albertvillanova HF staff commited on
Commit
5ee2de3
1 Parent(s): 6958faa

Delete loading script

Browse files
Files changed (1) hide show
  1. aquamuse.py +0 -154
aquamuse.py DELETED
@@ -1,154 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)"""
16
-
17
-
18
- import os
19
- from os import listdir
20
- from os.path import isfile, join
21
-
22
- import tensorflow as tf
23
-
24
- import datasets
25
-
26
-
27
- _CITATION = """\
28
- @misc{kulkarni2020aquamuse,
29
- title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization},
30
- author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie},
31
- year={2020},
32
- eprint={2010.12694},
33
- archivePrefix={arXiv},
34
- primaryClass={cs.CL}
35
- }
36
- """
37
-
38
- _DESCRIPTION = """AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)"""
39
-
40
- _HOMEPAGE = "https://github.com/google-research-datasets/aquamuse"
41
-
42
- _LICENSE = ""
43
-
44
- zipped_data_url = "https://github.com/google-research-datasets/aquamuse/raw/main/v2/aquamuse_v2.zip"
45
-
46
-
47
- class Aquamuse(datasets.GeneratorBasedBuilder):
48
- """Dataset for Query-based Multi-Document Summarization"""
49
-
50
- VERSION = datasets.Version("2.3.0")
51
-
52
- BUILDER_CONFIGS = [
53
- datasets.BuilderConfig(
54
- name="abstractive", version=VERSION, description="Abstractive query-based multi-document summarization"
55
- ),
56
- datasets.BuilderConfig(
57
- name="extractive", version=VERSION, description="Extractive query-based multi-document summarization"
58
- ),
59
- ]
60
-
61
- # DEFAULT_CONFIG_NAME = "abstractive" # It's not mandatory to have a default configuration. Just use one if it make sense.
62
-
63
- def _info(self):
64
- features = datasets.Features(
65
- {
66
- "query": datasets.Value("string"),
67
- "input_urls": datasets.Sequence(datasets.Value("string")),
68
- "target": datasets.Value("string"),
69
- }
70
- )
71
-
72
- return datasets.DatasetInfo(
73
- description=_DESCRIPTION,
74
- features=features,
75
- supervised_keys=None,
76
- homepage=_HOMEPAGE,
77
- license=_LICENSE,
78
- citation=_CITATION,
79
- )
80
-
81
- def _split_generators(self, dl_manager):
82
- """Returns SplitGenerators."""
83
-
84
- if self.config.name == "abstractive":
85
- data_dir = dl_manager.download_and_extract(zipped_data_url)
86
- return [
87
- datasets.SplitGenerator(
88
- name=datasets.Split.TRAIN,
89
- # These kwargs will be passed to _generate_examples
90
- gen_kwargs={
91
- "filepath": os.path.join(data_dir, "v2.3/abstractive/train/"),
92
- "split": "train",
93
- },
94
- ),
95
- datasets.SplitGenerator(
96
- name=datasets.Split.TEST,
97
- # These kwargs will be passed to _generate_examples
98
- gen_kwargs={
99
- "filepath": os.path.join(data_dir, "v2.3/abstractive/test/"),
100
- "split": "test",
101
- },
102
- ),
103
- datasets.SplitGenerator(
104
- name=datasets.Split.VALIDATION,
105
- # These kwargs will be passed to _generate_examples
106
- gen_kwargs={
107
- "filepath": os.path.join(data_dir, "v2.3/abstractive/dev/"),
108
- "split": "dev",
109
- },
110
- ),
111
- ]
112
-
113
- else:
114
- data_dir = dl_manager.download_and_extract(zipped_data_url)
115
- return [
116
- datasets.SplitGenerator(
117
- name=datasets.Split.TRAIN,
118
- # These kwargs will be passed to _generate_examples
119
- gen_kwargs={
120
- "filepath": os.path.join(data_dir, "v2.3/extractive/train/"),
121
- "split": "train",
122
- },
123
- ),
124
- datasets.SplitGenerator(
125
- name=datasets.Split.TEST,
126
- # These kwargs will be passed to _generate_examples
127
- gen_kwargs={
128
- "filepath": os.path.join(data_dir, "v2.3/extractive/test/"),
129
- "split": "test",
130
- },
131
- ),
132
- datasets.SplitGenerator(
133
- name=datasets.Split.VALIDATION,
134
- # These kwargs will be passed to _generate_examples
135
- gen_kwargs={
136
- "filepath": os.path.join(data_dir, "v2.3/extractive/dev/"),
137
- "split": "dev",
138
- },
139
- ),
140
- ]
141
-
142
- def _generate_examples(self, filepath, split):
143
- """Yields examples."""
144
- filepath = [join(filepath, f) for f in listdir(filepath) if isfile(join(filepath, f))]
145
- filepath = sorted(filepath)
146
- raw_dataset = tf.data.TFRecordDataset(filepath)
147
- for id_, raw_record in enumerate(raw_dataset):
148
- example = tf.train.Example()
149
- example.ParseFromString(raw_record.numpy())
150
- yield id_, {
151
- "query": example.features.feature["query"].bytes_list.value[0].decode(),
152
- "input_urls": example.features.feature["input_urls"].bytes_list.value[0].decode().split("<EOD>"),
153
- "target": example.features.feature["target"].bytes_list.value[0].decode(),
154
- }