File size: 3,960 Bytes
21dd15a d1caecd 21dd15a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
---
licence: mit
task_categories:
- graph-ml
---
# Dataset Card for alchemy
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [External Use](#external-use)
- [PyGeometric](#pygeometric)
- [Dataset Structure](#dataset-structure)
- [Data Properties](#data-properties)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **[Homepage](https://alchemy.tencent.com/)**
- **Paper:**: (see citation)
- **Leaderboard:**: [Leaderboard](https://alchemy.tencent.com/)
### Dataset Summary
The `alchemy` dataset is a molecular dataset, called Alchemy, which lists 12 quantum mechanical properties of 130,000+ organic molecules comprising up to 12 heavy atoms (C, N, O, S, F and Cl), sampled from the GDBMedChem database.
### Supported Tasks and Leaderboards
`alchemy` should be used for organic quantum molecular property prediction, a regression task on 12 properties. The score used is MAE.
## External Use
### PyGeometric
To load in PyGeometric, do the following:
```python
from datasets import load_dataset
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
dataset_hf = load_dataset("graphs-datasets/<mydataset>")
# For the train set (replace by valid or test as needed)
dataset_pg_list = [Data(graph) for graph in dataset_hf["train"]]
dataset_pg = DataLoader(dataset_pg_list)
```
## Dataset Structure
### Data Properties
| property | value |
|---|---|
| scale | big |
| #graphs | 202578 |
| average #nodes | 10.101387606810183 |
| average #edges | 20.877326870011206 |
### Data Fields
Each row of a given file is a graph, with:
- `node_feat` (list: #nodes x #node-features): nodes
- `edge_index` (list: 2 x #edges): pairs of nodes constituting edges
- `edge_attr` (list: #edges x #edge-features): for the aforementioned edges, contains their features
- `y` (list: 1 x #labels): contains the number of labels available to predict (here 1, equal to zero or one)
- `num_nodes` (int): number of nodes of the graph
### Data Splits
This data is not split, and should be used with cross validation. It comes from the PyGeometric version of the dataset.
## Additional Information
### Licensing Information
The dataset has been released under license mit.
### Citation Information
```
@inproceedings{Morris+2020,
title={TUDataset: A collection of benchmark datasets for learning with graphs},
author={Christopher Morris and Nils M. Kriege and Franka Bause and Kristian Kersting and Petra Mutzel and Marion Neumann},
booktitle={ICML 2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020)},
archivePrefix={arXiv},
eprint={2007.08663},
url={www.graphlearning.io},
year={2020}
}
```
```
@article{DBLP:journals/corr/abs-1906-09427,
author = {Guangyong Chen and
Pengfei Chen and
Chang{-}Yu Hsieh and
Chee{-}Kong Lee and
Benben Liao and
Renjie Liao and
Weiwen Liu and
Jiezhong Qiu and
Qiming Sun and
Jie Tang and
Richard S. Zemel and
Shengyu Zhang},
title = {Alchemy: {A} Quantum Chemistry Dataset for Benchmarking {AI} Models},
journal = {CoRR},
volume = {abs/1906.09427},
year = {2019},
url = {http://arxiv.org/abs/1906.09427},
eprinttype = {arXiv},
eprint = {1906.09427},
timestamp = {Mon, 11 Nov 2019 12:55:11 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1906-09427.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |