albertvillanova HF staff commited on
Commit
8f3028a
1 Parent(s): df0c4ed

Convert dataset to Parquet

Browse files

Convert dataset to Parquet.

README.md CHANGED
@@ -39,16 +39,16 @@ dataset_info:
39
  dtype: string
40
  splits:
41
  - name: train
42
- num_bytes: 6434909
43
  num_examples: 6253
44
  - name: test
45
- num_bytes: 843181
46
  num_examples: 811
47
  - name: validation
48
- num_bytes: 689109
49
  num_examples: 661
50
- download_size: 7755161
51
- dataset_size: 7967199
52
  - config_name: extractive
53
  features:
54
  - name: query
@@ -69,6 +69,15 @@ dataset_info:
69
  num_examples: 661
70
  download_size: 7755161
71
  dataset_size: 7967199
 
 
 
 
 
 
 
 
 
72
  ---
73
 
74
  # Dataset Card for AQuaMuSe
 
39
  dtype: string
40
  splits:
41
  - name: train
42
+ num_bytes: 6434893
43
  num_examples: 6253
44
  - name: test
45
+ num_bytes: 843165
46
  num_examples: 811
47
  - name: validation
48
+ num_bytes: 689093
49
  num_examples: 661
50
+ download_size: 5167854
51
+ dataset_size: 7967151
52
  - config_name: extractive
53
  features:
54
  - name: query
 
69
  num_examples: 661
70
  download_size: 7755161
71
  dataset_size: 7967199
72
+ configs:
73
+ - config_name: abstractive
74
+ data_files:
75
+ - split: train
76
+ path: abstractive/train-*
77
+ - split: test
78
+ path: abstractive/test-*
79
+ - split: validation
80
+ path: abstractive/validation-*
81
  ---
82
 
83
  # Dataset Card for AQuaMuSe
abstractive/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0233791433515f5e906da847e3a808e157f8a1bb3891ae68126476f8c95ddf24
3
+ size 543352
abstractive/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13484e28ade720920ee06fb1e1c4e5be4e9bb7ce95e73625aef5883a667dc4ed
3
+ size 4177513
abstractive/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c1fa26da92681958b9ebe263b95918b144902bdb7dce3672b1cf9520317ecef
3
+ size 446989
dataset_infos.json CHANGED
@@ -1 +1,126 @@
1
- {"abstractive": {"description": "AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)", "citation": "@misc{kulkarni2020aquamuse,title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization}, author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie}, year={2020}, eprint={2010.12694}, archivePrefix={arXiv}, primaryClass={cs.CL}}", "homepage": "https://github.com/google-research-datasets/aquamuse", "license": "", "features": {"query": {"dtype": "string", "id": null, "_type": "Value"}, "input_urls": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "target": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "aquamuse", "config_name": "abstractive", "version": {"version_str": "2.3.0", "description": null, "major": 2, "minor": 3, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 6434909, "num_examples": 6253, "dataset_name": "aquamuse"}, "test": {"name": "test", "num_bytes": 843181, "num_examples": 811, "dataset_name": "aquamuse"}, "validation": {"name": "validation", "num_bytes": 689109, "num_examples": 661, "dataset_name": "aquamuse"}}, "download_checksums": {"https://github.com/google-research-datasets/aquamuse/raw/main/v2/aquamuse_v2.zip": {"num_bytes": 7755161, "checksum": "f2b4d9523031a986e545a7c0fdc8180670519696340d09179a39514fc76466d0"}}, "download_size": 7755161, "post_processing_size": null, "dataset_size": 7967199, "size_in_bytes": 15722360}, "extractive": {"description": "AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)", "citation": "@misc{kulkarni2020aquamuse,title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization}, author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie}, year={2020}, eprint={2010.12694}, archivePrefix={arXiv}, primaryClass={cs.CL}}", "homepage": "https://github.com/google-research-datasets/aquamuse", "license": "", "features": {"query": {"dtype": "string", "id": null, "_type": "Value"}, "input_urls": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "target": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "aquamuse", "config_name": "extractive", "version": {"version_str": "2.3.0", "description": null, "major": 2, "minor": 3, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 6434909, "num_examples": 6253, "dataset_name": "aquamuse"}, "test": {"name": "test", "num_bytes": 843181, "num_examples": 811, "dataset_name": "aquamuse"}, "validation": {"name": "validation", "num_bytes": 689109, "num_examples": 661, "dataset_name": "aquamuse"}}, "download_checksums": {"https://github.com/google-research-datasets/aquamuse/raw/main/v2/aquamuse_v2.zip": {"num_bytes": 7755161, "checksum": "f2b4d9523031a986e545a7c0fdc8180670519696340d09179a39514fc76466d0"}}, "download_size": 7755161, "post_processing_size": null, "dataset_size": 7967199, "size_in_bytes": 15722360}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "abstractive": {
3
+ "description": "AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)",
4
+ "citation": "@misc{kulkarni2020aquamuse,\n title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization},\n author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie},\n year={2020},\n eprint={2010.12694},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n",
5
+ "homepage": "https://github.com/google-research-datasets/aquamuse",
6
+ "license": "",
7
+ "features": {
8
+ "query": {
9
+ "dtype": "string",
10
+ "_type": "Value"
11
+ },
12
+ "input_urls": {
13
+ "feature": {
14
+ "dtype": "string",
15
+ "_type": "Value"
16
+ },
17
+ "_type": "Sequence"
18
+ },
19
+ "target": {
20
+ "dtype": "string",
21
+ "_type": "Value"
22
+ }
23
+ },
24
+ "builder_name": "parquet",
25
+ "dataset_name": "aquamuse",
26
+ "config_name": "abstractive",
27
+ "version": {
28
+ "version_str": "2.3.0",
29
+ "major": 2,
30
+ "minor": 3,
31
+ "patch": 0
32
+ },
33
+ "splits": {
34
+ "train": {
35
+ "name": "train",
36
+ "num_bytes": 6434893,
37
+ "num_examples": 6253,
38
+ "dataset_name": null
39
+ },
40
+ "test": {
41
+ "name": "test",
42
+ "num_bytes": 843165,
43
+ "num_examples": 811,
44
+ "dataset_name": null
45
+ },
46
+ "validation": {
47
+ "name": "validation",
48
+ "num_bytes": 689093,
49
+ "num_examples": 661,
50
+ "dataset_name": null
51
+ }
52
+ },
53
+ "download_size": 5167854,
54
+ "dataset_size": 7967151,
55
+ "size_in_bytes": 13135005
56
+ },
57
+ "extractive": {
58
+ "description": "AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)",
59
+ "citation": "@misc{kulkarni2020aquamuse,title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization}, author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie}, year={2020}, eprint={2010.12694}, archivePrefix={arXiv}, primaryClass={cs.CL}}",
60
+ "homepage": "https://github.com/google-research-datasets/aquamuse",
61
+ "license": "",
62
+ "features": {
63
+ "query": {
64
+ "dtype": "string",
65
+ "id": null,
66
+ "_type": "Value"
67
+ },
68
+ "input_urls": {
69
+ "feature": {
70
+ "dtype": "string",
71
+ "id": null,
72
+ "_type": "Value"
73
+ },
74
+ "length": -1,
75
+ "id": null,
76
+ "_type": "Sequence"
77
+ },
78
+ "target": {
79
+ "dtype": "string",
80
+ "id": null,
81
+ "_type": "Value"
82
+ }
83
+ },
84
+ "post_processed": null,
85
+ "supervised_keys": null,
86
+ "builder_name": "aquamuse",
87
+ "config_name": "extractive",
88
+ "version": {
89
+ "version_str": "2.3.0",
90
+ "description": null,
91
+ "major": 2,
92
+ "minor": 3,
93
+ "patch": 0
94
+ },
95
+ "splits": {
96
+ "train": {
97
+ "name": "train",
98
+ "num_bytes": 6434909,
99
+ "num_examples": 6253,
100
+ "dataset_name": "aquamuse"
101
+ },
102
+ "test": {
103
+ "name": "test",
104
+ "num_bytes": 843181,
105
+ "num_examples": 811,
106
+ "dataset_name": "aquamuse"
107
+ },
108
+ "validation": {
109
+ "name": "validation",
110
+ "num_bytes": 689109,
111
+ "num_examples": 661,
112
+ "dataset_name": "aquamuse"
113
+ }
114
+ },
115
+ "download_checksums": {
116
+ "https://github.com/google-research-datasets/aquamuse/raw/main/v2/aquamuse_v2.zip": {
117
+ "num_bytes": 7755161,
118
+ "checksum": "f2b4d9523031a986e545a7c0fdc8180670519696340d09179a39514fc76466d0"
119
+ }
120
+ },
121
+ "download_size": 7755161,
122
+ "post_processing_size": null,
123
+ "dataset_size": 7967199,
124
+ "size_in_bytes": 15722360
125
+ }
126
+ }