( dataset: Optional = None candidate_labels: Optional = None reference_dataset: Optional = None template: str = 'This sentence is {}' sample_size: int = 2 text_column: str = 'text' label_column: str = 'label' multi_label: bool = False label_names_column: str = 'label_text' ) → Dataset
Parameters
Dataset
, optional) — A Dataset to add templated examples to. List[str]
, optional) — The list of candidate
labels to be fed into the template to construct examples. str
, optional) — A dataset to take labels
from, if candidate_labels
is not supplied. str
, optional, defaults to "This sentence is {}"
) — The template
used to turn each label into a synthetic training example. This template
must include a {} for the candidate label to be inserted into the template.
For example, the default template is “This sentence is {}.” With the
candidate label “sports”, this would produce an example
“This sentence is sports”. int
, optional, defaults to 2) — The number of examples to make for
each candidate label. str
, optional, defaults to "text"
) — The name of the column
containing the text of the examples. str
, optional, defaults to "label"
) — The name of the column
in dataset
containing the labels of the examples. bool
, optional, defaults to False
) — Whether or not multiple
candidate labels can be true. str
, optional, defaults to “label_text”) — The name of the
label column in the reference_dataset
, to be used in case there is no ClassLabel
feature for the label column. Returns
Dataset
A copy of the input Dataset with templated examples added.
Raises
ValueError
ValueError
— If the input Dataset is not empty and one or both of the
provided column names are missing.Create templated examples for a reference dataset or reference labels.
If candidate_labels
is supplied, use it for generating the templates.
Otherwise, use the labels loaded from reference_dataset
.
If input Dataset is supplied, add the examples to it, otherwise create a new Dataset.
The input Dataset is assumed to have a text column with the name text_column
and a
label column with the name label_column
, which contains one-hot or multi-hot
encoded label sequences.
( dataset: Dataset label_column: str = 'label' num_samples: int = 8 seed: int = 42 )
Samples a Dataset to create an equal number of samples per class (when possible).