|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Wikipedia-based Image Text (WIT) Dataset is a large multimodal multilingual dataset""" |
|
import csv |
|
|
|
import datasets |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@article{srinivasan2021wit, |
|
title={WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning}, |
|
author={Srinivasan, Krishna and Raman, Karthik and Chen, Jiecao and Bendersky, Michael and Najork, Marc}, |
|
journal={arXiv preprint arXiv:2103.01913}, |
|
year={2021} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Wikipedia-based Image Text (WIT) Dataset is a large multimodal multilingual dataset. |
|
WIT is composed of a curated set of 37.6 million entity rich image-text examples with 11.5 million unique images across 108 Wikipedia languages. |
|
Its size enables WIT to be used as a pretraining dataset for multimodal machine learning models. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/google-research-datasets/wit" |
|
|
|
_LICENSE = "Data is available under the Creative Commons Attribution-ShareAlike 3.0 Unported license." |
|
|
|
_URLs = [f"https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-{i:05}-of-00010.tsv.gz" for i in range(0, 10)] |
|
|
|
_FEATURES = datasets.Features( |
|
{ |
|
"language": datasets.Value("string"), |
|
"page_url": datasets.Value("string"), |
|
"image_url": datasets.Value("string"), |
|
"page_title": datasets.Value("string"), |
|
"section_title": datasets.Value("string"), |
|
"hierarchical_section_title": datasets.Value("string"), |
|
"caption_reference_description": datasets.Value("string"), |
|
"caption_attribution_description": datasets.Value("string"), |
|
"caption_alt_text_description": datasets.Value("string"), |
|
"mime_type": datasets.Value("string"), |
|
"original_height": datasets.Value("int32"), |
|
"original_width": datasets.Value("int32"), |
|
"is_main_image": datasets.Value("bool"), |
|
"attribution_passes_lang_id": datasets.Value("bool"), |
|
"page_changed_recently": datasets.Value("bool"), |
|
"context_page_description": datasets.Value("string"), |
|
"context_section_description": datasets.Value("string"), |
|
} |
|
) |
|
|
|
|
|
class WIT(datasets.GeneratorBasedBuilder): |
|
"""Builder for WIT.""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=_FEATURES, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
files = dl_manager.download_and_extract(_URLs) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"files": files, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, files): |
|
idx = 0 |
|
for file in files: |
|
with open(file, "r", encoding="utf-8") as f: |
|
examples = csv.DictReader(f, delimiter="\t") |
|
for example in examples: |
|
yield idx, {k: v if v != "" else None for k, v in example.items()} |
|
idx += 1 |
|
|