Datasets:
Formats:
webdataset
Size:
10K - 100K
hayden-donnelly
commited on
Commit
•
a81bb0b
1
Parent(s):
7600190
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
task_categories:
|
3 |
+
- image-classification
|
4 |
+
- unconditional-image-generation
|
5 |
+
size_categories:
|
6 |
+
- 10K<n<100K
|
7 |
+
---
|
8 |
+
# MNIST WebDataset PNG
|
9 |
+
The MNIST dataset with samples stored as PNG images and compiled into the WebDataset format.
|
10 |
+
|
11 |
+
## DALI/JAX Example
|
12 |
+
The following code shows how this dataset can be loaded into JAX arrays by DALI.
|
13 |
+
```python
|
14 |
+
from nvidia.dali import pipeline_def
|
15 |
+
import nvidia.dali.fn as fn
|
16 |
+
import nvidia.dali.types as types
|
17 |
+
from nvidia.dali.plugin.jax import DALIGenericIterator
|
18 |
+
from nvidia.dali.plugin.base_iterator import LastBatchPolicy
|
19 |
+
|
20 |
+
def get_data_iterator(batch_size, dataset_path):
|
21 |
+
@pipeline_def(batch_size=batch_size, num_threads=4, device_id=0)
|
22 |
+
def wds_pipeline():
|
23 |
+
raw_image, ascii_label = fn.readers.webdataset(
|
24 |
+
paths=dataset_path,
|
25 |
+
ext=['png', 'cls'],
|
26 |
+
missing_component_behavior='error',
|
27 |
+
)
|
28 |
+
image = fn.decoders.image(raw_image)
|
29 |
+
ascii_shift = types.Constant(48).uint8()
|
30 |
+
label = ascii_label - ascii_shift
|
31 |
+
return image, label
|
32 |
+
|
33 |
+
data_pipeline = wds_pipeline()
|
34 |
+
data_iterator = DALIGenericIterator(
|
35 |
+
pipelines=[data_pipeline],
|
36 |
+
output_map=['x', 'y'],
|
37 |
+
last_batch_policy=LastBatchPolicy.DROP
|
38 |
+
)
|
39 |
+
return data_iterator
|
40 |
+
|
41 |
+
data_iterator = get_data_iterator(
|
42 |
+
batch_size=32,
|
43 |
+
dataset_path='data/mnist_webdataset_numpy_flat_9/data.tar'
|
44 |
+
)
|
45 |
+
batch = next(data_iterator)
|
46 |
+
x = batch['x']
|
47 |
+
y = batch['y']
|
48 |
+
print('x shape:', x.shape)
|
49 |
+
print('y shape:', y.shape)
|
50 |
+
print('y:', y[:, 0])
|
51 |
+
```
|
52 |
+
|
53 |
+
Output:
|
54 |
+
```
|
55 |
+
x shape: (32, 28, 28, 3)
|
56 |
+
y shape: (32, 1)
|
57 |
+
y: [5 0 4 1 9 2 1 3 1 4 3 5 3 6 1 7 2 8 6 9 4 0 9 1 1 2 4 3 2 7 3 8]
|
58 |
+
```
|
59 |
+
|
60 |
+
## Acknowledgements
|
61 |
+
- Yann LeCun, Courant Institute, NYU
|
62 |
+
- Corinna Cortes, Google Labs, New York
|
63 |
+
- Christopher J.C. Burges, Microsoft Research, Redmond
|