File size: 5,577 Bytes
748114f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import json
import os
import datasets
_DESCRIPTION = """\
ToTTo is an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description.
"""
_HOMEPAGE_URL = ""
_URL = "https://storage.googleapis.com/totto/totto_data.zip"
_CITATION = """\
@inproceedings{parikh2020totto,
title={{ToTTo}: A Controlled Table-To-Text Generation Dataset},
author={Parikh, Ankur P and Wang, Xuezhi and Gehrmann, Sebastian and Faruqui, Manaal and Dhingra, Bhuwan and Yang, Diyi and Das, Dipanjan},
booktitle={Proceedings of EMNLP},
year={2020}
}
"""
class Totto(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("int32"),
"table_page_title": datasets.Value("string"),
"table_webpage_url": datasets.Value("string"),
"table_section_title": datasets.Value("string"),
"table_section_text": datasets.Value("string"),
"table": [
[
{
"column_span": datasets.Value("int32"),
"is_header": datasets.Value("bool"),
"row_span": datasets.Value("int32"),
"value": datasets.Value("string"),
}
]
],
"highlighted_cells": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
"example_id": datasets.Value("string"),
"sentence_annotations": datasets.Sequence(
{
"original_sentence": datasets.Value("string"),
"sentence_after_deletion": datasets.Value("string"),
"sentence_after_ambiguity": datasets.Value("string"),
"final_sentence": datasets.Value("string"),
}
),
"overlap_subset": datasets.Value("string"),
},
),
supervised_keys=None,
homepage=_HOMEPAGE_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
path = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"datapath": os.path.join(path, "totto_data/totto_train_data.jsonl"),
"datatype": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"datapath": os.path.join(path, "totto_data/totto_dev_data.jsonl"),
"datatype": "valid",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"datapath": os.path.join(path, "totto_data/unlabeled_totto_test_data.jsonl"),
"datatype": "test",
},
),
]
def _generate_examples(self, datapath, datatype):
with open(datapath, "r", encoding="utf-8") as json_file:
json_list = list(json_file)
for example_counter, json_str in enumerate(json_list):
result = json.loads(json_str)
response = {
"id": example_counter,
"table_page_title": result["table_page_title"],
"table_webpage_url": result["table_webpage_url"],
"table_section_title": result["table_section_title"],
"table_section_text": result["table_section_text"],
"table": result["table"],
"highlighted_cells": result["highlighted_cells"],
"example_id": str(result["example_id"]),
}
if datatype == "train":
response["overlap_subset"] = "none"
else:
response["overlap_subset"] = str(result["overlap_subset"])
if datatype == "test":
response["sentence_annotations"] = [
{
"original_sentence": "none",
"sentence_after_deletion": "none",
"sentence_after_ambiguity": "none",
"final_sentence": "none",
}
]
else:
response["sentence_annotations"] = result["sentence_annotations"]
yield example_counter, response
|