|
"""Augmented MNIST Data Set""" |
|
|
|
|
|
import struct |
|
|
|
import numpy as np |
|
|
|
import datasets |
|
from datasets.tasks import ImageClassification |
|
|
|
_DESCRIPTION = """\ |
|
The dataset is built on top of MNIST. |
|
It consists from 130K of images in 10 classes - 120K training and 10K test samples. |
|
The training set was augmented with additional 60K images. |
|
""" |
|
|
|
_URLS = { |
|
"train_images": "data/train-images-idx3-ubyte.gz", |
|
"train_labels": "data/train-labels-idx1-ubyte.gz", |
|
"test_images": "data/t10k-images-idx3-ubyte.gz", |
|
"test_labels": "data/t10k-labels-idx1-ubyte.gz", |
|
} |
|
|
|
|
|
class AMNIST(datasets.GeneratorBasedBuilder): |
|
"""A-MNIST Data Set""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="amnist", |
|
version=datasets.Version("1.1.0"), |
|
description=_DESCRIPTION, |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.features.ClassLabel(names=["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]), |
|
} |
|
), |
|
supervised_keys=("image", "label"), |
|
task_templates=[ |
|
ImageClassification( |
|
image_column="image", |
|
label_column="label", |
|
) |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls_to_download = _URLS |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": [downloaded_files["train_images"], |
|
downloaded_files["train_labels"]], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": [downloaded_files["test_images"], |
|
downloaded_files["test_labels"]], |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""This function returns the examples in the raw form.""" |
|
|
|
with open(filepath[0], "rb") as f: |
|
|
|
_ = f.read(4) |
|
size = struct.unpack(">I", f.read(4))[0] |
|
_ = f.read(8) |
|
images = np.frombuffer(f.read(), dtype=np.uint8).reshape(size, 28, 28) |
|
|
|
|
|
with open(filepath[1], "rb") as f: |
|
|
|
_ = f.read(8) |
|
labels = np.frombuffer(f.read(), dtype=np.uint8) |
|
|
|
for idx in range(size): |
|
yield idx, {"image": images[idx], "label": str(labels[idx])} |
|
|