File size: 4,877 Bytes
b8efa50
 
 
 
 
4793c67
b8efa50
4793c67
b8efa50
 
 
 
603d971
b8efa50
 
 
eceb0d1
b8efa50
 
da4c4df
18cafba
 
 
 
 
 
c00a78a
 
18cafba
 
 
 
 
 
 
 
d51bf24
18cafba
d51bf24
 
 
 
 
 
 
b8efa50
 
 
 
 
 
 
5a44027
b8efa50
 
 
5a44027
 
b8efa50
 
 
 
 
 
5a44027
 
b8efa50
 
 
 
 
050f29b
b8efa50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
050f29b
 
 
18cafba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
annotations_creators:
- found
language_creators:
- found
language:
- ar
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: ArRestReviews
dataset_info:
  features:
  - name: polarity
    dtype:
      class_label:
        names:
          '0': negative
          '1': positive
  - name: text
    dtype: string
  - name: restaurant_id
    dtype: string
  - name: user_id
    dtype: string
  splits:
  - name: train
    num_bytes: 3617085
    num_examples: 8364
  download_size: 1887029
  dataset_size: 3617085
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---

# Dataset Card for ArRestReviews

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Large Arabic Sentiment Analysis Resources](https://github.com/hadyelsahar/large-arabic-sentiment-analysis-resouces)
- **Repository:** [Large Arabic Sentiment Analysis Resources](https://github.com/hadyelsahar/large-arabic-sentiment-analysis-resouces)
- **Paper:** [ Building Large Arabic Multi-domain Resources for Sentiment Analysis](https://github.com/hadyelsahar/large-arabic-sentiment-analysis-resouces/blob/master/Paper%20-%20Building%20Large%20Arabic%20Multi-domain%20Resources%20for%20Sentiment%20Analysis.pdf)
- **Point of Contact:** [hady elsahar]([email protected])

### Dataset Summary

Dataset of 8364 restaurant reviews from qaym.com in Arabic for sentiment analysis

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

The dataset is based on Arabic.

## Dataset Structure

### Data Instances

A typical data point comprises of the following:

- "polarity": which is a string value of either 0 or 1 indicating the sentiment around the review    

- "text": is the review plain text of a restaurant in Arabic

- "restaurant_id": the restaurant ID on the website

- "user_id": the user ID on the website

example:
``` 
{
    'polarity': 0,  # negative
    'restaurant_id': '1412',
    'text': 'عادي جدا مامن زود',
    'user_id': '21294'
}
```

### Data Fields

- "polarity": is a string value of either 0 or 1 indicating the sentiment around the review    

- "text": is the review plain text of a restaurant in Arabic

- "restaurant_id": the restaurant ID on the website (string)

- "user_id": the user ID on the website (string)

### Data Splits

The dataset is not split. 

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

[More Information Needed]

#### Initial Data Collection and Normalization

Contains 8364 restaurant reviews from qaym.com

#### Who are the source language producers?

From tweeter.  

### Annotations

The polarity field provides a label of 1 or -1 pertaining to the sentiment of the review

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Discussion of Social Impact and Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

@InProceedings{10.1007/978-3-319-18117-2_2,
author="ElSahar, Hady
and El-Beltagy, Samhaa R.",
editor="Gelbukh, Alexander",
title="Building Large Arabic Multi-domain Resources for Sentiment Analysis",
booktitle="Computational Linguistics and Intelligent Text Processing",
year="2015",
publisher="Springer International Publishing",
address="Cham",
pages="23--34",
isbn="978-3-319-18117-2"
}

### Contributions

Thanks to [@abdulelahsm](https://github.com/abdulelahsm) for adding this dataset.