The Stable Diffusion model was created by the researchers and engineers from CompVis, Stability AI, runway, and LAION. The StableDiffusionImg2ImgPipeline lets you pass a text prompt and an initial image to condition the generation of new images using Stable Diffusion.
The original codebase can be found here: CampVis/stable-diffusion
StableDiffusionImg2ImgPipeline is compatible with all Stable Diffusion checkpoints for Text-to-Image
The pipeline uses the diffusion-denoising mechanism proposed by SDEdit (SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations proposed by Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, Stefano Ermon).
( vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer unet: UNet2DConditionModel scheduler: KarrasDiffusionSchedulers safety_checker: StableDiffusionSafetyChecker feature_extractor: CLIPImageProcessor requires_safety_checker: bool = True )
Parameters
CLIPTextModel
) —
Frozen text-encoder. Stable Diffusion uses the text portion of
CLIP, specifically
the clip-vit-large-patch14 variant.
CLIPTokenizer
) —
Tokenizer of class
CLIPTokenizer.
unet
to denoise the encoded image latents. Can be one of
DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler.
StableDiffusionSafetyChecker
) —
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the model card for details.
CLIPImageProcessor
) —
Model that extracts features from generated images to be used as inputs for the safety_checker
.
Pipeline for text-guided image to image generation using Stable Diffusion.
This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
In addition the pipeline inherits the following loading methods:
as well as the following saving methods:
(
prompt: typing.Union[str, typing.List[str]] = None
image: typing.Union[torch.FloatTensor, PIL.Image.Image, numpy.ndarray, typing.List[torch.FloatTensor], typing.List[PIL.Image.Image], typing.List[numpy.ndarray]] = None
strength: float = 0.8
num_inference_steps: typing.Optional[int] = 50
guidance_scale: typing.Optional[float] = 7.5
negative_prompt: typing.Union[typing.List[str], str, NoneType] = None
num_images_per_prompt: typing.Optional[int] = 1
eta: typing.Optional[float] = 0.0
generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None
prompt_embeds: typing.Optional[torch.FloatTensor] = None
negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None
output_type: typing.Optional[str] = 'pil'
return_dict: bool = True
callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = None
callback_steps: int = 1
cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None
)
→
StableDiffusionPipelineOutput or tuple
Parameters
str
or List[str]
, optional) —
The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds
.
instead.
torch.FloatTensor
, PIL.Image.Image
, np.ndarray
, List[torch.FloatTensor]
, List[PIL.Image.Image]
, or List[np.ndarray]
) —
Image
, or tensor representing an image batch, that will be used as the starting point for the
process. Can also accpet image latents as image
, if passing latents directly, it will not be encoded
again.
float
, optional, defaults to 0.8) —
Conceptually, indicates how much to transform the reference image
. Must be between 0 and 1. image
will be used as a starting point, adding more noise to it the larger the strength
. The number of
denoising steps depends on the amount of noise initially added. When strength
is 1, added noise will
be maximum and the denoising process will run for the full number of iterations specified in
num_inference_steps
. A value of 1, therefore, essentially ignores image
.
int
, optional, defaults to 50) —
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. This parameter will be modulated by strength
.
float
, optional, defaults to 7.5) —
Guidance scale as defined in Classifier-Free Diffusion Guidance.
guidance_scale
is defined as w
of equation 2. of Imagen
Paper. Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
,
usually at the expense of lower image quality.
str
or List[str]
, optional) —
The prompt or prompts not to guide the image generation. If not defined, one has to pass
negative_prompt_embeds
. instead. Ignored when not using guidance (i.e., ignored if guidance_scale
is less than 1
).
int
, optional, defaults to 1) —
The number of images to generate per prompt.
float
, optional, defaults to 0.0) —
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
schedulers.DDIMScheduler, will be ignored for others.
torch.Generator
, optional) —
One or a list of torch generator(s)
to make generation deterministic.
torch.FloatTensor
, optional) —
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from prompt
input argument.
torch.FloatTensor
, optional) —
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt
input
argument.
str
, optional, defaults to "pil"
) —
The output format of the generate image. Choose between
PIL: PIL.Image.Image
or np.array
.
bool
, optional, defaults to True
) —
Whether or not to return a StableDiffusionPipelineOutput instead of a
plain tuple.
Callable
, optional) —
A function that will be called every callback_steps
steps during inference. The function will be
called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
int
, optional, defaults to 1) —
The frequency at which the callback
function will be called. If not specified, the callback will be
called at every step.
dict
, optional) —
A kwargs dictionary that if specified is passed along to the AttentionProcessor
as defined under
self.processor
in
diffusers.cross_attention.
Returns
StableDiffusionPipelineOutput or tuple
StableDiffusionPipelineOutput if return_dict
is True, otherwise a tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of
bools denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the
safety_checker`.
Function invoked when calling the pipeline for generation.
Examples:
>>> import requests
>>> import torch
>>> from PIL import Image
>>> from io import BytesIO
>>> from diffusers import StableDiffusionImg2ImgPipeline
>>> device = "cuda"
>>> model_id_or_path = "runwayml/stable-diffusion-v1-5"
>>> pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)
>>> pipe = pipe.to(device)
>>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
>>> response = requests.get(url)
>>> init_image = Image.open(BytesIO(response.content)).convert("RGB")
>>> init_image = init_image.resize((768, 512))
>>> prompt = "A fantasy landscape, trending on artstation"
>>> images = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images
>>> images[0].save("fantasy_landscape.png")
( slice_size: typing.Union[str, int, NoneType] = 'auto' )
Parameters
str
or int
, optional, defaults to "auto"
) —
When "auto"
, halves the input to the attention heads, so attention will be computed in two steps. If
"max"
, maximum amount of memory will be saved by running only one slice at a time. If a number is
provided, uses as many slices as attention_head_dim // slice_size
. In this case, attention_head_dim
must be a multiple of slice_size
.
Enable sliced attention computation.
When this option is enabled, the attention module splits the input tensor in slices to compute attention in several steps. This is useful to save some memory in exchange for a small speed decrease.
Disable sliced attention computation. If enable_attention_slicing
was previously called, attention is
computed in one step.
( attention_op: typing.Optional[typing.Callable] = None )
Parameters
Callable
, optional) —
Override the default None
operator for use as op
argument to the
memory_efficient_attention()
function of xFormers.
Enable memory efficient attention from xFormers.
When this option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed up during training is not guaranteed.
⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes precedent.
Examples:
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp
>>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
>>> pipe = pipe.to("cuda")
>>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
>>> # Workaround for not accepting attention shape using VAE for Flash Attention
>>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
Disable memory efficient attention from xFormers.
( pretrained_model_name_or_path: typing.Union[str, typing.List[str], typing.Dict[str, torch.Tensor], typing.List[typing.Dict[str, torch.Tensor]]] token: typing.Union[str, typing.List[str], NoneType] = None **kwargs )
Parameters
str
or os.PathLike
or List[str or os.PathLike]
or Dict
or List[Dict]
) —
Can be either one of the following or a list of them:
sd-concepts-library/low-poly-hd-logos-icons
) of a
pretrained model hosted on the Hub../my_text_inversion_directory/
) containing the textual
inversion weights../my_text_inversions.pt
) containing textual inversion weights.str
or List[str]
, optional) —
Override the token to use for the textual inversion weights. If pretrained_model_name_or_path
is a
list, then token
must also be a list of equal length.
str
, optional) —
Name of a custom weight file. This should be used when:
text_inv.bin
.Union[str, os.PathLike]
, optional) —
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
bool
, optional, defaults to False
) —
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
bool
, optional, defaults to False
) —
Whether or not to resume downloading the model weights and configuration files. If set to False
, any
incompletely downloaded files are deleted.
Dict[str, str]
, optional) —
A dictionary of proxy servers to use by protocol or endpoint, for example, {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}
. The proxies are used on each request.
bool
, optional, defaults to False
) —
Whether to only load local model weights and configuration files or not. If set to True
, the model
won’t be downloaded from the Hub.
str
or bool, optional) —
The token to use as HTTP bearer authorization for remote files. If True
, the token generated from
diffusers-cli login
(stored in ~/.huggingface
) is used.
str
, optional, defaults to "main"
) —
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
str
, optional, defaults to ""
) —
The subfolder location of a model file within a larger model repository on the Hub or locally.
str
, optional) —
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
Load textual inversion embeddings into the text encoder of StableDiffusionPipeline (both 🤗 Diffusers and Automatic1111 formats are supported).
Example:
To load a textual inversion embedding vector in 🤗 Diffusers format:
from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("sd-concepts-library/cat-toy")
prompt = "A <cat-toy> backpack"
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("cat-backpack.png")
To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first (for example from civitAI) and then load the vector
locally:
from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("character.png")
( pretrained_model_link_or_path **kwargs )
Parameters
str
or os.PathLike
, optional) —
Can be either:.ckpt
file (for example
"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"
) on the Hub.str
or torch.dtype
, optional) —
Override the default torch.dtype
and load the model with another dtype. If "auto"
is passed, the
dtype is automatically derived from the model’s weights.
bool
, optional, defaults to False
) —
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
Union[str, os.PathLike]
, optional) —
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
bool
, optional, defaults to False
) —
Whether or not to resume downloading the model weights and configuration files. If set to False
, any
incompletely downloaded files are deleted.
Dict[str, str]
, optional) —
A dictionary of proxy servers to use by protocol or endpoint, for example, {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}
. The proxies are used on each request.
bool
, optional, defaults to False
) —
Whether to only load local model weights and configuration files or not. If set to True, the model
won’t be downloaded from the Hub.
str
or bool, optional) —
The token to use as HTTP bearer authorization for remote files. If True
, the token generated from
diffusers-cli login
(stored in ~/.huggingface
) is used.
str
, optional, defaults to "main"
) —
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
bool
, optional, defaults to None
) —
If set to None
, the safetensors weights are downloaded if they’re available and if the
safetensors library is installed. If set to True
, the model is forcibly loaded from safetensors
weights. If set to False
, safetensors weights are not loaded.
bool
, optional, defaults to False
) —
Whether to extract the EMA weights or not. Pass True
to extract the EMA weights which usually yield
higher quality images for inference. Non-EMA weights are usually better to continue finetuning.
bool
, optional, defaults to None
) —
Whether the attention computation should always be upcasted.
int
, optional, defaults to 512) —
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
str
, optional) —
The prediction type the model was trained on. Use 'epsilon'
for all Stable Diffusion v1 models and
the Stable Diffusion v2 base model. Use 'v_prediction'
for Stable Diffusion v2.
int
, optional, defaults to None
) —
The number of input channels. If None
, it will be automatically inferred.
str
, optional, defaults to "pndm"
) —
Type of scheduler to use. Should be one of ["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm", "ddim"]
.
bool
, optional, defaults to True
) —
Whether to load the safety checker or not.
CLIPTextModel
, optional, defaults to None
) —
An instance of
CLIP to use,
specifically the clip-vit-large-patch14
variant. If this parameter is None
, the function will load a new instance of [CLIP] by itself, if
needed.
CLIPTokenizer
, optional, defaults to None
) —
An instance of
CLIPTokenizer
to use. If this parameter is None
, the function will load a new instance of [CLIPTokenizer] by
itself, if needed.
__init__
method. See example below for more information.
Instantiate a DiffusionPipeline from pretrained pipeline weights saved in the .ckpt
format. The pipeline
is set in evaluation mode (model.eval()
) by default.
Examples:
>>> from diffusers import StableDiffusionPipeline
>>> # Download pipeline from huggingface.co and cache.
>>> pipeline = StableDiffusionPipeline.from_single_file(
... "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
... )
>>> # Download pipeline from local file
>>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
>>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly")
>>> # Enable float16 and move to GPU
>>> pipeline = StableDiffusionPipeline.from_single_file(
... "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
... torch_dtype=torch.float16,
... )
>>> pipeline.to("cuda")
( pretrained_model_name_or_path_or_dict: typing.Union[str, typing.Dict[str, torch.Tensor]] **kwargs )
Parameters
str
or os.PathLike
or dict
) —
Can be either:
google/ddpm-celebahq-256
) of a pretrained model hosted on
the Hub../my_model_directory
) containing the model weights saved
with ModelMixin.save_pretrained().Union[str, os.PathLike]
, optional) —
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
bool
, optional, defaults to False
) —
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
bool
, optional, defaults to False
) —
Whether or not to resume downloading the model weights and configuration files. If set to False
, any
incompletely downloaded files are deleted.
Dict[str, str]
, optional) —
A dictionary of proxy servers to use by protocol or endpoint, for example, {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}
. The proxies are used on each request.
bool
, optional, defaults to False
) —
Whether to only load local model weights and configuration files or not. If set to True
, the model
won’t be downloaded from the Hub.
str
or bool, optional) —
The token to use as HTTP bearer authorization for remote files. If True
, the token generated from
diffusers-cli login
(stored in ~/.huggingface
) is used.
str
, optional, defaults to "main"
) —
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
str
, optional, defaults to ""
) —
The subfolder location of a model file within a larger model repository on the Hub or locally.
str
, optional) —
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
Load pretrained LoRA attention processor layers into UNet2DConditionModel and
CLIPTextModel
.
( save_directory: typing.Union[str, os.PathLike] unet_lora_layers: typing.Dict[str, typing.Union[torch.nn.modules.module.Module, torch.Tensor]] = None text_encoder_lora_layers: typing.Dict[str, torch.nn.modules.module.Module] = None is_main_process: bool = True weight_name: str = None save_function: typing.Callable = None safe_serialization: bool = False )
Parameters
str
or os.PathLike
) —
Directory to save LoRA parameters to. Will be created if it doesn’t exist.
Dict[str, torch.nn.Module]
or Dict[str, torch.Tensor]
) —
State dict of the LoRA layers corresponding to the UNet.
Dict[str, torch.nn.Module] or
Dict[str, torch.Tensor]) -- State dict of the LoRA layers corresponding to the
text_encoder`. Must explicitly pass the text
encoder LoRA state dict because it comes 🤗 Transformers.
bool
, optional, defaults to True
) —
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set is_main_process=True
only on the main
process to avoid race conditions.
Callable
) —
The function to use to save the state dictionary. Useful during distributed training when you need to
replace torch.save
with another method. Can be configured with the environment variable
DIFFUSERS_SAVE_MODE
.
Save the LoRA parameters corresponding to the UNet and text encoder.
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
to enable_sequential_cpu_offload
, this method moves one whole model at a time to the GPU when its forward
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
enable_sequential_cpu_offload
, but performance is much better due to the iterative execution of the unet
.
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
torch.device('meta') and loaded to GPU only when their specific submodule has its
forwardmethod called. Note that offloading happens on a submodule basis. Memory savings are higher than with
enable_model_cpu_offload`, but performance is lower.
( vae: FlaxAutoencoderKL text_encoder: FlaxCLIPTextModel tokenizer: CLIPTokenizer unet: FlaxUNet2DConditionModel scheduler: typing.Union[diffusers.schedulers.scheduling_ddim_flax.FlaxDDIMScheduler, diffusers.schedulers.scheduling_pndm_flax.FlaxPNDMScheduler, diffusers.schedulers.scheduling_lms_discrete_flax.FlaxLMSDiscreteScheduler, diffusers.schedulers.scheduling_dpmsolver_multistep_flax.FlaxDPMSolverMultistepScheduler] safety_checker: FlaxStableDiffusionSafetyChecker feature_extractor: CLIPImageProcessor dtype: dtype = <class 'jax.numpy.float32'> )
Parameters
FlaxCLIPTextModel
) —
Frozen text-encoder. Stable Diffusion uses the text portion of
CLIP,
specifically the clip-vit-large-patch14 variant.
CLIPTokenizer
) —
Tokenizer of class
CLIPTokenizer.
unet
to denoise the encoded image latents. Can be one of
FlaxDDIMScheduler
, FlaxLMSDiscreteScheduler
, FlaxPNDMScheduler
, or
FlaxDPMSolverMultistepScheduler
.
FlaxStableDiffusionSafetyChecker
) —
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the model card for details.
CLIPImageProcessor
) —
Model that extracts features from generated images to be used as inputs for the safety_checker
.
Pipeline for image-to-image generation using Stable Diffusion.
This model inherits from FlaxDiffusionPipeline
. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
(
prompt_ids: array
image: array
params: typing.Union[typing.Dict, flax.core.frozen_dict.FrozenDict]
prng_seed: PRNGKeyArray
strength: float = 0.8
num_inference_steps: int = 50
height: typing.Optional[int] = None
width: typing.Optional[int] = None
guidance_scale: typing.Union[float, array] = 7.5
noise: array = None
neg_prompt_ids: array = None
return_dict: bool = True
jit: bool = False
)
→
FlaxStableDiffusionPipelineOutput
or tuple
Parameters
jnp.array
) —
The prompt or prompts to guide the image generation.
jnp.array
) —
Array representing an image batch, that will be used as the starting point for the process.
Dict
or FrozenDict
) — Dictionary containing the model parameters/weights
jax.random.KeyArray
or jax.Array
) — Array containing random number generator key
float
, optional, defaults to 0.8) —
Conceptually, indicates how much to transform the reference image
. Must be between 0 and 1. image
will be used as a starting point, adding more noise to it the larger the strength
. The number of
denoising steps depends on the amount of noise initially added. When strength
is 1, added noise will
be maximum and the denoising process will run for the full number of iterations specified in
int
, optional, defaults to 50) —
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) —
The height in pixels of the generated image.
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) —
The width in pixels of the generated image.
float
, optional, defaults to 7.5) —
Guidance scale as defined in Classifier-Free Diffusion Guidance.
guidance_scale
is defined as w
of equation 2. of Imagen
Paper. Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
,
usually at the expense of lower image quality.
jnp.array
, optional) —
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. tensor will ge generated
by sampling using the supplied random generator
.
bool
, optional, defaults to True
) —
Whether or not to return a FlaxStableDiffusionPipelineOutput
instead of
a plain tuple.
bool
, defaults to False
) —
Whether to run pmap
versions of the generation and safety scoring functions. NOTE: This argument
exists because __call__
is not yet end-to-end pmap-able. It will be removed in a future release.
Returns
FlaxStableDiffusionPipelineOutput
or tuple
FlaxStableDiffusionPipelineOutput
if return_dict
is True, otherwise a
tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of
bools denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the
safety_checker`.
Function invoked when calling the pipeline for generation.
Examples:
>>> import jax
>>> import numpy as np
>>> import jax.numpy as jnp
>>> from flax.jax_utils import replicate
>>> from flax.training.common_utils import shard
>>> import requests
>>> from io import BytesIO
>>> from PIL import Image
>>> from diffusers import FlaxStableDiffusionImg2ImgPipeline
>>> def create_key(seed=0):
... return jax.random.PRNGKey(seed)
>>> rng = create_key(0)
>>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
>>> response = requests.get(url)
>>> init_img = Image.open(BytesIO(response.content)).convert("RGB")
>>> init_img = init_img.resize((768, 512))
>>> prompts = "A fantasy landscape, trending on artstation"
>>> pipeline, params = FlaxStableDiffusionImg2ImgPipeline.from_pretrained(
... "CompVis/stable-diffusion-v1-4",
... revision="flax",
... dtype=jnp.bfloat16,
... )
>>> num_samples = jax.device_count()
>>> rng = jax.random.split(rng, jax.device_count())
>>> prompt_ids, processed_image = pipeline.prepare_inputs(
... prompt=[prompts] * num_samples, image=[init_img] * num_samples
... )
>>> p_params = replicate(params)
>>> prompt_ids = shard(prompt_ids)
>>> processed_image = shard(processed_image)
>>> output = pipeline(
... prompt_ids=prompt_ids,
... image=processed_image,
... params=p_params,
... prng_seed=rng,
... strength=0.75,
... num_inference_steps=50,
... jit=True,
... height=512,
... width=768,
... ).images
>>> output_images = pipeline.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))