits = 1)
|
116 |
+
total$PValue = formatC(total$PValue, format = "e", digits = 1)
|
117 |
+
|
118 |
+
# Rename the first column.
|
119 |
+
colnames(total)[1] <- "name"
|
120 |
+
|
121 |
+
# Reorganize columns names to make more sense.
|
122 |
+
new_cols = c("name", names(otherCols), "baseMean","baseMeanA","baseMeanB","foldChange",
|
123 |
+
"log2FoldChange","lfcSE","stat","PValue","PAdj", "FDR","falsePos",col_names_A, col_names_B)
|
124 |
+
|
125 |
+
# Slice the dataframe with new columns.
|
126 |
+
total = total[, new_cols]
|
127 |
+
|
128 |
+
# Write the results to the standard output.
|
129 |
+
write.csv(total, file=output_file, row.names=FALSE, quote=FALSE)
|
130 |
+
|
131 |
+
# Inform the user.
|
132 |
+
print("# Tool: DESeq2")
|
133 |
+
print(paste("# Design: ", design_file))
|
134 |
+
print(paste("# Input: ", counts_file))
|
135 |
+
print(paste("# Output: ", output_file))
|
136 |
+
|
137 |
+
|
rnaseq/code/edger.r
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Differential expression analysis with the edgeR package.
|
3 |
+
#
|
4 |
+
# https://bioconductor.org/packages/release/bioc/html/edgeR.html
|
5 |
+
#
|
6 |
+
|
7 |
+
# Load the library
|
8 |
+
library(edgeR)
|
9 |
+
|
10 |
+
# The name of the file that contains the counts.
|
11 |
+
counts_file = "counts.csv"
|
12 |
+
|
13 |
+
# The sample file is in CSV format and must have the headers "sample" and "condition".
|
14 |
+
design_file = "design.csv"
|
15 |
+
|
16 |
+
# The final result file.
|
17 |
+
output_file = "results.csv"
|
18 |
+
|
19 |
+
# Read the sample file.
|
20 |
+
colData <- read.csv(design_file, stringsAsFactors=F)
|
21 |
+
|
22 |
+
# Turn conditions into factors.
|
23 |
+
colData$condition = factor(colData$condition)
|
24 |
+
|
25 |
+
# The first level should correspond to the first entry in the file!
|
26 |
+
# Required when building a model.
|
27 |
+
colData$condition = relevel(colData$condition, toString(colData$condition[1]))
|
28 |
+
|
29 |
+
# Isolate the sample names.
|
30 |
+
sample_names <- colData$sample
|
31 |
+
|
32 |
+
# Read the data from the standard input.
|
33 |
+
df = read.csv(counts_file, header=TRUE, row.names=1 )
|
34 |
+
|
35 |
+
# Created rounded integers for the count data
|
36 |
+
counts = round(df[, sample_names])
|
37 |
+
|
38 |
+
# Other columns in the dataframe that are not sample information.
|
39 |
+
otherCols = df[!(names(df) %in% sample_names)]
|
40 |
+
|
41 |
+
# Using the same naming as in the library.
|
42 |
+
group <- colData$condition
|
43 |
+
|
44 |
+
# Creates a DGEList object from a table of counts and group.
|
45 |
+
dge <- DGEList(counts=counts, group=group)
|
46 |
+
|
47 |
+
# Maximizes the negative binomial conditional common likelihood to estimate a common dispersion value across all genes.
|
48 |
+
dis <- estimateCommonDisp(dge)
|
49 |
+
|
50 |
+
# Estimates tagwise dispersion values by an empirical Bayes method based on weighted conditional maximum likelihood.
|
51 |
+
tag <- estimateTagwiseDisp(dis)
|
52 |
+
|
53 |
+
# Compute genewise exact tests for differences in the means between the groups.
|
54 |
+
etx <- exactTest(tag)
|
55 |
+
|
56 |
+
# Extracts the most differentially expressed genes.
|
57 |
+
etp <- topTags(etx, n=nrow(counts))
|
58 |
+
|
59 |
+
# Get the scale of the data
|
60 |
+
scale = dge$samples$lib.size * dge$samples$norm.factors
|
61 |
+
|
62 |
+
# Get the normalized counts
|
63 |
+
normed = round(t(t(counts)/scale) * mean(scale))
|
64 |
+
|
65 |
+
# Turn the DESeq2 results into a data frame.
|
66 |
+
data = merge(otherCols, etp$table, by="row.names")
|
67 |
+
|
68 |
+
# Create column placeholders.
|
69 |
+
data$baseMean = 1
|
70 |
+
data$baseMeanA = 1
|
71 |
+
data$baseMeanB = 1
|
72 |
+
data$foldChange = 2 ^ data$logFC
|
73 |
+
data$falsePos = 1
|
74 |
+
|
75 |
+
# Rename the column.
|
76 |
+
names(data)[names(data)=="logFC"] <-"log2FoldChange"
|
77 |
+
|
78 |
+
# Compute the adjusted p-value
|
79 |
+
data$PAdj = p.adjust(data$PValue, method="hochberg")
|
80 |
+
|
81 |
+
# Rename the first columns for consistency with other methods.
|
82 |
+
colnames(data)[1] <- "name"
|
83 |
+
|
84 |
+
# Create a merged output that contains the normalized counts.
|
85 |
+
total <- merge(data, normed, by.x='name', by.y="row.names")
|
86 |
+
|
87 |
+
# Sort the data for the output.
|
88 |
+
total = total[with(total, order(PValue, -foldChange)), ]
|
89 |
+
|
90 |
+
# Compute the false discovery counts on the sorted table.
|
91 |
+
data$falsePos = 1:nrow(data) * data$FDR
|
92 |
+
|
93 |
+
# Sample names for condition A
|
94 |
+
col_names_A = data.frame(split(colData, colData$condition)[1])[,1]
|
95 |
+
|
96 |
+
# Sample names for condition B
|
97 |
+
col_names_B = data.frame(split(colData, colData$condition)[2])[,1]
|
98 |
+
|
99 |
+
# Create the individual baseMean columns.
|
100 |
+
total$baseMeanA = rowMeans(total[, col_names_A])
|
101 |
+
total$baseMeanB = rowMeans(total[, col_names_B])
|
102 |
+
total$baseMean = total$baseMeanA + total$baseMeanB
|
103 |
+
|
104 |
+
# Round the numbers
|
105 |
+
total$foldChange = round(total$foldChange, 3)
|
106 |
+
total$FDR = round(total$FDR, 4)
|
107 |
+
total$PAdj = round(total$PAdj, 4)
|
108 |
+
total$logCPM = round(total$logCPM, 1)
|
109 |
+
total$log2FoldChange = round(total$log2FoldChange, 1)
|
110 |
+
total$baseMean = round(total$baseMean, 1)
|
111 |
+
total$baseMeanA = round(total$baseMeanA, 1)
|
112 |
+
total$baseMeanB = round(total$baseMeanB, 1)
|
113 |
+
total$falsePos = round(total$falsePos, 0)
|
114 |
+
|
115 |
+
# Reformat these columns as string.
|
116 |
+
total$PAdj = formatC(total$PAdj, format = "e", digits = 1)
|
117 |
+
total$PValue = formatC(total$PValue, format = "e", digits = 1)
|
118 |
+
|
119 |
+
# Reorganize columns names to make more sense.
|
120 |
+
new_cols = c("name", names(otherCols), "baseMean","baseMeanA","baseMeanB","foldChange",
|
121 |
+
"log2FoldChange","logCPM","PValue","PAdj", "FDR","falsePos",col_names_A, col_names_B)
|
122 |
+
|
123 |
+
# Slice the dataframe with new columns.
|
124 |
+
total = total[, new_cols]
|
125 |
+
|
126 |
+
# Write the result to the standard output.
|
127 |
+
write.csv(total, file=output_file, row.names=FALSE, quote=FALSE)
|
128 |
+
|
129 |
+
# Inform the user.
|
130 |
+
print("# Tool: edgeR")
|
131 |
+
print(paste("# Design: ", design_file))
|
132 |
+
print(paste("# Input: ", counts_file))
|
133 |
+
print(paste("# Output: ", output_file))
|
134 |
+
|
rnaseq/code/filter_counts.r
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Filter a count table to remove entries with low expression.
|
3 |
+
#
|
4 |
+
|
5 |
+
# The sample file is in CSV format and must have the headers "sample" and "condition".
|
6 |
+
sample_file = "samples.csv"
|
7 |
+
|
8 |
+
# The count file that contains the summarized counts.
|
9 |
+
counts_file = "combined_genes.csv"
|
10 |
+
|
11 |
+
# The result file name.
|
12 |
+
output_file = "filtered_counts.csv"
|
13 |
+
|
14 |
+
# Inform the user.
|
15 |
+
print("# Tool: Filter counts")
|
16 |
+
print(paste("# Sample: ", sample_file))
|
17 |
+
print(paste("# Counts: ", counts_file))
|
18 |
+
|
19 |
+
# Read the sample file
|
20 |
+
sd <- read.csv(sample_file, stringsAsFactors=F)
|
21 |
+
|
22 |
+
# Isolate the sample names.
|
23 |
+
sn <- sd$sample
|
24 |
+
|
25 |
+
# Read the count file.
|
26 |
+
df = read.csv(counts_file, stringsAsFactors = FALSE)
|
27 |
+
|
28 |
+
# Create a matrix from the sample names
|
29 |
+
dm = as.matrix(df[,sn])
|
30 |
+
|
31 |
+
#
|
32 |
+
# The filtering condition below selects for at least 10 reads across all conditions.
|
33 |
+
#
|
34 |
+
min_count = 10
|
35 |
+
|
36 |
+
# Apply the filter on the row sums.
|
37 |
+
keep <- (rowSums(dm) >= min_count)
|
38 |
+
|
39 |
+
# Compute reporting counts.
|
40 |
+
count_total = length(keep)
|
41 |
+
count_good = sum(keep)
|
42 |
+
count_removed = count_total - count_good
|
43 |
+
|
44 |
+
# Notify the user on filtering.
|
45 |
+
print (paste("# Minimum:", min_count, "Total:", count_total, "Kept:", count_good, "Removed:", count_removed))
|
46 |
+
|
47 |
+
# Slice the input dataframe with the boolean vector.
|
48 |
+
df = df[keep,]
|
49 |
+
|
50 |
+
# Save the resulting filtered counts.
|
51 |
+
write.csv(df, file=output_file, row.names = FALSE, quote = FALSE)
|
52 |
+
|
53 |
+
# Inform the user.
|
54 |
+
print(paste("# Results:", output_file))
|
55 |
+
|
rnaseq/code/mission-impossible.mk
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# This Makefile perform the Mission Impossible RNA-seq analysis.
|
3 |
+
#
|
4 |
+
#
|
5 |
+
# More info in the Biostar Handbook volume RNA-Seq by Example
|
6 |
+
#
|
7 |
+
|
8 |
+
# The reference genome.
|
9 |
+
REF = refs/genome.fa
|
10 |
+
|
11 |
+
# The file containing transcripts.
|
12 |
+
TRX = refs/transcripts.fa
|
13 |
+
|
14 |
+
# The name of the HISAT2 index.
|
15 |
+
HISAT2_INDEX = idx/genome
|
16 |
+
|
17 |
+
# The name of the salmon index
|
18 |
+
SALMON_INDEX = idx/transcripts.salmon
|
19 |
+
|
20 |
+
# The design file.
|
21 |
+
DESIGN = design.csv
|
22 |
+
|
23 |
+
# These targets are not files.
|
24 |
+
.PHONY: data align results
|
25 |
+
|
26 |
+
# Tell the user to read the source of this Makefile to understand it.
|
27 |
+
usage:
|
28 |
+
@echo "#"
|
29 |
+
@echo "# Use the the source, Luke!"
|
30 |
+
@echo "#"
|
31 |
+
|
32 |
+
# Create the design file and ids.txt file.
|
33 |
+
${DESIGN}:
|
34 |
+
|
35 |
+
# The design file
|
36 |
+
@echo "sample,condition" > design.csv
|
37 |
+
@echo "BORED_1,bored" >> design.csv
|
38 |
+
@echo "BORED_2,bored" >> design.csv
|
39 |
+
@echo "BORED_3,bored" >> design.csv
|
40 |
+
@echo "EXCITED_1,excited" >> design.csv
|
41 |
+
@echo "EXCITED_2,excited" >> design.csv
|
42 |
+
@echo "EXCITED_3,excited" >> design.csv
|
43 |
+
|
44 |
+
# Create the ids.txt file (first column only, delete first line)
|
45 |
+
cat design.csv | cut -f1 -d , | sed 1d > ids.txt
|
46 |
+
|
47 |
+
# Download the data for the analysis.
|
48 |
+
data:
|
49 |
+
# Download the reference genome.
|
50 |
+
wget -nc http://data.biostarhandbook.com/books/rnaseq/data/golden.genome.tar.gz
|
51 |
+
|
52 |
+
# Unpack the reference genome.
|
53 |
+
tar xzvf golden.genome.tar.gz
|
54 |
+
|
55 |
+
# Download the sequencing reads.
|
56 |
+
wget -nc http://data.biostarhandbook.com/books/rnaseq/data/golden.reads.tar.gz
|
57 |
+
|
58 |
+
# Unpack the sequencing reads.
|
59 |
+
tar zxvf golden.reads.tar.gz
|
60 |
+
|
61 |
+
# Build the HISAT2 and salmon index for the reference genomes
|
62 |
+
index: ${REF}
|
63 |
+
mkdir -p idx
|
64 |
+
hisat2-build ${REF} ${HISAT2_INDEX}
|
65 |
+
salmon index -t ${TRX} -i ${SALMON_INDEX}
|
66 |
+
|
67 |
+
# Runs a HISAT2 alignment.
|
68 |
+
align: ${DESIGN} ${HISAT2_INDEX_FILE}
|
69 |
+
mkdir -p bam
|
70 |
+
cat ids.txt | parallel --progress --verbose "hisat2 -x ${HISAT2_INDEX} -1 reads/{}_R1.fq -2 reads/{}_R2.fq | samtools sort > bam/{}.bam"
|
71 |
+
cat ids.txt | parallel -j 1 echo "bam/{}.bam" | \
|
72 |
+
xargs featureCounts -p -a refs/features.gff -o counts.txt
|
73 |
+
RScript code/parse_featurecounts.r
|
74 |
+
|
75 |
+
# Run a SALMON classification.
|
76 |
+
classify: ${DESIGN} ${SALMON_INDEX}
|
77 |
+
mkdir -p salmon
|
78 |
+
cat ids.txt | parallel --progress --verbose "salmon quant -i ${SALMON_INDEX} -l A --validateMappings -1 reads/{}_R1.fq -2 reads/{}_R2.fq -o salmon/{}"
|
79 |
+
RScript code/combine_transcripts.r
|
80 |
+
|
81 |
+
# Runs an analysis on the aligned data.
|
82 |
+
results:
|
83 |
+
mkdir -p res
|
84 |
+
RScript code/deseq2.r
|
85 |
+
RScript code/create_heatmap.r
|
86 |
+
|
87 |
+
# Required software
|
88 |
+
install:
|
89 |
+
@echo ""
|
90 |
+
@echo mamba install wget parallel samtools subread hisat2 salmon bioconductor-tximport bioconductor-edger bioconductor-biomart bioconductor-deseq2 r-gplots
|
91 |
+
@echo ""
|
92 |
+
|
rnaseq/code/parse_featurecounts.r
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Transform feature counts output to simple counts.
|
3 |
+
#
|
4 |
+
|
5 |
+
# The results files to be compared.
|
6 |
+
|
7 |
+
# Count file produced by featurecounts.
|
8 |
+
counts_file <- "counts.txt"
|
9 |
+
|
10 |
+
# The sample file must be in CSV format and must have the headers "sample" and "condition".
|
11 |
+
design_file = "design.csv"
|
12 |
+
|
13 |
+
# The name of the output file.
|
14 |
+
output_file = "counts.csv"
|
15 |
+
|
16 |
+
# Inform the user.
|
17 |
+
print("# Tool: Parse featurecounts")
|
18 |
+
print(paste("# Design: ", design_file))
|
19 |
+
print(paste("# Input: ", counts_file))
|
20 |
+
|
21 |
+
# Read the sample file.
|
22 |
+
sample_data <- read.csv(design_file, stringsAsFactors=F)
|
23 |
+
|
24 |
+
# Turn conditions into factors.
|
25 |
+
sample_data$condition <- factor(sample_data$condition)
|
26 |
+
|
27 |
+
# The first level should correspond to the first entry in the file!
|
28 |
+
# Required when building a model.
|
29 |
+
sample_data$condition <- relevel(sample_data$condition, toString(sample_data$condition[1]))
|
30 |
+
|
31 |
+
# Read the featurecounts output.
|
32 |
+
df <- read.table(counts_file, header=TRUE)
|
33 |
+
|
34 |
+
#
|
35 |
+
# It is absolutely essential that the order of the featurecounts headers is the same
|
36 |
+
# as the order of the sample names in the file! The code below will overwrite the headers!
|
37 |
+
#
|
38 |
+
|
39 |
+
# Subset the dataframe to the columns of interest.
|
40 |
+
counts <- df[ ,c(1, 7:length(names(df)))]
|
41 |
+
|
42 |
+
# Rename the columns
|
43 |
+
names(counts) <- c("name", sample_data$sample)
|
44 |
+
|
45 |
+
# Write the result to the standard output.
|
46 |
+
write.csv(counts, file=output_file, row.names=FALSE, quote=FALSE)
|
47 |
+
|
48 |
+
# Inform the user.
|
49 |
+
print(paste("# Output: ", output_file))
|