File size: 3,296 Bytes
faa2674 b974707 faa2674 b974707 faa2674 3caca3a faa2674 3caca3a faa2674 3caca3a faa2674 3caca3a faa2674 3caca3a faa2674 b228a2e faa2674 b228a2e faa2674 3caca3a faa2674 b974707 b228a2e b974707 faa2674 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
license: apache-2.0
---
# Preparing ISO
## Datasets
We provide the OccScanNet dataset files [here](https://huggingface.co/datasets/hongxiaoy/OccScanNet/tree/main), but you should agree the term of use of *ScanNet*, *CompleteScanNet* dataset.
For **a simplified way** to prepare the dataset, you **just** download the `preprocessed_data` to `ISO/data/occscannet` as `gathered_data` and download the `posed_images` to `ISO/data/scannet`.
However, the *complete dataset generating process* is provided as followed:
### OccScanNet
1. Clone the official MMDetection3D repository.
```bash
git clone https://github.com/open-mmlab/mmdetection3d.git ISO_mm
```
2. Swith to `v1.3.0` version.
```bash
cd ISO_mm
git checkout v1.3.0
```
3. Download the *ScanNet* dataset following [instructions](https://github.com/open-mmlab/mmdetection3d/tree/v1.3.0/data/scannet) and place `scans` directory as `ISO_mm/data/scannet/scans`.
> :bulb: Note
>
> Recommend you create a `posed_images` directory at data disk and link the `scans` directory and `posed_images` directory to `data/scannet`, then run the following command.
4. In this directory, extract RGB image with poses by running
```bash
python extract_posed_images.py --max-images-per-scene 100
```
> :bulb: Note
>
> Add `--max-images-per-scene -1` to disable limiting number of images per scene. ScanNet scenes contain up to 5000+ frames per each. After extraction, all the .jpg images require 2 Tb disk space. The recommended 300 images per scene require less then 100 Gb. For example multi-view 3d detector ImVoxelNet samples 50 and 100 images per training and test scene.
Then obtained the following directory structure.
```
scannet
βββ meta_data
βββ posed_images
β βββ scenexxxx_xx
β β βββ xxxxxx.txt
β β βββ xxxxxx.jpg
β β βββ intrinsic.txt
βββ scans
βββ batch_load_scannet_data.py
βββ extract_posed_images.py
βββ load_scannet_data.py
βββ README.md
βββ scannet_utils.py
```
5. Download original *CompleteScanNet*
The ground truth labels we used are from [SCFusion](https://github.com/ShunChengWu/SCFusion#generate-gt). Ground truth is available at [here](https://github.com/ShunChengWu/SCFusion#generate-gt).
The ground truth label should be placed as `ISO_mm/data/completescannet/gt`.
6. Reformulate *CompleteScanNet*
```bash
python preprocess_gt.py
```
The resulted directory is `ISO_mm/data/completescannet/preprocessed`.
Now, we obtained the following directory structure.
```
completescannet
βββ gt
β βββ scenexxxx_xx.ply
βββ preprocessed
β βββ scenexxxx_xx.npy
βββ preprocess_gt.py
βββ visualization.py
```
7. Create the *OccScanNet*
First, you should create a directories with name `preprocessed_voxels` and `gathered_data` in data disk and link them to the `ISO_mm/data/occscannet`.
```bash
python generate_gt.py
```
Now, we obtained the following directory structure.
```
occscannet
βββ preprocessed_voxels
βββ gathered_data
βββ generate_gt.py
βββ not_aligns.txt
βββ wrong_scenes.txt
βββ bad_scenes.txt
βββ used_scannames.txt
```
### OccScanNet-mini
The scenes we used in OccScanNet-mini is reflected in the config file. |