The pipelines are a great and easy way to use models for inference. These pipelines are objects that abstract most of the complex code from the library, offering a simple API dedicated to several tasks.
Currently the supported tasks are:
image-classification
object-detection
(Supported model types - yolox, yolov3, yolov5, yolov8)image-segmentation
(Supported model types - hrnet, semantic_fpn)The pipeline abstraction is a wrapper around all the available pipelines for specific tasks. The pipeline() function automatically loads a default model and tokenizer/feature-extractor capable of performing inference for your task.
>>> from optimum.amd.ryzenai import pipeline
>>> detector = pipeline("object-detection")
~pipelines.pipeline
function:>>> import requests
>>> from PIL import Image
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> detector(image)
[ { 'box': {'xmax': 325, 'xmin': 2, 'ymax': 465, 'ymin': 50},
'label': 15.0,
'score': 0.7081549763679504},
{ 'box': {'xmax': 630, 'xmin': 347, 'ymax': 381, 'ymin': 16},
'label': 15.0,
'score': 0.6494212746620178},
{ 'box': {'xmax': 369, 'xmin': 335, 'ymax': 187, 'ymin': 76},
'label': 65.0,
'score': 0.6064183115959167},
{ 'box': {'xmax': 645, 'xmin': 2, 'ymax': 475, 'ymin': 4},
'label': 57.0,
'score': 0.599224865436554},
{ 'box': {'xmax': 174, 'xmin': 40, 'ymax': 116, 'ymin': 73},
'label': 65.0,
'score': 0.408765971660614}]
The pipeline() function can load Ryzen AI supported models from the Hugging Face Hub. Once you have picked an appropriate model, you can create the pipeline() by specifying the model repository:
>>> import requests
>>> from PIL import Image
>>> from optimum.amd.ryzenai import pipeline
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # Hugging Face hub model-id with the quantized ONNX model
>>> model_id = "mohitsha/timm-resnet18-onnx-quantized-ryzen"
>>> pipe = pipeline("image-classification", model=model_id)
>>> print(pipe(image))
It is also possible to load the model with the RyzenModelForXXX
class. For example, here is how you can load the ~ryzenai.RyzenModelForImageClassification
class for image classification:
>>> import requests
>>> from PIL import Image
>>> from optimum.amd.ryzenai import RyzenAIModelForImageClassification
>>> from optimum.amd.ryzenai import pipeline
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # Hugging Face hub model-id with the quantized ONNX model
>>> model_id = "mohitsha/timm-resnet18-onnx-quantized-ryzen"
>>> model = RyzenAIModelForImageClassification.from_pretrained(model_id)
>>> pipe = pipeline("image-classification", model=model)
>>> print(pipe(image))
For some models, model_type
and/or image_preprocessor
has to be provided in addition to the model_id for inference. For example, here is how you can run inference using yolox
:
>>> import requests
>>> from PIL import Image
>>> from optimum.amd.ryzenai import pipeline
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> model_id = "amd/yolox-s"
>>> pipe = pipeline("object-detection", model=model_id, model_type="yolox")
>>> print(pipe(image))