File size: 16,064 Bytes
d46080c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import argparse
from functools import partial
import os
from tqdm import tqdm
import glob
import numpy as np
import cv2
from sklearn.neighbors import KDTree
from collections import Counter
from PIL import Image
from mmengine import track_parallel_progress
def load_voxels(path):
"""Load voxel labels from file.
Args:
path (str): The path of the voxel labels file.
Returns:
ndarray: The voxel labels with shape (N, 4), 4 is for [x, y, z, label].
"""
labels = np.load(path)
if labels.shape[1] == 7:
labels = labels[:, [0, 1, 2, 6]]
return labels
def _downsample_label(label, voxel_size=(240, 144, 240), downscale=4):
r"""downsample the labeled data,
code taken from https://github.com/waterljwant/SSC/blob/master/dataloaders/dataloader.py#L262
Shape:
label, (240, 144, 240)
label_downscale, if downsample==4, then (60, 36, 60)
"""
if downscale == 1:
return label
ds = downscale
small_size = (
voxel_size[0] // ds,
voxel_size[1] // ds,
voxel_size[2] // ds,
) # small size
label_downscale = np.zeros(small_size, dtype=np.uint8)
empty_t = 0.95 * ds * ds * ds # threshold
s01 = small_size[0] * small_size[1]
label_i = np.zeros((ds, ds, ds), dtype=np.int32)
for i in range(small_size[0] * small_size[1] * small_size[2]):
z = int(i / s01)
y = int((i - z * s01) / small_size[0])
x = int(i - z * s01 - y * small_size[0])
label_i[:, :, :] = label[
x * ds : (x + 1) * ds, y * ds : (y + 1) * ds, z * ds : (z + 1) * ds
]
label_bin = label_i.flatten()
zero_count_0 = np.array(np.where(label_bin == 0)).size
zero_count_255 = np.array(np.where(label_bin == 255)).size
zero_count = zero_count_0 + zero_count_255
if zero_count > empty_t:
label_downscale[x, y, z] = 0 if zero_count_0 > zero_count_255 else 255
else:
label_i_s = label_bin[
np.where(np.logical_and(label_bin > 0, label_bin < 255))
]
label_downscale[x, y, z] = np.argmax(np.bincount(label_i_s))
return label_downscale
# 1. 从列表中删掉 pose 为 nan 的场景
def clear_posed_images(scene_list):
# 从 mmdet3d 处理得到的有问题场景sens列表
# TODO: how to generate wrong_scenes.txt?
with open('wrong_scenes.txt', 'r') as f:
wrongs = f.readlines()
# TODO: how to generate not_aligns.txt?
with open('not_aligns.txt', 'r') as f:
not_aligns = f.readlines()
# 清理为只有场景名称
wrongs = [w.split('/')[1] for w in wrongs]
wrongs = sorted(list(set(wrongs))) # 212 scenes
not_aligns = sorted([s.strip() for s in not_aligns])
# 除去这些场景的图片
scene_list = sorted(list(set(scene_list) - set(wrongs)))
scene_list = sorted(list(set(scene_list) - set(not_aligns)))
return scene_list
# 2. 生成子场景的体素标签
def generate_subvoxels(name):
# print(name)
# basic scene parameters
height_belowfloor = - 0.05
voxUnit = 0.08 # 0.05 m
voxSizeCam = np.array([60, 60, 60]) # 96 x 96 x 96 voxs x y z in cam coordinate
voxSize = np.array([60, 60, 36]) # 96 x 96 x 64 voxs x y z in world coordinate
voxRangeExtremesCam = np.stack([-voxSizeCam * voxUnit / 2.,
-voxSizeCam * voxUnit / 2. + voxSizeCam * voxUnit]).T
voxRangeExtremesCam[-1, 0] = 0
voxRangeExtremesCam[-1, 1] = 6.8
# voxel origin in cam coordinate x y z in cam coordinate
voxOriginCam = np.mean(voxRangeExtremesCam, axis=1, keepdims=True)
# for name in tqdm(scenes_name):
poses = glob.glob(os.path.join('../scannet/posed_images', name, '*.txt'))
poses = sorted(poses)
if len(poses) == 0:
return
imgs = glob.glob(os.path.join('../scannet/posed_images', name, '*.jpg'))
imgs = sorted(imgs)
intrinsic = poses.pop(-1)
intrinsic = np.loadtxt(intrinsic)
for pose, img in zip(poses, imgs):
framename = os.path.basename(pose)[:-4]
extCam2World = np.loadtxt(pose)
# if os.path.exists(f'preprocessed_voxels/{name}/{framename}.npy'):
# continue
if np.isneginf(extCam2World).any():
continue
img = cv2.imread(img)
h, w, c = img.shape
voxOriginWorld = extCam2World[:3, :3] @ voxOriginCam + extCam2World[:3, -1:]
delta = np.array([[voxSize[0]/2*voxUnit], [voxSize[1]/2*voxUnit], [voxSize[2]/2*voxUnit]])
voxOriginWorld -= delta
voxOriginWorld[2, 0] = height_belowfloor
if os.path.exists(f"../completescannet/preprocessed/{name}.npy"):
scene_voxels = load_voxels(f"../completescannet/preprocessed/{name}.npy")
else:
continue
scene_voxels_delta = np.abs(scene_voxels[:, :3] - voxOriginWorld.reshape(-1)) # TODO: abs? or 0<=x<=4.8
mask = np.logical_and(scene_voxels_delta[:, 0] <=4.8,
np.logical_and(scene_voxels_delta[:, 1] <= 4.8,
scene_voxels_delta[:, 2] <= 4.8))
voxels = scene_voxels[mask]
xs = np.arange(voxOriginWorld[0, 0], voxOriginWorld[0, 0] + 100*voxUnit, voxUnit)[:voxSize[0]]
ys = np.arange(voxOriginWorld[1, 0], voxOriginWorld[1, 0] + 100*voxUnit, voxUnit)[:voxSize[1]]
zs = np.arange(voxOriginWorld[2, 0], voxOriginWorld[2, 0] + 100*voxUnit, voxUnit)[:voxSize[2]]
gridPtsWorldX, gridPtsWorldY, gridPtsWorldZ = np.meshgrid(xs, ys, zs)
gridPtsWorld = np.stack([gridPtsWorldX.flatten(),
gridPtsWorldY.flatten(),
gridPtsWorldZ.flatten()], axis=1)
gridPtsLabel = np.zeros((gridPtsWorld.shape[0]))
if voxels.shape[0] <= 0:
continue
kdtree = KDTree(voxels[:, :3], leaf_size=10)
dist, ind = kdtree.query(gridPtsWorld)
dist, ind = dist.reshape(-1), ind.reshape(-1)
mask = dist <= voxUnit
gridPtsLabel[mask] = voxels[:, -1][ind[mask]]
gridPtsWorld = np.hstack([gridPtsWorld, gridPtsLabel.reshape(-1, 1)])
g = gridPtsWorld[:, -1].reshape(voxSize[0], voxSize[1], voxSize[2])
g_not_0 = np.where(g > 0)
if len(g_not_0) == 0:
continue
g_not_0_x = g_not_0[0]
g_not_0_y = g_not_0[1]
if len(g_not_0_x) == 0:
continue
if len(g_not_0_y) == 0:
continue
valid_x_min = g_not_0_x.min()
valid_x_max = g_not_0_x.max()
valid_y_min = g_not_0_y.min()
valid_y_max = g_not_0_y.max()
# print(valid_x_min, valid_x_max, valid_y_min, valid_y_max)
# print(valid_x_min, valid_x_max, valid_y_min, valid_y_max)
mask = np.zeros_like(g)
if valid_x_min != valid_x_max and valid_y_min != valid_y_max:
mask[valid_x_min:valid_x_max, valid_y_min:valid_y_max, :] = 1
mask = 1 - mask #
mask = mask.astype(np.bool_)
g[mask] = 255
else:
continue
gridPtsWorld[:, -1] = g.reshape(-1)
voxels_cam = (np.linalg.inv(extCam2World)[:3, :3] @ gridPtsWorld[:, :3].T \
+ np.linalg.inv(extCam2World)[:3, -1:]).T
voxels_pix = (intrinsic[:3, :3] @ voxels_cam.T).T
voxels_pix = voxels_pix / voxels_pix[:, -1:]
mask = np.logical_and(voxels_pix[:, 0] >= 0,
np.logical_and(voxels_pix[:, 0] < w,
np.logical_and(voxels_pix[:, 1] >= 0,
np.logical_and(voxels_pix[:, 1] < h,
voxels_cam[:, 2] > 0))))
inroom = gridPtsWorld[:, -1] != 255
mask = np.logical_and(~mask, inroom)
gridPtsWorld[mask, -1] = 0
os.makedirs(f'preprocessed_voxels/{name}', exist_ok=True)
np.save(f'preprocessed_voxels/{name}/{framename}.npy', gridPtsWorld)
# print("Save gt to", f'preprocessed_voxels/{name}/{framename}.npy')
# 3. 生成那些类别少于2, 有效语义体素数量少于5%的场景 和相机位姿还是有错误的那些场景
def get_badposescene():
bad_scenes = []
scenenames = glob.glob(os.path.join('../completescannet/preprocessed', '*.npy'))
scenenames = sorted(scenenames)
for name in tqdm(scenenames):
voxels = load_voxels(name)
voxelrange = [voxels[:, 0].min(),
voxels[:, 1].min(),
voxels[:, 2].min(),
voxels[:, 0].max(),
voxels[:, 1].max(),
voxels[:, 2].max(),]
print('vox range: ', voxelrange)
basename = os.path.basename(name)[:-4]
npys = glob.glob(os.path.join('preprocessed_voxels', basename, '*.npy'))
npys = sorted(npys)
for npy in npys:
jpg = os.path.basename(npy)[:-4]+'.txt'
cam_pose_path = os.path.join('../scannet/posed_images', basename, jpg)
cam_pose = np.loadtxt(cam_pose_path)
cam_origin = (cam_pose[:3, :3] @ np.zeros((1, 3)).T + cam_pose[:3, -1:]).T
print('cam_o: ', cam_origin)
x, y, z = cam_origin[0]
xmin, ymin, zmin, xmax, ymax, zmax = voxelrange
zmax = 3.0
in_x = xmin < x < xmax
in_y = ymin < y < ymax
in_z = zmin < z < zmax
valid = in_x & in_y & in_z
if not valid:
bad_scenes.append(npy)
bad_scenes.append('\n')
# with open('bad_scenes.txt', 'w') as f:
# f.writelines(bad_scenes)
# pprint(bad_scenes)
scene_path = os.path.join('preprocessed_voxels', name)
npys = glob.glob(os.path.join(scene_path, '*.npy'))
npys = sorted(npys)
for vox in npys:
voxels = np.load(vox)
labels = voxels[:, -1].tolist()
cnt = Counter(labels)
total = 0
valid = 0
for i in cnt.keys():
total += cnt[i]
if i != 0.0 and i != 255.0:
valid += 1
outroom = cnt[255.0]
empty = cnt[0.0]
if valid < 2:
bad_scenes.append(vox)
continue
if (outroom / total) > 0.95:
bad_scenes.append(vox)
continue
if (empty / total) > 0.95:
bad_scenes.append(vox)
continue
if ((empty + outroom) / total) > 0.95:
bad_scenes.append(vox)
continue
with open('bad_scenes.txt', 'w') as f:
f.writelines(bad_scenes)
# print(bad_scenes)
# 4. 整合数据
def gather_data(scene_list):
scenes = os.listdir('preprocessed_voxels')
scenes = set(sorted(scenes))
scenes = sorted(list(set(scene_list) & scenes))
for scene in scenes:
scene_path = os.path.join('preprocessed_voxels', scene)
scene_name = scene
os.makedirs(os.path.join('gathered_data', scene_name), exist_ok=True)
npys = glob.glob(os.path.join(scene_path, '*.npy'))
npys = sorted(npys)
for npy in npys:
data = {}
npy_name = os.path.basename(npy)[:-4]
npy_path = npy
img_path = os.path.join('../scannet/posed_images', scene_name, npy_name+'.jpg')
img_path = os.path.abspath(img_path)
depth_path = os.path.join('../scannet/posed_images', scene_name, npy_name+'.png')
depth_path = os.path.abspath(depth_path)
cam_pose_path = os.path.join('../scannet/posed_images', scene_name, npy_name+'.txt')
cam_intrin_path = os.path.join('../scannet/posed_images', scene_name, 'intrinsic.txt')
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
depth_img = Image.open(depth_path).convert('I;16')
depth_img = np.array(depth_img) / 1000.0
data['img'] = img_path
data['depth_gt'] = depth_path
cam_pose = np.loadtxt(cam_pose_path)
data['cam_pose'] = cam_pose
intrinsic = np.loadtxt(cam_intrin_path)
data['intrinsic'] = intrinsic
target_1_4 = np.load(npy_path)
data['target_1_4'] = target_1_4[:, -1].reshape(60, 60, 36)
voxel_origin = target_1_4[:, 0].min(), target_1_4[:, 1].min(), target_1_4[:, 2].min()
data['voxel_origin'] = voxel_origin
target_1_16 = _downsample_label(target_1_4[:, -1].reshape(60, 60, 36), (60, 60, 36), 4)
data['target_1_16'] = target_1_16
savepth = os.path.join('gathered_data', scene_name, npy_name+'.pkl')
print(savepth)
with open(savepth, "wb") as handle:
import pickle
pickle.dump(data, handle, protocol=pickle.HIGHEST_PROTOCOL)
# np.save(savepth, data)
def generate_train_val_list():
with open('not_aligns.txt', 'r') as f:
not_aligns = f.readlines()
for i in range(len(not_aligns)):
not_aligns[i] = not_aligns[i].strip()
scan_names = os.listdir('gathered_data')
start = len(scan_names)
scan_names = list(set(scan_names) - set(not_aligns))
end = len(scan_names)
used_scan_names = sorted(scan_names)
used_scan_names.pop(-1)
with open('used_scan_names.txt', 'w') as f:
f.writelines('\n'.join(used_scan_names))
train_used_subscenes = []
val_used_subscenes = []
for s in used_scan_names:
paths = glob.glob(os.path.join('gathered_data', s, '*.pkl'))
paths = sorted(paths)
np.random.seed(21)
paths = np.random.permutation(paths)
n_paths = len(paths)
n_train = int(n_paths * 0.7)
train_paths = paths[:n_train]
val_paths = paths[n_train:]
train_used_subscenes.extend(train_paths)
val_used_subscenes.extend(val_paths)
with open('train_subscenes.txt', 'w') as f:
f.writelines('\n'.join(sorted(train_used_subscenes)))
with open('val_subscenes.txt', 'w') as f:
f.writelines('\n'.join(sorted(val_used_subscenes)))
def parse_args():
parser = argparse.ArgumentParser(description='Prepare for the ScanNetOcc Dataset.')
parser.add_argument('--outpath', type=str, required=False, help='Output path of the generated GT labels.')
args = parser.parse_args()
return args
def main():
# args = parse_args()
# if not os.path.exists(args.outpath):
# os.makedirs(args.outpath, exist_ok=True)
scene_name_list = sorted(os.listdir('../scannet/posed_images'))
# scene_name_list = sorted(list(set(scene_name_list) - set(not_aligns)))
failed_scene = []
# Step 1:
scene_name_list = clear_posed_images(scene_name_list)
print("===== Finish Step 1 =====")
# Step 2:
track_parallel_progress(generate_subvoxels,
scene_name_list,
nproc=12)
print("===== Finish Step 2 =====")
# # Step 3:
# TODO: what is bad pose scene?
get_badposescene()
with open('bad_scenes.txt', 'r') as f:
bs = f.readlines()
bs = [b.strip() for b in bs]
bs = list(set(bs))
# TODO: Remove or not?
for s in bs:
ss = s.replace('\n', '')
print(ss, "to be removed")
# path = os.path.join(*ss)
# print(path)
os.remove(ss)
print("===== Finish Step 3 =====")
# Step 4:
gather_data(scene_name_list)
print("===== Finish Step 4 =====")
# Step 5:
generate_train_val_list()
print("===== Finish Step 5 =====")
if __name__ == "__main__":
main()
|