Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 19,635 Bytes
ff87372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
---
license: cc-by-sa-4.0
dataset_info:
- config_name: E2H-AMC
  features:
  - name: contest
    dtype: string
  - name: rating
    dtype: float64
  - name: rating_std
    dtype: float64
  - name: rating_quantile
    dtype: float64
  - name: tag
    dtype: string
  - name: subtest
    dtype: string
  - name: year
    dtype: int64
  - name: month
    dtype: string
  - name: index
    dtype: int64
  - name: problem
    dtype: string
  - name: answer
    dtype: string
  - name: solution
    dtype: string
  - name: rating_tag
    dtype: string
  - name: test_tag
    dtype: string
  - name: item_difficulty
    dtype: float64
  - name: unnorm_rating
    dtype: float64
  - name: unnorm_rating_std
    dtype: float64
  - name: unnorm_rating_lower
    dtype: float64
  - name: unnorm_rating_upper
    dtype: float64
  - name: ever_exist
    dtype: bool
  splits:
  - name: train
    num_bytes: 1306215
    num_examples: 1000
  - name: eval
    num_bytes: 3935954
    num_examples: 2975
  download_size: 2811269
  dataset_size: 5242169
- config_name: E2H-ARC
  features:
  - name: rating
    dtype: float64
  - name: rating_std
    dtype: float64
  - name: rating_quantile
    dtype: float64
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: choices
    struct:
    - name: label
      sequence: string
    - name: text
      sequence: string
  - name: answerKey
    dtype: string
  - name: model_avg_acc
    dtype: float64
  - name: unnorm_rating
    dtype: float64
  - name: unnorm_rating_std
    dtype: float64
  splits:
  - name: eval
    num_bytes: 431767
    num_examples: 1172
  download_size: 253021
  dataset_size: 431767
- config_name: E2H-Codeforces
  features:
  - name: contest_id
    dtype: int64
  - name: problem_index
    dtype: string
  - name: rating
    dtype: float64
  - name: rating_std
    dtype: float64
  - name: rating_volatility
    dtype: float64
  - name: rating_quantile
    dtype: float64
  - name: tag
    dtype: string
  - name: detailed_tag
    dtype: string
  - name: problem_name
    dtype: string
  - name: problem_main
    dtype: string
  - name: problem_note
    dtype: string
  - name: input_spec
    dtype: string
  - name: output_spec
    dtype: string
  - name: sample_inputs
    sequence: string
  - name: sample_outputs
    sequence: string
  - name: inputs
    sequence: string
  - name: answers
    sequence: string
  - name: input_output
    struct:
    - name: inputs
      sequence: string
    - name: outputs
      sequence: string
  - name: solution_id_0
    dtype: int64
  - name: solution_0
    dtype: string
  - name: outputs_0
    sequence: string
  - name: solution_id_1
    dtype: int64
  - name: solution_1
    dtype: string
  - name: outputs_1
    sequence: string
  - name: solution_id_2
    dtype: int64
  - name: solution_2
    dtype: string
  - name: outputs_2
    sequence: string
  - name: unnorm_rating
    dtype: float64
  - name: unnorm_rating_std
    dtype: float64
  - name: unnorm_rating_volatility
    dtype: float64
  - name: reference_rating
    dtype: float64
  - name: original_tags
    sequence: string
  - name: ever_exist
    dtype: bool
  splits:
  - name: train
    num_bytes: 25286548
    num_examples: 3663
  - name: eval
    num_bytes: 52688262
    num_examples: 4000
  download_size: 33577472
  dataset_size: 77974810
- config_name: E2H-GSM8K
  features:
  - name: rating
    dtype: float64
  - name: rating_std
    dtype: float64
  - name: rating_quantile
    dtype: float64
  - name: question
    dtype: string
  - name: answer
    dtype: string
  - name: model_avg_acc
    dtype: float64
  - name: unnorm_rating
    dtype: float64
  - name: unnorm_rating_std
    dtype: float64
  splits:
  - name: eval
    num_bytes: 777044
    num_examples: 1319
  download_size: 475944
  dataset_size: 777044
- config_name: E2H-Lichess
  features:
  - name: puzzle_id
    dtype: string
  - name: rating
    dtype: float64
  - name: rating_std
    dtype: float64
  - name: rating_quantile
    dtype: float64
  - name: tag
    dtype: string
  - name: fen
    dtype: string
  - name: pgn
    dtype: string
  - name: annotated_pgn
    dtype: string
  - name: uci_seq
    dtype: string
  - name: san_seq
    dtype: string
  - name: answer_san
    dtype: string
  - name: answer_uci
    dtype: string
  - name: init_num_moves
    dtype: int64
  - name: player
    dtype: string
  - name: popularity_score
    dtype: int64
  - name: puzzle_num_plays
    dtype: int64
  - name: motif_tags
    sequence: string
  - name: phase_tags
    sequence: string
  - name: mate_tags
    sequence: string
  - name: special_move_tags
    sequence: string
  - name: game_origin_tags
    sequence: string
  - name: opening_tags
    sequence: string
  - name: game_hash
    dtype: string
  - name: game_url
    dtype: string
  - name: game_pgn
    dtype: string
  - name: game_annotated_pgn
    dtype: string
  - name: unnorm_rating
    dtype: int64
  - name: unnorm_rating_std
    dtype: int64
  - name: previous_fen
    dtype: string
  - name: last_move_uci
    dtype: string
  splits:
  - name: train
    num_bytes: 633749139
    num_examples: 71763
  - name: eval
    num_bytes: 44154200
    num_examples: 5000
  download_size: 297840777
  dataset_size: 677903339
- config_name: E2H-Winogrande
  features:
  - name: rating
    dtype: float64
  - name: rating_std
    dtype: float64
  - name: rating_quantile
    dtype: float64
  - name: sentence
    dtype: string
  - name: option1
    dtype: string
  - name: option2
    dtype: string
  - name: answer
    dtype: string
  - name: model_avg_acc
    dtype: float64
  - name: unnorm_rating
    dtype: float64
  - name: unnorm_rating_std
    dtype: float64
  splits:
  - name: eval
    num_bytes: 224999
    num_examples: 1267
  download_size: 141808
  dataset_size: 224999
configs:
- config_name: E2H-AMC
  data_files:
  - split: train
    path: E2H-AMC/train-*
  - split: eval
    path: E2H-AMC/eval-*
- config_name: E2H-ARC
  data_files:
  - split: eval
    path: E2H-ARC/eval-*
- config_name: E2H-Codeforces
  data_files:
  - split: train
    path: E2H-Codeforces/train-*
  - split: eval
    path: E2H-Codeforces/eval-*
- config_name: E2H-GSM8K
  data_files:
  - split: eval
    path: E2H-GSM8K/eval-*
- config_name: E2H-Lichess
  data_files:
  - split: train
    path: E2H-Lichess/train-*
  - split: eval
    path: E2H-Lichess/eval-*
- config_name: E2H-Winogrande
  data_files:
  - split: eval
    path: E2H-Winogrande/eval-*
---

# Easy2Hard-Bench

<div align="center">
  <img src="./img/hf_data.png" alt="Logo" width="100%">
</div>

## Dataset Description
[Easy2Hard-Bench](https://arxiv.org/abs) is a benchmark consisting with 6 datasets in different domain (mathematics, programming, chess, and various reasoning tasks). The problems from each dataset are labeled with continuous-valued difficulty levels.

|                | Topic                   | Source          | Statistics Used to Infer Difficulty                                          | Source Type | Estimation Method |
|----------------|-------------------------|-----------------|------------------------------------------------------------------------------|-------------|-------------------|
| E2H-AMC        | Math Competitions       | AMC, AIME, HMMT | Item difficulties                                                            | Human       | IRT               |
| E2H-Codeforces | Competitive Programming | Codeforces      | Submission status, contestant ratings                                         | Human       | Glicko-2          |
| E2H-Lichess    | Chess Puzzles           | Lichess         | Player ratings, puzzle ratings                                                | Human       | Glicko-2          |
| E2H-GSM8K      | Math Word Problems      | GSM8K           | Sample-wise evaluation results of thousands of LLMs on  Open LLM Leaderboard | LLMs        | IRT               |
| E2H-ARC        | Natural Science QA      | ARC             | Sample-wise evaluation results of thousands of LLMs on  Open LLM Leaderboard | LLMs        | IRT               |
| E2H-Winograde  | Commonsense Reasoning   | Winogrande      | Sample-wise evaluation results of thousands of LLMs on  Open LLM Leaderboard | LLMs        | IRT               |

This can be used to profile the ability of language models over varying difficulties and explore the generalization of LLMs from easy to hard.

## Languages

The datasets are mainly in English. Some texts are LaTeX-rendered. The code solutions in E2H-Codeforces are in Python. The games in E2H-Lichess are given in serveral prevalent notations (PGN, UCI, FEN).  

## Dataset Structure

```python
from datasets import load_dataset

load_dataset("furonghuang-lab/Easy2Hard-Bench", "E2H-AMC")
DatasetDict({
    train: Dataset({
        features: ['contest', 'rating', 'rating_std', 'rating_quantile', 'tag', 'subtest', 'year', 'month', 'index', 'problem', 'answer', 'solution', 'rating_tag', 'test_tag', 'item_difficulty', 'unnorm_rating', 'unnorm_rating_std', 'unnorm_rating_lower', 'unnorm_rating_upper', 'ever_exist'],
        num_rows: 1000
    })
    eval: Dataset({
        features: ['contest', 'rating', 'rating_std', 'rating_quantile', 'tag', 'subtest', 'year', 'month', 'index', 'problem', 'answer', 'solution', 'rating_tag', 'test_tag', 'item_difficulty', 'unnorm_rating', 'unnorm_rating_std', 'unnorm_rating_lower', 'unnorm_rating_upper', 'ever_exist'],
        num_rows: 2975
    })
})


load_dataset("furonghuang-lab/Easy2Hard-Bench", "E2H-Codeforces")
DatasetDict({
    train: Dataset({
        features: ['contest_id', 'problem_index', 'rating', 'rating_std', 'rating_volatility', 'rating_quantile', 'tag', 'detailed_tag', 'problem_name', 'problem_main', 'problem_note', 'input_spec', 'output_spec', 'sample_inputs', 'sample_outputs', 'inputs', 'answers', 'input_output', 'solution_id_0', 'solution_0', 'outputs_0', 'solution_id_1', 'solution_1', 'outputs_1', 'solution_id_2', 'solution_2', 'outputs_2', 'unnorm_rating', 'unnorm_rating_std', 'unnorm_rating_volatility', 'reference_rating', 'original_tags', 'ever_exist'],
        num_rows: 3663
    })
    eval: Dataset({
        features: ['contest_id', 'problem_index', 'rating', 'rating_std', 'rating_volatility', 'rating_quantile', 'tag', 'detailed_tag', 'problem_name', 'problem_main', 'problem_note', 'input_spec', 'output_spec', 'sample_inputs', 'sample_outputs', 'inputs', 'answers', 'input_output', 'solution_id_0', 'solution_0', 'outputs_0', 'solution_id_1', 'solution_1', 'outputs_1', 'solution_id_2', 'solution_2', 'outputs_2', 'unnorm_rating', 'unnorm_rating_std', 'unnorm_rating_volatility', 'reference_rating', 'original_tags', 'ever_exist'],
        num_rows: 4000
    })
})

load_dataset("furonghuang-lab/Easy2Hard-Bench", "E2H-Lichess")
DatasetDict({
    train: Dataset({
        features: ['puzzle_id', 'rating', 'rating_std', 'rating_quantile', 'tag', 'fen', 'pgn', 'annotated_pgn', 'uci_seq', 'san_seq', 'answer_san', 'answer_uci', 'init_num_moves', 'player', 'popularity_score', 'puzzle_num_plays', 'motif_tags', 'phase_tags', 'mate_tags', 'special_move_tags', 'game_origin_tags', 'opening_tags', 'game_hash', 'game_url', 'game_pgn', 'game_annotated_pgn', 'unnorm_rating', 'unnorm_rating_std', 'previous_fen', 'last_move_uci'],
        num_rows: 71763
    })
    eval: Dataset({
        features: ['puzzle_id', 'rating', 'rating_std', 'rating_quantile', 'tag', 'fen', 'pgn', 'annotated_pgn', 'uci_seq', 'san_seq', 'answer_san', 'answer_uci', 'init_num_moves', 'player', 'popularity_score', 'puzzle_num_plays', 'motif_tags', 'phase_tags', 'mate_tags', 'special_move_tags', 'game_origin_tags', 'opening_tags', 'game_hash', 'game_url', 'game_pgn', 'game_annotated_pgn', 'unnorm_rating', 'unnorm_rating_std', 'previous_fen', 'last_move_uci'],
        num_rows: 5000
    })
})

load_dataset("furonghuang-lab/Easy2Hard-Bench", "E2H-GSM8K")
DatasetDict({
    eval: Dataset({
        features: ['rating', 'rating_std', 'rating_quantile', 'question', 'answer', 'model_avg_acc', 'unnorm_rating', 'unnorm_rating_std'],
        num_rows: 1319
    })
})

load_dataset("furonghuang-lab/Easy2Hard-Bench", "E2H-ARC")
DatasetDict({
    eval: Dataset({
        features: ['rating', 'rating_std', 'rating_quantile', 'id', 'question', 'choices', 'answerKey', 'model_avg_acc', 'unnorm_rating', 'unnorm_rating_std'],
        num_rows: 1172
    })
})
```

### Data Fields
#### E2H-AMC
|Field|Type|Description|
|---|---|---|
|contest|string|name of the contest|
|rating|float|estimated difficulty|
|rating_std|float|standard deviation of estimated difficulty|
|rating_quantile|float|quantile of estimated difficulty|
|tag|string|type of the contest|
|subtest|string|name of the subtest|
|year|int|year of the contest|
|month|string|month of the contest|
|index|string|problem index in the subtest|
|problem|string|textual description of problem|
|answer|string|answer of problem|
|solution|string|textual solution of the problem|
|rating_tag|string|tag about problem rating|
|test_tag|string|tag about test type|
|item difficulty|float|item difficulty of the problem|
|unnorm_rating|float|unnormalized estimated difficulty|
|unnorm_rating_std|float|standard deviation of unnormalized estimated difficulty|
|unnorm_rating_lower|float|lower threshold of difficulty suggested by AoPS|
|unnorm_rating_upper|float|upper threshold of difficulty suggested by AoPS|
|ever_exist|bool|whether the problem exists in the MATH dataset|

#### E2H-Codeforces
|Field|Type|Description|
|---|---|---|
|contest_id|int|Codeforce contest id|
|problem_index|string|problem index in the contest|
|rating|float|estimated difficulty|
|rating_std|float|standard deviation of estimated difficulty|
|rating_volatility|float|volatility of estimated difficulty|
|rating_quantile|float|quantile of estimated difficulty|
|tag|string|type of the problem|
|detailed_tag|string|detailed type of the problem|
|problem_name|string|name of the problem|
|problem_main|string|main text of the problem|
|problem_note|string|note of the problem|
|input_spec|string|input specifications of the problem|
|output_spec|string|output specifications of the problem|
|sample_inputs|string|example inputs of the problem|
|sample_outputs|string|example outputs of the problem|
|inputs|string|inputs in the test cases|
|answers|string|standard outputs in the test cases|
|input_output|string|standard inputs and outputs in the test cases|
|outputs|string|standard outputs in the test cases|
|solution_id_0|int|Codeforces submission id of selected solution 0|
|solution_0|string|source code of selected solution 0|
|outputs_0|string|outputs of selected solution 0|
|solution_id_1|int|Codeforces submission id of seleted solution 1|
|solution_1|string|source code of selected solution 1|
|outputs_1|string|outputs of selected solution 1|
|solution_id_2|int|Codeforces submission id of selected solution 2|
|solution_2|string|source code of selected solution 2|
|outputs_2|string|outputs of selected solution 2|
|unnorm_rating|float|unnormalized estimated difficulty|
|unnorm_rating_std|float|standard deviation of unnormalized estimated difficulty|
|unnorm_rating_volatility|float|volatility of unnormalized estimated difficulty|
|reference_rating|float|coarse reference difficulty rating on Codeforces|
|original_tags|string|original tags on Codeforces|
|ever_exist|bool|whether the problem exists in the APPS dataset|

If the number of solutions is less than 3, the data fields related to Solution 1 and 2 can be empty.

#### E2H-Lichess
|Field|Type|Description|
|---|---|---|
|puzzle_id|string|id of the puzzle on Lichess|
|rating|float|estimated difficulty|
|rating_std|float|standard deviation of estimated difficulty|
|rating_quantile|float|quantile of estimated difficulty|
|tag|string|type of the puzzle|
|fen|string|Forsyth–Edwards notation (FEN) of the puzzle|
|pgn|string|portable game notation (PGN) of the puzzle|
|annotated_pgn|string|annotated portable game notation (PGN) of the puzzle|
|uci_seq|string|universal chess interface (UCI) notation of the puzzle|
|san_seq|string|standard algebraic notation (SAN) of the puzzle|
|answer_san|string|standard algebraic notation (SAN) of the answer|
|answer_uci|string|universal chess interface (UCI) notation of answer|
|init_num_moves|int|number of moves from initial chess board to form the puzzle|
|player|string|side to solve the puzzle, either `black` or `white`|
|populartity_score|int|popularity score of the puzzle on Lichess|
|puzzle_num_plays|int|number of times the puzzle is played on Lichess|
|motif_tags|string|tags about the puzzle motifs|
|phase_tags|string|tags about the phase of the puzzle|
|mate_tags|string|tags about the type of checkmate|
|special_move_tags|string|tags about special moves involved in the puzzle|
|game_origin_tags|string|tags about the origin of the puzzle|
|opening_tags|string|tags about the type of opening|
|game_hash|string|hash code of the corresponding game on Lichess|
|game_url|string|URL link of the corresponding game on Lichess|
|game_pgn|string|portable game notation (PGN) of the entire game|
|game_annotated_pgn|string|annotated portable game notation (PGN) of the entire game|
|unnorm_rating|float|unnormalized estimated difficulty|
|unnorm_rating_std|float|standard deviation of unnormalized estimated difficulty|
|previous_fen|string|Forsyth–Edwards notation (FEN) of the puzzle before last move by the opponent|
|last_move_uci|string|universal chess interface (UCI) notation of last move by the opponent|

#### E2H-GSM8K, E2H-ARC, E2H-Winogrande 
Besides the data fields from the original datasets, all of these three datasets have the following difficulty-realted data fields:

|Field|Type|Description|
|---|---|---|
|rating|float|estimated difficulty|
|rating_std|float|standard deviation of estimated difficulty|
|rating_quantile|float|quantile of estimated difficulty|
|model_avg_acc|float|average accuracy of selected models on the Open LLM Leaderboard|
|unnorm_rating|float|unnormalized estimated difficulty|
|unnorm_rating_std|float|standard deviation of unnormalized estimated difficulty|

### Data Splits

For the newly crafted datasets, E2H-AMC, E2H-Codeforces and E2H-Lichess, all of them contain a train and evaluation splits.

For the datasets, E2H-GSM8K, E2H-ARC and E2H-Winogrande, all of them only have evaluation splits with size of that in the original dataset.

|                | Train Size | Eval Size |
|----------------|-----------:|----------:|
| E2H-AMC        |      1,000 |     2,975 |
| E2H-Codeforces |      3,663 |     4,000 |
| E2H-Lichess    |     71,763 |     5,000 |
| E2H-GSM8K      |       N.A. |     1,319 |
| E2H-ARC        |       N.A. |     1,172 |
| E2H-Winogrande |       N.A. |     1,267 |

### Data Difficulty Distribution

<div align="center">
  <img src="./img/hf_distribution.png" alt="Logo" width="100%">
</div>

## Dataset Creation

- E2H-AMC: We collect the problems from AMC 8/10/12, AIME I/II and HMMT Feb/Nov, and estimate the difficulties by IRT based on AoPS rating of competitions and item difficulties from the official reports. 
- E2H-Codeforces: We collect the problems from contests on Codeforces, and estimate the difficulties by Glicko-2 based on contestants' ratings and submission status from Codeforces.
- E2H-Lichess: We collect the one-step puzzle from Lichess, and estimate the difficulties by Glicko-2 based on puzzle ratings and player ratings from Lichess.
- E2H-GSM8K, E2H-ARC, E2H-Winogrande: We inherit the original datasets, and estimate the dififculties by IRT based on sample-wise evluation results of LLMs on Open LLM leaderboard.


## Citation Information

```
TBD
```