Datasets:
Commit
•
8f3028a
1
Parent(s):
df0c4ed
Convert dataset to Parquet
Browse filesConvert dataset to Parquet.
README.md
CHANGED
@@ -39,16 +39,16 @@ dataset_info:
|
|
39 |
dtype: string
|
40 |
splits:
|
41 |
- name: train
|
42 |
-
num_bytes:
|
43 |
num_examples: 6253
|
44 |
- name: test
|
45 |
-
num_bytes:
|
46 |
num_examples: 811
|
47 |
- name: validation
|
48 |
-
num_bytes:
|
49 |
num_examples: 661
|
50 |
-
download_size:
|
51 |
-
dataset_size:
|
52 |
- config_name: extractive
|
53 |
features:
|
54 |
- name: query
|
@@ -69,6 +69,15 @@ dataset_info:
|
|
69 |
num_examples: 661
|
70 |
download_size: 7755161
|
71 |
dataset_size: 7967199
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
---
|
73 |
|
74 |
# Dataset Card for AQuaMuSe
|
|
|
39 |
dtype: string
|
40 |
splits:
|
41 |
- name: train
|
42 |
+
num_bytes: 6434893
|
43 |
num_examples: 6253
|
44 |
- name: test
|
45 |
+
num_bytes: 843165
|
46 |
num_examples: 811
|
47 |
- name: validation
|
48 |
+
num_bytes: 689093
|
49 |
num_examples: 661
|
50 |
+
download_size: 5167854
|
51 |
+
dataset_size: 7967151
|
52 |
- config_name: extractive
|
53 |
features:
|
54 |
- name: query
|
|
|
69 |
num_examples: 661
|
70 |
download_size: 7755161
|
71 |
dataset_size: 7967199
|
72 |
+
configs:
|
73 |
+
- config_name: abstractive
|
74 |
+
data_files:
|
75 |
+
- split: train
|
76 |
+
path: abstractive/train-*
|
77 |
+
- split: test
|
78 |
+
path: abstractive/test-*
|
79 |
+
- split: validation
|
80 |
+
path: abstractive/validation-*
|
81 |
---
|
82 |
|
83 |
# Dataset Card for AQuaMuSe
|
abstractive/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0233791433515f5e906da847e3a808e157f8a1bb3891ae68126476f8c95ddf24
|
3 |
+
size 543352
|
abstractive/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13484e28ade720920ee06fb1e1c4e5be4e9bb7ce95e73625aef5883a667dc4ed
|
3 |
+
size 4177513
|
abstractive/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c1fa26da92681958b9ebe263b95918b144902bdb7dce3672b1cf9520317ecef
|
3 |
+
size 446989
|
dataset_infos.json
CHANGED
@@ -1 +1,126 @@
|
|
1 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"abstractive": {
|
3 |
+
"description": "AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)",
|
4 |
+
"citation": "@misc{kulkarni2020aquamuse,\n title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization},\n author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie},\n year={2020},\n eprint={2010.12694},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n",
|
5 |
+
"homepage": "https://github.com/google-research-datasets/aquamuse",
|
6 |
+
"license": "",
|
7 |
+
"features": {
|
8 |
+
"query": {
|
9 |
+
"dtype": "string",
|
10 |
+
"_type": "Value"
|
11 |
+
},
|
12 |
+
"input_urls": {
|
13 |
+
"feature": {
|
14 |
+
"dtype": "string",
|
15 |
+
"_type": "Value"
|
16 |
+
},
|
17 |
+
"_type": "Sequence"
|
18 |
+
},
|
19 |
+
"target": {
|
20 |
+
"dtype": "string",
|
21 |
+
"_type": "Value"
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"builder_name": "parquet",
|
25 |
+
"dataset_name": "aquamuse",
|
26 |
+
"config_name": "abstractive",
|
27 |
+
"version": {
|
28 |
+
"version_str": "2.3.0",
|
29 |
+
"major": 2,
|
30 |
+
"minor": 3,
|
31 |
+
"patch": 0
|
32 |
+
},
|
33 |
+
"splits": {
|
34 |
+
"train": {
|
35 |
+
"name": "train",
|
36 |
+
"num_bytes": 6434893,
|
37 |
+
"num_examples": 6253,
|
38 |
+
"dataset_name": null
|
39 |
+
},
|
40 |
+
"test": {
|
41 |
+
"name": "test",
|
42 |
+
"num_bytes": 843165,
|
43 |
+
"num_examples": 811,
|
44 |
+
"dataset_name": null
|
45 |
+
},
|
46 |
+
"validation": {
|
47 |
+
"name": "validation",
|
48 |
+
"num_bytes": 689093,
|
49 |
+
"num_examples": 661,
|
50 |
+
"dataset_name": null
|
51 |
+
}
|
52 |
+
},
|
53 |
+
"download_size": 5167854,
|
54 |
+
"dataset_size": 7967151,
|
55 |
+
"size_in_bytes": 13135005
|
56 |
+
},
|
57 |
+
"extractive": {
|
58 |
+
"description": "AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)",
|
59 |
+
"citation": "@misc{kulkarni2020aquamuse,title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization}, author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie}, year={2020}, eprint={2010.12694}, archivePrefix={arXiv}, primaryClass={cs.CL}}",
|
60 |
+
"homepage": "https://github.com/google-research-datasets/aquamuse",
|
61 |
+
"license": "",
|
62 |
+
"features": {
|
63 |
+
"query": {
|
64 |
+
"dtype": "string",
|
65 |
+
"id": null,
|
66 |
+
"_type": "Value"
|
67 |
+
},
|
68 |
+
"input_urls": {
|
69 |
+
"feature": {
|
70 |
+
"dtype": "string",
|
71 |
+
"id": null,
|
72 |
+
"_type": "Value"
|
73 |
+
},
|
74 |
+
"length": -1,
|
75 |
+
"id": null,
|
76 |
+
"_type": "Sequence"
|
77 |
+
},
|
78 |
+
"target": {
|
79 |
+
"dtype": "string",
|
80 |
+
"id": null,
|
81 |
+
"_type": "Value"
|
82 |
+
}
|
83 |
+
},
|
84 |
+
"post_processed": null,
|
85 |
+
"supervised_keys": null,
|
86 |
+
"builder_name": "aquamuse",
|
87 |
+
"config_name": "extractive",
|
88 |
+
"version": {
|
89 |
+
"version_str": "2.3.0",
|
90 |
+
"description": null,
|
91 |
+
"major": 2,
|
92 |
+
"minor": 3,
|
93 |
+
"patch": 0
|
94 |
+
},
|
95 |
+
"splits": {
|
96 |
+
"train": {
|
97 |
+
"name": "train",
|
98 |
+
"num_bytes": 6434909,
|
99 |
+
"num_examples": 6253,
|
100 |
+
"dataset_name": "aquamuse"
|
101 |
+
},
|
102 |
+
"test": {
|
103 |
+
"name": "test",
|
104 |
+
"num_bytes": 843181,
|
105 |
+
"num_examples": 811,
|
106 |
+
"dataset_name": "aquamuse"
|
107 |
+
},
|
108 |
+
"validation": {
|
109 |
+
"name": "validation",
|
110 |
+
"num_bytes": 689109,
|
111 |
+
"num_examples": 661,
|
112 |
+
"dataset_name": "aquamuse"
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"download_checksums": {
|
116 |
+
"https://github.com/google-research-datasets/aquamuse/raw/main/v2/aquamuse_v2.zip": {
|
117 |
+
"num_bytes": 7755161,
|
118 |
+
"checksum": "f2b4d9523031a986e545a7c0fdc8180670519696340d09179a39514fc76466d0"
|
119 |
+
}
|
120 |
+
},
|
121 |
+
"download_size": 7755161,
|
122 |
+
"post_processing_size": null,
|
123 |
+
"dataset_size": 7967199,
|
124 |
+
"size_in_bytes": 15722360
|
125 |
+
}
|
126 |
+
}
|