File size: 3,296 Bytes
faa2674
 
 
 
 
 
 
 
 
 
b974707
faa2674
b974707
faa2674
 
 
 
 
 
3caca3a
faa2674
 
 
 
 
3caca3a
faa2674
 
 
3caca3a
faa2674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3caca3a
faa2674
 
 
 
 
 
 
3caca3a
faa2674
 
 
 
 
b228a2e
faa2674
b228a2e
faa2674
 
 
 
 
 
 
3caca3a
faa2674
 
b974707
 
 
b228a2e
 
b974707
 
 
 
 
 
 
 
 
faa2674
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
license: apache-2.0
---

# Preparing ISO

## Datasets

We provide the OccScanNet dataset files [here](https://huggingface.co/datasets/hongxiaoy/OccScanNet/tree/main), but you should agree the term of use of *ScanNet*, *CompleteScanNet* dataset.

For **a simplified way** to  prepare the dataset, you **just** download the `preprocessed_data` to `ISO/data/occscannet` as `gathered_data` and download the `posed_images` to `ISO/data/scannet`.

However, the *complete dataset generating process* is provided as followed:

### OccScanNet

1. Clone the official MMDetection3D repository.

```bash
git clone https://github.com/open-mmlab/mmdetection3d.git ISO_mm
```

2. Swith to `v1.3.0` version.

```bash
cd ISO_mm
git checkout v1.3.0
```

3. Download the *ScanNet* dataset following [instructions](https://github.com/open-mmlab/mmdetection3d/tree/v1.3.0/data/scannet) and place `scans` directory as `ISO_mm/data/scannet/scans`.

> :bulb: Note
>
> Recommend you create a `posed_images` directory at data disk and link the `scans` directory and `posed_images` directory to `data/scannet`, then run the following command.

4. In this directory, extract RGB image with poses by running 

```bash
python extract_posed_images.py --max-images-per-scene 100
```

> :bulb: Note
>
> Add `--max-images-per-scene -1` to disable limiting number of images per scene. ScanNet scenes contain up to 5000+ frames per each. After extraction, all the .jpg images require 2 Tb disk space. The recommended 300 images per scene require less then 100 Gb. For example multi-view 3d detector ImVoxelNet samples 50 and 100 images per training and test scene.

Then obtained the following directory structure. 

```
scannet
β”œβ”€β”€ meta_data
β”œβ”€β”€ posed_images
β”‚   β”œβ”€β”€ scenexxxx_xx
β”‚   β”‚   β”œβ”€β”€ xxxxxx.txt
β”‚   β”‚   β”œβ”€β”€ xxxxxx.jpg
β”‚   β”‚   β”œβ”€β”€ intrinsic.txt
β”œβ”€β”€ scans
β”œβ”€β”€ batch_load_scannet_data.py
β”œβ”€β”€ extract_posed_images.py
β”œβ”€β”€ load_scannet_data.py
β”œβ”€β”€ README.md
β”œβ”€β”€ scannet_utils.py
```

5. Download original *CompleteScanNet*

The ground truth labels we used are from [SCFusion](https://github.com/ShunChengWu/SCFusion#generate-gt). Ground truth is available at [here](https://github.com/ShunChengWu/SCFusion#generate-gt).

The ground truth label should be placed as `ISO_mm/data/completescannet/gt`.

6. Reformulate *CompleteScanNet*

```bash
python preprocess_gt.py
```

The resulted directory is `ISO_mm/data/completescannet/preprocessed`.

Now, we obtained the following directory structure.

```
completescannet
β”œβ”€β”€ gt
β”‚   β”œβ”€β”€ scenexxxx_xx.ply
β”œβ”€β”€ preprocessed
β”‚   β”œβ”€β”€ scenexxxx_xx.npy
β”œβ”€β”€ preprocess_gt.py
β”œβ”€β”€ visualization.py
```

7. Create the *OccScanNet*

First, you should create a directories with name `preprocessed_voxels` and `gathered_data` in data disk and link them to the `ISO_mm/data/occscannet`.

```bash
python generate_gt.py
```

Now, we obtained the following directory structure.

```
occscannet
β”œβ”€β”€ preprocessed_voxels
β”œβ”€β”€ gathered_data
β”œβ”€β”€ generate_gt.py
β”œβ”€β”€ not_aligns.txt
β”œβ”€β”€ wrong_scenes.txt
β”œβ”€β”€ bad_scenes.txt
β”œβ”€β”€ used_scannames.txt
```

### OccScanNet-mini

The scenes we used in OccScanNet-mini is reflected in the config file.