A Transformer model for image-like data from Flux.
( patch_size: int = 1 in_channels: int = 64 num_layers: int = 19 num_single_layers: int = 38 attention_head_dim: int = 128 num_attention_heads: int = 24 joint_attention_dim: int = 4096 pooled_projection_dim: int = 768 guidance_embeds: bool = False axes_dims_rope: List = [16, 56, 56] )
Parameters
int
) — Patch size to turn the input data into small patches. int
, optional, defaults to 16) — The number of channels in the input. int
, optional, defaults to 18) — The number of layers of MMDiT blocks to use. int
, optional, defaults to 18) — The number of layers of single DiT blocks to use. int
, optional, defaults to 64) — The number of channels in each head. int
, optional, defaults to 18) — The number of heads to use for multi-head attention. int
, optional) — The number of encoder_hidden_states
dimensions to use. int
) — Number of dimensions to use when projecting the pooled_projections
. bool
, defaults to False) — Whether to use guidance embeddings. The Transformer model introduced in Flux.
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
( hidden_states: Tensor encoder_hidden_states: Tensor = None pooled_projections: Tensor = None timestep: LongTensor = None img_ids: Tensor = None txt_ids: Tensor = None guidance: Tensor = None joint_attention_kwargs: Optional = None return_dict: bool = True )
Parameters
torch.FloatTensor
of shape (batch size, channel, height, width)
) —
Input hidden_states
. torch.FloatTensor
of shape (batch size, sequence_len, embed_dims)
) —
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. torch.FloatTensor
of shape (batch_size, projection_dim)
) — Embeddings projected
from the embeddings of input conditions. torch.LongTensor
) —
Used to indicate denoising step.
block_controlnet_hidden_states — (list
of torch.Tensor
):
A list of tensors that if specified are added to the residuals of transformer blocks. dict
, optional) —
A kwargs dictionary that if specified is passed along to the AttentionProcessor
as defined under
self.processor
in
diffusers.models.attention_processor. bool
, optional, defaults to True
) —
Whether or not to return a ~models.transformer_2d.Transformer2DModelOutput
instead of a plain
tuple. The FluxTransformer2DModel forward method.