Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Size:
100K - 1M
License:
Commit
•
843ef53
1
Parent(s):
3b1697c
Delete loading script
Browse files
tydiqa.py
DELETED
@@ -1,268 +0,0 @@
|
|
1 |
-
"""TODO(tydiqa): Add a description here."""
|
2 |
-
|
3 |
-
|
4 |
-
import json
|
5 |
-
import textwrap
|
6 |
-
|
7 |
-
import datasets
|
8 |
-
from datasets.tasks import QuestionAnsweringExtractive
|
9 |
-
|
10 |
-
|
11 |
-
# TODO(tydiqa): BibTeX citation
|
12 |
-
_CITATION = """\
|
13 |
-
@article{tydiqa,
|
14 |
-
title = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
|
15 |
-
author = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}
|
16 |
-
year = {2020},
|
17 |
-
journal = {Transactions of the Association for Computational Linguistics}
|
18 |
-
}
|
19 |
-
"""
|
20 |
-
|
21 |
-
# TODO(tydiqa):
|
22 |
-
_DESCRIPTION = """\
|
23 |
-
TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs.
|
24 |
-
The languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language
|
25 |
-
expresses -- such that we expect models performing well on this set to generalize across a large number of the languages
|
26 |
-
in the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic
|
27 |
-
information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but
|
28 |
-
don’t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without
|
29 |
-
the use of translation (unlike MLQA and XQuAD).
|
30 |
-
"""
|
31 |
-
|
32 |
-
_URL = "https://storage.googleapis.com/tydiqa/"
|
33 |
-
_PRIMARY_URLS = {
|
34 |
-
"train": _URL + "v1.0/tydiqa-v1.0-train.jsonl.gz",
|
35 |
-
"dev": _URL + "v1.0/tydiqa-v1.0-dev.jsonl.gz",
|
36 |
-
}
|
37 |
-
_SECONDARY_URLS = {
|
38 |
-
"train": _URL + "v1.1/tydiqa-goldp-v1.1-train.json",
|
39 |
-
"dev": _URL + "v1.1/tydiqa-goldp-v1.1-dev.json",
|
40 |
-
}
|
41 |
-
|
42 |
-
|
43 |
-
class TydiqaConfig(datasets.BuilderConfig):
|
44 |
-
|
45 |
-
"""BuilderConfig for Tydiqa"""
|
46 |
-
|
47 |
-
def __init__(self, **kwargs):
|
48 |
-
"""
|
49 |
-
|
50 |
-
Args:
|
51 |
-
**kwargs: keyword arguments forwarded to super.
|
52 |
-
"""
|
53 |
-
super(TydiqaConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
54 |
-
|
55 |
-
|
56 |
-
class Tydiqa(datasets.GeneratorBasedBuilder):
|
57 |
-
"""TODO(tydiqa): Short description of my dataset."""
|
58 |
-
|
59 |
-
# TODO(tydiqa): Set up version.
|
60 |
-
VERSION = datasets.Version("0.1.0")
|
61 |
-
BUILDER_CONFIGS = [
|
62 |
-
TydiqaConfig(
|
63 |
-
name="primary_task",
|
64 |
-
description=textwrap.dedent(
|
65 |
-
"""\
|
66 |
-
Passage selection task (SelectP): Given a list of the passages in the article, return either (a) the index of
|
67 |
-
the passage that answers the question or (b) NULL if no such passage exists.
|
68 |
-
Minimal answer span task (MinSpan): Given the full text of an article, return one of (a) the start and end
|
69 |
-
byte indices of the minimal span that completely answers the question; (b) YES or NO if the question requires
|
70 |
-
a yes/no answer and we can draw a conclusion from the passage; (c) NULL if it is not possible to produce a
|
71 |
-
minimal answer for this question."""
|
72 |
-
),
|
73 |
-
),
|
74 |
-
TydiqaConfig(
|
75 |
-
name="secondary_task",
|
76 |
-
description=textwrap.dedent(
|
77 |
-
"""Gold passage task (GoldP): Given a passage that is guaranteed to contain the
|
78 |
-
answer, predict the single contiguous span of characters that answers the question. This is more similar to
|
79 |
-
existing reading comprehension datasets (as opposed to the information-seeking task outlined above).
|
80 |
-
This task is constructed with two goals in mind: (1) more directly comparing with prior work and (2) providing
|
81 |
-
a simplified way for researchers to use TyDi QA by providing compatibility with existing code for SQuAD 1.1,
|
82 |
-
XQuAD, and MLQA. Toward these goals, the gold passage task differs from the primary task in several ways:
|
83 |
-
only the gold answer passage is provided rather than the entire Wikipedia article;
|
84 |
-
unanswerable questions have been discarded, similar to MLQA and XQuAD;
|
85 |
-
we evaluate with the SQuAD 1.1 metrics like XQuAD; and
|
86 |
-
Thai and Japanese are removed since the lack of whitespace breaks some tools.
|
87 |
-
"""
|
88 |
-
),
|
89 |
-
),
|
90 |
-
]
|
91 |
-
|
92 |
-
def _info(self):
|
93 |
-
# TODO(tydiqa): Specifies the datasets.DatasetInfo object
|
94 |
-
if self.config.name == "primary_task":
|
95 |
-
return datasets.DatasetInfo(
|
96 |
-
# This is the description that will appear on the datasets page.
|
97 |
-
description=_DESCRIPTION,
|
98 |
-
# datasets.features.FeatureConnectors
|
99 |
-
features=datasets.Features(
|
100 |
-
{
|
101 |
-
"passage_answer_candidates": datasets.features.Sequence(
|
102 |
-
{
|
103 |
-
"plaintext_start_byte": datasets.Value("int32"),
|
104 |
-
"plaintext_end_byte": datasets.Value("int32"),
|
105 |
-
}
|
106 |
-
),
|
107 |
-
"question_text": datasets.Value("string"),
|
108 |
-
"document_title": datasets.Value("string"),
|
109 |
-
"language": datasets.Value("string"),
|
110 |
-
"annotations": datasets.features.Sequence(
|
111 |
-
{
|
112 |
-
# 'annotation_id': datasets.Value('variant'),
|
113 |
-
"passage_answer_candidate_index": datasets.Value("int32"),
|
114 |
-
"minimal_answers_start_byte": datasets.Value("int32"),
|
115 |
-
"minimal_answers_end_byte": datasets.Value("int32"),
|
116 |
-
"yes_no_answer": datasets.Value("string"),
|
117 |
-
}
|
118 |
-
),
|
119 |
-
"document_plaintext": datasets.Value("string"),
|
120 |
-
# 'example_id': datasets.Value('variant'),
|
121 |
-
"document_url": datasets.Value("string")
|
122 |
-
# These are the features of your dataset like images, labels ...
|
123 |
-
}
|
124 |
-
),
|
125 |
-
# If there's a common (input, target) tuple from the features,
|
126 |
-
# specify them here. They'll be used if as_supervised=True in
|
127 |
-
# builder.as_dataset.
|
128 |
-
supervised_keys=None,
|
129 |
-
# Homepage of the dataset for documentation
|
130 |
-
homepage="https://github.com/google-research-datasets/tydiqa",
|
131 |
-
citation=_CITATION,
|
132 |
-
)
|
133 |
-
elif self.config.name == "secondary_task":
|
134 |
-
return datasets.DatasetInfo(
|
135 |
-
description=_DESCRIPTION,
|
136 |
-
features=datasets.Features(
|
137 |
-
{
|
138 |
-
"id": datasets.Value("string"),
|
139 |
-
"title": datasets.Value("string"),
|
140 |
-
"context": datasets.Value("string"),
|
141 |
-
"question": datasets.Value("string"),
|
142 |
-
"answers": datasets.features.Sequence(
|
143 |
-
{
|
144 |
-
"text": datasets.Value("string"),
|
145 |
-
"answer_start": datasets.Value("int32"),
|
146 |
-
}
|
147 |
-
),
|
148 |
-
}
|
149 |
-
),
|
150 |
-
# No default supervised_keys (as we have to pass both question
|
151 |
-
# and context as input).
|
152 |
-
supervised_keys=None,
|
153 |
-
homepage="https://github.com/google-research-datasets/tydiqa",
|
154 |
-
citation=_CITATION,
|
155 |
-
task_templates=[
|
156 |
-
QuestionAnsweringExtractive(
|
157 |
-
question_column="question", context_column="context", answers_column="answers"
|
158 |
-
)
|
159 |
-
],
|
160 |
-
)
|
161 |
-
|
162 |
-
def _split_generators(self, dl_manager):
|
163 |
-
"""Returns SplitGenerators."""
|
164 |
-
# TODO(tydiqa): Downloads the data and defines the splits
|
165 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
166 |
-
# download and extract URLs
|
167 |
-
primary_downloaded = dl_manager.download_and_extract(_PRIMARY_URLS)
|
168 |
-
secondary_downloaded = dl_manager.download_and_extract(_SECONDARY_URLS)
|
169 |
-
if self.config.name == "primary_task":
|
170 |
-
return [
|
171 |
-
datasets.SplitGenerator(
|
172 |
-
name=datasets.Split.TRAIN,
|
173 |
-
# These kwargs will be passed to _generate_examples
|
174 |
-
gen_kwargs={"filepath": primary_downloaded["train"]},
|
175 |
-
),
|
176 |
-
datasets.SplitGenerator(
|
177 |
-
name=datasets.Split.VALIDATION,
|
178 |
-
# These kwargs will be passed to _generate_examples
|
179 |
-
gen_kwargs={"filepath": primary_downloaded["dev"]},
|
180 |
-
),
|
181 |
-
]
|
182 |
-
elif self.config.name == "secondary_task":
|
183 |
-
return [
|
184 |
-
datasets.SplitGenerator(
|
185 |
-
name=datasets.Split.TRAIN,
|
186 |
-
# These kwargs will be passed to _generate_examples
|
187 |
-
gen_kwargs={"filepath": secondary_downloaded["train"]},
|
188 |
-
),
|
189 |
-
datasets.SplitGenerator(
|
190 |
-
name=datasets.Split.VALIDATION,
|
191 |
-
# These kwargs will be passed to _generate_examples
|
192 |
-
gen_kwargs={"filepath": secondary_downloaded["dev"]},
|
193 |
-
),
|
194 |
-
]
|
195 |
-
|
196 |
-
def _generate_examples(self, filepath):
|
197 |
-
"""Yields examples."""
|
198 |
-
# TODO(tydiqa): Yields (key, example) tuples from the dataset
|
199 |
-
if self.config.name == "primary_task":
|
200 |
-
with open(filepath, encoding="utf-8") as f:
|
201 |
-
for id_, row in enumerate(f):
|
202 |
-
data = json.loads(row)
|
203 |
-
passages = data["passage_answer_candidates"]
|
204 |
-
end_byte = [passage["plaintext_end_byte"] for passage in passages]
|
205 |
-
start_byte = [passage["plaintext_start_byte"] for passage in passages]
|
206 |
-
title = data["document_title"]
|
207 |
-
lang = data["language"]
|
208 |
-
question = data["question_text"]
|
209 |
-
annotations = data["annotations"]
|
210 |
-
# annot_ids = [annotation["annotation_id"] for annotation in annotations]
|
211 |
-
yes_no_answers = [annotation["yes_no_answer"] for annotation in annotations]
|
212 |
-
min_answers_end_byte = [
|
213 |
-
annotation["minimal_answer"]["plaintext_end_byte"] for annotation in annotations
|
214 |
-
]
|
215 |
-
min_answers_start_byte = [
|
216 |
-
annotation["minimal_answer"]["plaintext_start_byte"] for annotation in annotations
|
217 |
-
]
|
218 |
-
passage_cand_answers = [
|
219 |
-
annotation["passage_answer"]["candidate_index"] for annotation in annotations
|
220 |
-
]
|
221 |
-
doc = data["document_plaintext"]
|
222 |
-
# example_id = data["example_id"]
|
223 |
-
url = data["document_url"]
|
224 |
-
yield id_, {
|
225 |
-
"passage_answer_candidates": {
|
226 |
-
"plaintext_start_byte": start_byte,
|
227 |
-
"plaintext_end_byte": end_byte,
|
228 |
-
},
|
229 |
-
"question_text": question,
|
230 |
-
"document_title": title,
|
231 |
-
"language": lang,
|
232 |
-
"annotations": {
|
233 |
-
# 'annotation_id': annot_ids,
|
234 |
-
"passage_answer_candidate_index": passage_cand_answers,
|
235 |
-
"minimal_answers_start_byte": min_answers_start_byte,
|
236 |
-
"minimal_answers_end_byte": min_answers_end_byte,
|
237 |
-
"yes_no_answer": yes_no_answers,
|
238 |
-
},
|
239 |
-
"document_plaintext": doc,
|
240 |
-
# 'example_id': example_id,
|
241 |
-
"document_url": url,
|
242 |
-
}
|
243 |
-
elif self.config.name == "secondary_task":
|
244 |
-
with open(filepath, encoding="utf-8") as f:
|
245 |
-
data = json.load(f)
|
246 |
-
for article in data["data"]:
|
247 |
-
title = article.get("title", "").strip()
|
248 |
-
for paragraph in article["paragraphs"]:
|
249 |
-
context = paragraph["context"].strip()
|
250 |
-
for qa in paragraph["qas"]:
|
251 |
-
question = qa["question"].strip()
|
252 |
-
id_ = qa["id"]
|
253 |
-
|
254 |
-
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
|
255 |
-
answers = [answer["text"].strip() for answer in qa["answers"]]
|
256 |
-
|
257 |
-
# Features currently used are "context", "question", and "answers".
|
258 |
-
# Others are extracted here for the ease of future expansions.
|
259 |
-
yield id_, {
|
260 |
-
"title": title,
|
261 |
-
"context": context,
|
262 |
-
"question": question,
|
263 |
-
"id": id_,
|
264 |
-
"answers": {
|
265 |
-
"answer_start": answer_starts,
|
266 |
-
"text": answers,
|
267 |
-
},
|
268 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|