Datasets:
File size: 8,672 Bytes
b056c37 7a379d5 b056c37 7a379d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
---
annotations_creators:
- expert-generated
language:
- en
- it
- fr
- ar
- de
- hi
- pt
- ru
- es
language_creators:
- expert-generated
license:
- cc-by-sa-3.0
multilinguality:
- translation
pretty_name: mt_geneval
size_categories:
- 1K<n<10K
source_datasets:
- original
tags:
- gender
- constrained mt
task_categories:
- translation
task_ids: []
---
# Dataset Card for MT-GenEval
## Table of Contents
- [Dataset Card for MT-GenEval](#dataset-card-for-mt-geneval)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Machine Translation](#machine-translation)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Repository:** [Github](https://github.com/amazon-science/machine-translation-gender-eval)
- **Paper:** [EMNLP 2022](https://arxiv.org/abs/2211.01355)
- **Point of Contact:** [Anna Currey](mailto:[email protected])
### Dataset Summary
The MT-GenEval benchmark evaluates gender translation accuracy on English -> {Arabic, French, German, Hindi, Italian, Portuguese, Russian, Spanish}. The dataset contains individual sentences with annotations on the gendered target words, and contrastive original-invertend translations with additional preceding context.
**Disclaimer**: *The MT-GenEval benchmark was released in the EMNLP 2022 paper [MT-GenEval: A Counterfactual and Contextual Dataset for Evaluating Gender Accuracy in Machine Translation](https://arxiv.org/abs/2211.01355) by Anna Currey, Maria Nadejde, Raghavendra Pappagari, Mia Mayer, Stanislas Lauly, Xing Niu, Benjamin Hsu, and Georgiana Dinu and is hosted through Github by the [Amazon Science](https://github.com/amazon-science?type=source) organization. The dataset is licensed under a [Creative Commons Attribution-ShareAlike 3.0 Unported License](https://creativecommons.org/licenses/by-sa/3.0/).*
### Supported Tasks and Leaderboards
#### Machine Translation
Refer to the [original paper](https://arxiv.org/abs/2211.01355) for additional details on gender accuracy evaluation with MT-GenEval.
### Languages
The dataset contains source English sentences extracted from Wikipedia translated into the following languages: Arabic (`ar`), French (`fr`), German (`de`), Hindi (`hi`), Italian (`it`), Portuguese (`pt`), Russian (`ru`), and Spanish (`es`).
## Dataset Structure
### Data Instances
The dataset contains two configuration types, `sentences` and `context`, mirroring the original repository structure, with source and target language specified in the configuration name (e.g. `sentences_en_ar`, `context_en_it`) The `sentences` configurations contains masculine and feminine versions of individual sentences with gendered word annotations. Here is an example entry of the `sentences_en_it` split (all `sentences_en_XX` splits have the same structure):
```json
{
{
"orig_id": 0,
"source_feminine": "Pagratidis quickly recanted her confession, claiming she was psychologically pressured and beaten, and until the moment of her execution, she remained firm in her innocence.",
"reference_feminine": "Pagratidis subito ritrattò la sua confessione, affermando che era aveva subito pressioni psicologiche e era stata picchiata, e fino al momento della sua esecuzione, rimase ferma sulla sua innocenza.",
"source_masculine": "Pagratidis quickly recanted his confession, claiming he was psychologically pressured and beaten, and until the moment of his execution, he remained firm in his innocence.",
"reference_masculine": "Pagratidis subito ritrattò la sua confessione, affermando che era aveva subito pressioni psicologiche e era stato picchiato, e fino al momento della sua esecuzione, rimase fermo sulla sua innocenza.",
"source_feminine_annotated": "Pagratidis quickly recanted <F>her</F> confession, claiming <F>she</F> was psychologically pressured and beaten, and until the moment of <F>her</F> execution, <F>she</F> remained firm in <F>her</F> innocence.",
"reference_feminine_annotated": "Pagratidis subito ritrattò la sua confessione, affermando che era aveva subito pressioni psicologiche e era <F>stata picchiata</F>, e fino al momento della sua esecuzione, rimase <F>ferma</F> sulla sua innocenza.",
"source_masculine_annotated": "Pagratidis quickly recanted <M>his</M> confession, claiming <M>he</M> was psychologically pressured and beaten, and until the moment of <M>his</M> execution, <M>he</M> remained firm in <M>his</M> innocence.",
"reference_masculine_annotated": "Pagratidis subito ritrattò la sua confessione, affermando che era aveva subito pressioni psicologiche e era <M>stato picchiato</M>, e fino al momento della sua esecuzione, rimase <M>fermo</M> sulla sua innocenza.",
"source_feminine_keywords": "her;she;her;she;her",
"reference_feminine_keywords": "stata picchiata;ferma",
"source_masculine_keywords": "his;he;his;he;his",
"reference_masculine_keywords": "stato picchiato;fermo",
}
}
```
The `context` configuration contains instead different English sources related to stereotypical professional roles with additional preceding context and contrastive original-inverted translations. Here is an example entry of the `context_en_it` split (all `context_en_XX` splits have the same structure):
```json
{
"orig_id": 0,
"context": "Pierpont told of entering and holding up the bank and then fleeing to Fort Wayne, where the loot was divided between him and three others.",
"source": "However, Pierpont stated that Skeer was the planner of the robbery.",
"reference_original": "Comunque, Pierpont disse che Skeer era il pianificatore della rapina.",
"reference_flipped": "Comunque, Pierpont disse che Skeer era la pianificatrice della rapina."
}
```
### Data Splits
All `sentences_en_XX` configurations have 1200 examples in the `train` split and 300 in the `test` split. For the `context_en_XX` configurations, the number of example depends on the language pair:
| Configuration | # Train | # Test |
| :-----------: | :--------: | :-----: |
| `context_en_ar` | 792 | 1100 |
| `context_en_fr` | 477 | 1099 |
| `context_en_de` | 598 | 1100 |
| `context_en_hi` | 397 | 1098 |
| `context_en_it` | 465 | 1904 |
| `context_en_pt` | 574 | 1089 |
| `context_en_ru` | 583 | 1100 |
| `context_en_es` | 534 | 1096 |
### Dataset Creation
From the original paper:
>In developing MT-GenEval, our goal was to create a realistic, gender-balanced dataset that naturally incorporates a diverse range of gender phenomena. To this end, we extracted English source sentences from Wikipedia as the basis for our dataset. We automatically pre-selected relevant sentences using EN gender-referring words based on the list provided by [Zhao et al. (2018)](https://doi.org/10.18653/v1/N18-2003).
Please refer to the original article [MT-GenEval: A Counterfactual and Contextual Dataset for Evaluating Gender Accuracy in Machine Translation](https://arxiv.org/abs/2211.01355) for additional information on dataset creation.
## Additional Information
### Dataset Curators
The original authors of MT-GenEval are the curators of the original dataset. For problems or updates on this 🤗 Datasets version, please contact [[email protected]](mailto:[email protected]).
### Licensing Information
The dataset is licensed under the [Creative Commons Attribution-ShareAlike 3.0 International License](https://creativecommons.org/licenses/by-sa/3.0/).
### Citation Information
Please cite the authors if you use these corpora in your work.
```bibtex
@inproceedings{currey-etal-2022-mtgeneval,
title = "{MT-GenEval}: {A} Counterfactual and Contextual Dataset for Evaluating Gender Accuracy in Machine Translation",
author = "Currey, Anna and
Nadejde, Maria and
Pappagari, Raghavendra and
Mayer, Mia and
Lauly, Stanislas, and
Niu, Xing and
Hsu, Benjamin and
Dinu, Georgiana",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2211.01355",
}
``` |