# coding=utf-8 # Copyright 2020 HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Inquisitive Question Generation for High Level Text Comprehension""" import itertools import datasets _CITATION = """\ @InProceedings{ko2020inquisitive, author = {Ko, Wei-Jen and Chen, Te-Yuan and Huang, Yiyan and Durrett, Greg and Li, Junyi Jessy}, title = {Inquisitive Question Generation for High Level Text Comprehension}, booktitle = {Proceedings of EMNLP}, year = {2020}, } """ _DESCRIPTION = """\ A dataset of about 20k questions that are elicited from readers as they naturally read through a document sentence by sentence. \ Compared to existing datasets, INQUISITIVE questions target more towards high-level (semantic and discourse) comprehension of text. \ Because these questions are generated while the readers are processing the information, the questions directly communicate gaps between \ the reader’s and writer’s knowledge about the events described in the text, and are not necessarily answered in the document itself. \ This type of question reflects a real-world scenario: if one has questions during reading, some of them are answered by the text later on, \ the rest are not, but any of them would help further the reader’s understanding at the particular point when they asked it. \ This resource could enable question generation models to simulate human-like curiosity and cognitive processing, which may open up a new realm of applications. """ _ARTICLES_URL = "https://github.com/wjko2/INQUISITIVE/raw/42f9b22b2d6b7159ddcbf0b96ecf86997a1d77be/articles.tgz" _QUESTIONS_URL = "https://github.com/wjko2/INQUISITIVE/raw/master/questions.txt" ALL_ARTICLE_IDS = list(range(1, 1501)) DEV_ARTICLE_IDS = list(itertools.chain(range(1, 101), range(1051, 1101))) TEST_ARTICLE_IDS = list(itertools.chain(range(101, 151), range(501, 551), range(1101, 1151))) DEV_AND_TEST_IDS = DEV_ARTICLE_IDS + TEST_ARTICLE_IDS TRAIN_ARTICLE_IDS = [id_ for id_ in ALL_ARTICLE_IDS if id_ not in DEV_AND_TEST_IDS] class InquisitiveQgConfig(datasets.BuilderConfig): """BuilderConfig for INQUISITIVE.""" def __init__(self, **kwrags): """BuilderConfig for INQUISITIVE. Args: **kwargs: keyword arguments forwarded to super. """ super(InquisitiveQgConfig, self).__init__(**kwrags) class InquisitiveQg(datasets.GeneratorBasedBuilder): """Inquisitive Question Generation for High Level Text Comprehension""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ InquisitiveQgConfig(name="plain_text", version=datasets.Version("1.0.0", ""), description="plain_text"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("int32"), "article_id": datasets.Value("int32"), "article": datasets.Value("string"), "sentence_id": datasets.Value("int32"), "sentence": datasets.Value("string"), "span": datasets.Value("string"), "question": datasets.Value("string"), "span_start_position": datasets.Value("int32"), "span_end_position": datasets.Value("int32"), } ), supervised_keys=None, homepage="https://github.com/wjko2/INQUISITIVE", citation=_CITATION, ) def _split_generators(self, dl_manager): questions_file = dl_manager.download(_QUESTIONS_URL) archive = dl_manager.download(_ARTICLES_URL) articles_dir = "article" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "articles_dir": articles_dir, "questions_file": questions_file, "article_ids": TRAIN_ARTICLE_IDS, "files": dl_manager.iter_archive(archive), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "articles_dir": articles_dir, "questions_file": questions_file, "article_ids": DEV_ARTICLE_IDS, "files": dl_manager.iter_archive(archive), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "articles_dir": articles_dir, "questions_file": questions_file, "article_ids": TEST_ARTICLE_IDS, "files": dl_manager.iter_archive(archive), }, ), ] def _generate_examples(self, articles_dir, questions_file, article_ids, files): articles = {} for path, f in files: articles[path] = f.read().decode("utf-8") with open(questions_file, encoding="utf-8") as f: questions_counter = 0 rows = f.readlines() for i, row in enumerate(rows): if i == 0: continue # skip header line row = row.strip() cols = row.split("\t") article_id = int(cols[0]) if article_id not in article_ids: continue fname = str(article_id).rjust(4, "0") + ".txt" article_path = articles_dir + "/" + fname article = articles[article_path] id_ = str(questions_counter) example = { "article_id": article_id, "sentence_id": int(cols[1]), "sentence": cols[2], "span": cols[3], "question": cols[4], "span_start_position": cols[5], "span_end_position": cols[6], "id": id_, "article": article, } yield id_, example questions_counter += 1