|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""XSum Hallucination Annotations: Faithfulness and factuality annotations of XSum summaries""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{maynez_acl20, |
|
author = "Joshua Maynez and Shashi Narayan and Bernd Bohnet and Ryan Thomas Mcdonald", |
|
title = "On Faithfulness and Factuality in Abstractive Summarization", |
|
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", |
|
year = "2020", |
|
pages = "1906--1919", |
|
address = "Online", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Neural abstractive summarization models are highly prone to hallucinate content that is unfaithful to the input |
|
document. The popular metric such as ROUGE fails to show the severity of the problem. The dataset consists of |
|
faithfulness and factuality annotations of abstractive summaries for the XSum dataset. We have crowdsourced 3 judgements |
|
for each of 500 x 5 document-system pairs. This will be a valuable resource to the abstractive summarization community. |
|
""" |
|
|
|
_HOMEPAGE = "https://research.google/tools/datasets/xsum-hallucination-annotations/" |
|
|
|
_LICENSE = "https://creativecommons.org/licenses/by/4.0/" |
|
|
|
_URL = "https://raw.githubusercontent.com/google-research-datasets/xsum_hallucination_annotations/master/" |
|
_URLs = { |
|
"factuality": _URL + "factuality_annotations_xsum_summaries.csv", |
|
"hallucination": _URL + "hallucination_annotations_xsum_summaries.csv", |
|
} |
|
|
|
|
|
class XsumFactualityConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for XsumFactuality""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for XsumFactuality. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(XsumFactualityConfig, self).__init__(**kwargs) |
|
|
|
|
|
class XsumFactuality(datasets.GeneratorBasedBuilder): |
|
"""XSum Hallucination Annotations: Faithfulness and factuality annotations of XSum summaries""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
XsumFactualityConfig( |
|
name="xsum_factuality", |
|
version=datasets.Version("1.1.0"), |
|
description="Raters are shown the news article and the system summary, and are tasked with " |
|
"identifying and annotating the spans that aren't supported by the input article.", |
|
), |
|
XsumFactualityConfig( |
|
name="xsum_faithfulness", |
|
version=datasets.Version("1.1.0"), |
|
description="Raters are shown the news article and the hallucinated system summary, and are " |
|
"tasked with assessing the summary whether it is factual or not.", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "xsum_factuality" |
|
|
|
def _info(self): |
|
if self.config.name == "xsum_factuality": |
|
features = datasets.Features( |
|
{ |
|
"bbcid": datasets.Value("int32"), |
|
"system": datasets.Value("string"), |
|
"summary": datasets.Value("string"), |
|
"is_factual": datasets.ClassLabel(names=["no", "yes"]), |
|
"worker_id": datasets.Value("string"), |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"bbcid": datasets.Value("int32"), |
|
"system": datasets.Value("string"), |
|
"summary": datasets.Value("string"), |
|
"hallucination_type": datasets.ClassLabel(names=["intrinsic", "extrinsic"]), |
|
"hallucinated_span_start": datasets.Value("int32"), |
|
"hallucinated_span_end": datasets.Value("int32"), |
|
"worker_id": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
data_dir = dl_manager.download_and_extract(_URLs) |
|
if self.config.name == "xsum_factuality": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir["factuality"]), |
|
"split": "factuality", |
|
}, |
|
), |
|
] |
|
else: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir["hallucination"]), |
|
"split": "hallucination", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
""" Yields examples. """ |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
f_csv = csv.reader(f, delimiter=",", quotechar='"') |
|
|
|
next(f_csv) |
|
for id_, data in enumerate(f_csv): |
|
|
|
if self.config.name == "xsum_factuality": |
|
bbcid, system, summary, is_factual, worker_id = data |
|
|
|
is_factual = -1 if is_factual == "NULL" else is_factual |
|
|
|
yield id_, { |
|
"bbcid": bbcid, |
|
"system": system, |
|
"summary": summary, |
|
"is_factual": is_factual, |
|
"worker_id": worker_id, |
|
} |
|
else: |
|
( |
|
bbcid, |
|
system, |
|
summary, |
|
hallucination_type, |
|
hallucinated_span, |
|
hallucinated_span_start, |
|
hallucinated_span_end, |
|
worker_id, |
|
) = data |
|
|
|
hallucination_type = -1 if hallucination_type == "NULL" else hallucination_type |
|
|
|
yield id_, { |
|
"bbcid": bbcid, |
|
"system": system, |
|
"summary": summary, |
|
"hallucination_type": hallucination_type, |
|
"hallucinated_span_start": hallucinated_span_start, |
|
"hallucinated_span_end": hallucinated_span_end, |
|
"worker_id": worker_id, |
|
} |
|
|