Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
License:
File size: 5,084 Bytes
16b0db0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# coding=utf-8
# Copyright 2022 Haotian Teng
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""CrossWeigh: Training Named Entity Tagger from Imperfect Annotations"""
import logging
import datasets
_CITATION = """\
"""
_DESCRIPTION = """\
NACL22 is a dataset labelled for Science Entity Recognition task, which is a subtask of NER task.
The text is from 2022 conference papers collected from ACL anthology.
The dataset is collected by Haotian Teng and Xiaoyue Cui.
Annotation standard can be found here https://github.com/neubig/nlp-from-scratch-assignment-2022/blob/main/annotation_standard.md
"""
_URL = "https://raw.githubusercontent.com/haotianteng/nacl22/master/"
_TRAINING_FILE = "train.text"
_DEV_FILE = "dev.text"
_TEST_FILE = "test.text"#Test dataset need to be added.
class nacl22Config(datasets.BuilderConfig):
"""BuilderConfig for NACL2022"""
def __init__(self, **kwargs):
"""BuilderConfig for NACL2022.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(nacl22Config, self).__init__(**kwargs)
class nacl22(datasets.GeneratorBasedBuilder):
"""NACL2022 dataset."""
BUILDER_CONFIGS = [
nacl22Config(name="nacl22", version=datasets.Version("1.0.0"), description="nacl22 dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-MethodName",
"I-MethodName",
"B-HyperparameterName",
"I-HyperparameterName",
"B-HyperparameterValue",
"I-HyperparameterValue",
"B-MetricName",
"I-MetricName",
"B-MetricValue",
"I-MetricValue",
"B-TaskName",
"I-TaskName",
"B-DatasetName",
"I-DatasetName",
]
)
),
}
),
supervised_keys=None,
homepage="https://github.com/neubig/nlp-from-scratch-assignment-2022",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train": f"{_URL}{_TRAINING_FILE}",
"dev": f"{_URL}{_DEV_FILE}",
"test": f"{_URL}{_TEST_FILE}",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
logging.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
tokens = []
ner_tags = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}
guid += 1
tokens = []
ner_tags = []
else:
# conll2003 tokens are space separated
splits = line.split(" ")
tokens.append(splits[0])
ner_tags.append(splits[-1].rstrip())
# last example
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
} |