File size: 5,128 Bytes
a6974e5 cc75a93 1d767ee a6974e5 84038cd cc75a93 8fed921 cc75a93 5cf5163 cc75a93 b09d77d be5d9cf 1361b30 b09d77d cc75a93 be5d9cf 1361b30 b09d77d be5d9cf 1361b30 b09d77d be5d9cf 1361b30 cc75a93 4d4eb24 c1e6bdf 2b71d51 c1e6bdf cc75a93 50d0ca2 cc75a93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
---
license: apache-2.0
task_categories:
- text-generation
- text2text-generation
language:
- en
tags:
- code
pretty_name: BabelCode MBPP
size_categories:
- 1K<n<10K
source_datasets:
- original
- extended|mbpp
---
# Dataset Card for BabelCode MBPP
## Dataset Description
- **Repository:** [GitHub Repository](https://github.com/google-research/babelcode)
- **Paper:** [Measuring The Impact Of Programming Language Distribution](https://arxiv.org/abs/2302.01973)
### How To Use This Dataset
To use this dataset, you can either use the original [BabelCode Repo](https://github.com/google-research/babelcode), or you can use the [`bc_eval` Metric](https://huggingface.co/spaces/gabeorlanski/bc_eval).
### Dataset Summary
The BabelCode-MBPP (BC-MBPP) dataset converts the [MBPP dataset released by Google](https://arxiv.org/abs/2108.07732) to 16 programming languages.
### Supported Tasks and Leaderboards
### Languages
BC-MBPP supports:
* C++
* C#
* Dart
* Go
* Haskell
* Java
* Javascript
* Julia
* Kotlin
* Lua
* PHP
* Python
* R
* Rust
* Scala
* TypeScript
## Dataset Structure
```python
>>> from datasets import load_dataset
>>> load_dataset("gabeorlanski/bc-mbpp")
DatasetDict({
train: Dataset({
features: ['qid', 'title', 'language', 'text', 'signature_with_docstring', 'signature', 'arguments', 'solution', 'question_info'],
num_rows: 5308
})
test: Dataset({
features: ['qid', 'title', 'language', 'text', 'signature_with_docstring', 'signature', 'arguments', 'solution', 'question_info'],
num_rows: 6989
})
validation: Dataset({
features: ['qid', 'title', 'language', 'text', 'signature_with_docstring', 'signature', 'arguments', 'solution', 'question_info'],
num_rows: 1216
})
prompt: Dataset({
features: ['qid', 'title', 'language', 'text', 'signature_with_docstring', 'signature', 'arguments', 'solution', 'question_info'],
num_rows: 160
})
})
```
### Data Fields
- `qid`: The question ID used for running tests.
- `title`: The title of the question.
- `language`: The programming language of the example.
- `text`: The description of the problem.
- `signature`: The signature for the problem.
- `signature_with_docstring`: The signature with the adequately formatted docstring for the given problem.
- `arguments`: The arguments of the problem.
- `solution`: The solution in Python.
- `question_info`: The dict of information used for executing predictions. It has the keys:
- `test_code`: The raw testing script used in the language. If you want to use this, replace `PLACEHOLDER_FN_NAME` (and `PLACEHOLDER_CLS_NAME` if needed) with the corresponding entry points. Next, replace `PLACEHOLDER_CODE_BODY` with the postprocessed prediction.
- `test_list`: The raw json line of the list of tests for the problem. To load them, use `json.loads`
- `test_case_ids`: The list of test case ids for the problem. These are used to determine if a prediction passes or not.
- `entry_fn_name`: The function's name to use an entry point.
- `entry_cls_name`: The class name to use an entry point.
- `commands`: The commands used to execute the prediction. Includes a `__FILENAME__` hole that is replaced with the filename.
- `timeouts`: The default timeouts for each command.
- `extension`: The extension for the prediction file.
**NOTE:** If you want to use a different function name (or class name for languages that require class names) for the prediction, you must update the `entry_fn_name` and `entry_cls_name` accordingly. For example, if you have the original question with `entry_fn_name` of `add`, but want to change it to `f`, you must update `ds["question_info"]["entry_fn_name"]` to `f`:
```python
>>> from datasets import load_dataset
>>> ds = load_dataset("gabeorlanski/bc-mbpp")['test']
>>> # The original entry_fn_name
>>> ds[0]['question_info']['entry_fn_name']
removeOcc
>>> # You MUST update the corresponding entry_fn_name
>>> ds[0]['question_info']['entry_fn_name'] = 'f'
>>> ds[0]['question_info']['entry_fn_name']
f
```
## Dataset Creation
See section 2 of the [BabelCode Paper](https://arxiv.org/abs/2302.01973) to learn more about how the datasets are translated.
Information on how the original MBPP was curated is located [here](https://huggingface.co/datasets/mbpp).
### Dataset Curators
Google Research
### Licensing Information
CC-BY-4.0
### Citation Information
```
@article{orlanski2023measuring,
title={Measuring The Impact Of Programming Language Distribution},
author={Orlanski, Gabriel and Xiao, Kefan and Garcia, Xavier and Hui, Jeffrey and Howland, Joshua and Malmaud, Jonathan and Austin, Jacob and Singh, Rishah and Catasta, Michele},
journal={arXiv preprint arXiv:2302.01973},
year={2023}
}
@article{Austin2021ProgramSW,
title={Program Synthesis with Large Language Models},
author={Jacob Austin and Augustus Odena and Maxwell Nye and Maarten Bosma and Henryk Michalewski and David Dohan and Ellen Jiang and Carrie J. Cai and Michael Terry and Quoc V. Le and Charles Sutton},
journal={ArXiv},
year={2021},
volume={abs/2108.07732}
}
``` |