import os import numpy as np from plyfile import PlyData from tqdm import tqdm def preprocess(gt_path, save_path): """Preprocess the CompleteScanNet dataset gt labels. Args: gt_path (str): Path to `CompleteScanNet_GT` directory. save_path (str): Path where the preprocessed gt labels to be saved. The preprocessed labels is a ndarray each with shape (N, 7), N is for voxels number, 7 is for [x, y, z, r, g, b, label]. """ os.makedirs(save_path, exist_ok=True) ply_paths = os.listdir(gt_path) for p in tqdm(ply_paths, desc="Preprocessing gt labels: ", colour='green'): pth = os.path.join(gt_path, p) ply_data = PlyData.read(pth) vertex = ply_data['vertex'] new_xs = np.array(vertex['z']) new_ys = np.array(vertex['x']) new_zs = np.array(vertex['y']) new_rs = np.array(vertex['red']) new_gs = np.array(vertex['green']) new_bs = np.array(vertex['blue']) new_labels = np.array(vertex['label']) voxels = np.stack([new_xs, new_ys, new_zs, new_rs, new_gs, new_bs, new_labels], axis=1) filename = os.path.join(save_path, p) filename = filename.replace('ply', 'npy') with open(filename, 'wb') as fp: np.save(fp, voxels) if __name__ == "__main__": gt = os.getenv["COMPLETE_SCANNET_GT_PATH"] preprocessed = os.getenv["COMPLETE_SCANNET_PREPROCESS_PATH"] preprocess(gt, preprocessed)