File size: 8,061 Bytes
7fbf41b
 
 
 
 
7f82d94
7fbf41b
7f82d94
5bdfa7b
7fbf41b
 
 
 
 
 
 
 
ebb16c8
8218dd2
ebb16c8
 
d23e886
 
 
 
 
 
 
 
 
 
 
 
 
8979c77
 
d23e886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8979c77
 
d23e886
 
 
 
 
 
 
 
 
 
 
 
7fbf41b
 
 
 
 
 
 
638ada0
7fbf41b
 
 
638ada0
 
7fbf41b
 
 
 
 
 
 
 
 
 
 
 
 
96eb701
7fbf41b
 
 
21a8af3
 
 
7fbf41b
 
 
 
21a8af3
7fbf41b
 
 
21a8af3
7fbf41b
 
 
21a8af3
7fbf41b
 
 
 
 
 
 
21a8af3
 
 
 
7fbf41b
 
 
 
 
 
 
 
 
 
 
 
 
 
21a8af3
 
 
 
7fbf41b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21a8af3
 
 
 
 
 
 
 
7fbf41b
 
 
 
 
 
 
 
 
21a8af3
 
 
 
 
7fbf41b
 
 
 
 
 
21a8af3
 
77adcfc
 
21a8af3
77adcfc
7fbf41b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21a8af3
7fbf41b
 
 
21a8af3
 
 
 
 
 
 
 
 
 
 
96eb701
 
 
ebb16c8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- extended|other-xsum
task_categories:
- summarization
task_ids: []
pretty_name: XSum Hallucination Annotations
tags:
- hallucinations
dataset_info:
- config_name: xsum_factuality
  features:
  - name: bbcid
    dtype: int32
  - name: system
    dtype: string
  - name: summary
    dtype: string
  - name: is_factual
    dtype:
      class_label:
        names:
          '0': 'no'
          '1': 'yes'
  - name: worker_id
    dtype: string
  splits:
  - name: train
    num_bytes: 800027
    num_examples: 5597
  download_size: 2864759
  dataset_size: 800027
- config_name: xsum_faithfulness
  features:
  - name: bbcid
    dtype: int32
  - name: system
    dtype: string
  - name: summary
    dtype: string
  - name: hallucination_type
    dtype:
      class_label:
        names:
          '0': intrinsic
          '1': extrinsic
  - name: hallucinated_span_start
    dtype: int32
  - name: hallucinated_span_end
    dtype: int32
  - name: worker_id
    dtype: string
  splits:
  - name: train
    num_bytes: 1750325
    num_examples: 11185
  download_size: 2864759
  dataset_size: 1750325
---

# Dataset Card for XSum Hallucination Annotations

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [XSUM Hallucination Annotations Homepage](https://research.google/tools/datasets/xsum-hallucination-annotations/)
- **Repository:** [XSUM Hallucination Annotations Homepage](https://github.com/google-research-datasets/xsum_hallucination_annotations)
- **Paper:** [ACL Web](https://www.aclweb.org/anthology/2020.acl-main.173.pdf)
- **Point of Contact:** [[email protected]](mailto:[email protected])

### Dataset Summary

Neural abstractive summarization models are highly prone to hallucinate content that is unfaithful to the input document. The popular metric such as ROUGE fails to show the severity of the problem. This dataset contains a large scale human evaluation of several neural abstractive summarization systems to better understand the types of hallucinations they produce. The dataset consists of faithfulness and factuality annotations of abstractive summaries for the XSum dataset. The dataset has crowdsourced 3 judgements for each of 500 x 5 document-system pairs. This will be a valuable resource to the abstractive summarization community.

### Supported Tasks and Leaderboards

* `summarization`: : The dataset can be used to train a model for Summarization,, which consists in summarizing a given document. Success on this task is typically measured by achieving a *high/low* [ROUGE Score](https://huggingface.co/metrics/rouge).

### Languages

The text in the dataset is in English which are abstractive summaries for the [XSum dataset](https://www.aclweb.org/anthology/D18-1206.pdf). The associated BCP-47 code is `en`.

## Dataset Structure

### Data Instances

##### Faithfulness annotations dataset

A typical data point consists of an ID referring to the news article(complete document), summary, and the hallucination span information.

An example from the XSum Faithfulness dataset looks as follows:

```
{
'bbcid': 34687720,
 'hallucinated_span_end': 114,
 'hallucinated_span_start': 1,
 'hallucination_type': 1,
 'summary': 'rory mcilroy will take a one-shot lead into the final round of the wgc-hsbc champions after carding a three-under',
 'system': 'BERTS2S',
 'worker_id': 'wid_0'
 }
```

##### Factuality annotations dataset

A typical data point consists of an ID referring to the news article(complete document), summary, and whether the summary is factual or not.

An example from the XSum Factuality dataset looks as follows:

```
{
'bbcid': 29911712,
 'is_factual': 0,
 'summary': 'more than 50 pupils at a bristol academy have been sent home from school because of a lack of uniform.',
 'system': 'BERTS2S',
 'worker_id': 'wid_0'
 }
```

### Data Fields

##### Faithfulness annotations dataset

Raters are shown the news article and the system summary, and are tasked with identifying and annotating the spans that aren't supported by the input article. The file contains the following columns:


- `bbcid`: Document id in the XSum corpus.
- `system`: Name of neural summarizer.
- `summary`: Summary generated by ‘system’.
- `hallucination_type`: Type of hallucination: intrinsic (0) or extrinsic (1)
- `hallucinated_span`: Hallucinated span in the ‘summary’.
- `hallucinated_span_start`: Index of the start of the hallucinated span.
- `hallucinated_span_end`: Index of the end of the hallucinated span.
- `worker_id`: Worker ID (one of 'wid_0', 'wid_1', 'wid_2')


The `hallucination_type` column has NULL value for some entries which have been replaced iwth `-1`.

##### Factuality annotations dataset

Raters are shown the news article and the hallucinated system summary, and are tasked with assessing the summary whether it is factual or not. The file contains the following columns:


- `bbcid1: Document id in the XSum corpus.
- `system`: Name of neural summarizer.
- `summary`: Summary generated by ‘system’.
- `is_factual`: Yes (1) or No (0)
- `worker_id`: Worker ID (one of 'wid_0', 'wid_1', 'wid_2')


The `is_factual` column has NULL value for some entries which have been replaced iwth `-1`.

### Data Splits

There is only a single split for both the Faithfulness annotations dataset and Factuality annotations dataset.

|                          | train |
|--------------------------|------:|
| Faithfulness annotations | 11185 |
| Factuality annotations   |  5597 |

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/legalcode)

### Citation Information

```
@InProceedings{maynez_acl20,
  author =      "Joshua Maynez and Shashi Narayan and Bernd Bohnet and Ryan Thomas Mcdonald",
  title =       "On Faithfulness and Factuality in Abstractive Summarization",
  booktitle =   "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
  year =        "2020",
  pages = "1906--1919",
  address = "Online",
}
```


### Contributions

Thanks to [@vineeths96](https://github.com/vineeths96) for adding this dataset.