Datasets:
Size:
10K - 100K
License:
:sparkles: Update documents and improve code
Browse files
README.md
CHANGED
@@ -12,7 +12,7 @@ multilinguality:
|
|
12 |
- translation
|
13 |
pretty_name: JSICK
|
14 |
size_categories:
|
15 |
-
-
|
16 |
source_datasets:
|
17 |
- extended|sick
|
18 |
tags:
|
@@ -207,35 +207,31 @@ A version adopting the column names of a typical NLI dataset.
|
|
207 |
|
208 |
### Data Splits
|
209 |
|
210 |
-
| name | train | validation |
|
211 |
-
| --------------- | ----: | ---------: |
|
212 |
-
| base |
|
213 |
-
| original |
|
214 |
-
| stress | | |
|
215 |
-
| stress-original | | |
|
216 |
-
|
217 |
|
218 |
|
219 |
### Annotations
|
220 |
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
For each linguistic phenomenon, a template for the premise sentence P is fixed, and multiple templates for hypothesis sentences H are created.
|
226 |
-
In total, 144 templates for (P, H) pairs are produced.
|
227 |
-
Each pair of premise and hypothesis sentences is tagged with an entailment label (entailment or non-entailment), a structural pattern, and a linguistic phenomenon label.
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
The
|
232 |
-
The
|
233 |
|
234 |
|
235 |
## Additional Information
|
236 |
|
237 |
-
- [verypluming/
|
238 |
-
- [
|
|
|
239 |
|
240 |
### Licensing Information
|
241 |
|
@@ -244,15 +240,32 @@ CC BY-SA 4.0
|
|
244 |
### Citation Information
|
245 |
|
246 |
```bibtex
|
247 |
-
@
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
}
|
254 |
```
|
255 |
|
256 |
### Contributions
|
257 |
|
258 |
-
Thanks to [Hitomi Yanaka](https://hitomiyanaka.mystrikingly.com/) and Koji Mineshima for creating this dataset.
|
|
|
12 |
- translation
|
13 |
pretty_name: JSICK
|
14 |
size_categories:
|
15 |
+
- 10K<n<100K
|
16 |
source_datasets:
|
17 |
- extended|sick
|
18 |
tags:
|
|
|
207 |
|
208 |
### Data Splits
|
209 |
|
210 |
+
| name | train | validation | test |
|
211 |
+
| --------------- | ----: | ---------: | ----: |
|
212 |
+
| base | 4,500 | | 4,927 |
|
213 |
+
| original | 4,500 | | 4,927 |
|
214 |
+
| stress | | | 900 |
|
215 |
+
| stress-original | | | 900 |
|
|
|
216 |
|
217 |
|
218 |
### Annotations
|
219 |
|
220 |
+
To annotate the JSICK dataset, they used the crowdsourcing platform "Lancers" to re-annotate entailment labels and similarity scores for JSICK.
|
221 |
+
They had six native Japanese speakers as annotators, who were randomly selected from the platform.
|
222 |
+
The annotators were asked to fully understand the guidelines and provide the same labels as gold labels for ten test questions.
|
|
|
|
|
|
|
|
|
223 |
|
224 |
+
For entailment labels, they adopted annotations that were agreed upon by a majority vote as gold labels and checked whether the majority judgment vote was semantically valid for each example.
|
225 |
+
For similarity scores, they used the average of the annotation results as gold scores.
|
226 |
+
The raw annotations with the JSICK dataset are [publicly available](https://github.com/verypluming/JSICK/blob/main/jsick/jsick-all-annotations.tsv).
|
227 |
+
The average annotation time was 1 minute per pair, and Krippendorff's alpha for the entailment labels was 0.65.
|
228 |
|
229 |
|
230 |
## Additional Information
|
231 |
|
232 |
+
- [verypluming/JSICK](https://github.com/verypluming/JSICK)
|
233 |
+
- [Compositional Evaluation on Japanese Textual Entailment and Similarity](https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00518/113850/Compositional-Evaluation-on-Japanese-Textual)
|
234 |
+
- [JSICK: 日本語構成的推論・類似度データセットの構築](https://www.jstage.jst.go.jp/article/pjsai/JSAI2021/0/JSAI2021_4J3GS6f02/_article/-char/ja)
|
235 |
|
236 |
### Licensing Information
|
237 |
|
|
|
240 |
### Citation Information
|
241 |
|
242 |
```bibtex
|
243 |
+
@article{yanaka-mineshima-2022-compositional,
|
244 |
+
title = "Compositional Evaluation on {J}apanese Textual Entailment and Similarity",
|
245 |
+
author = "Yanaka, Hitomi and
|
246 |
+
Mineshima, Koji",
|
247 |
+
journal = "Transactions of the Association for Computational Linguistics",
|
248 |
+
volume = "10",
|
249 |
+
year = "2022",
|
250 |
+
address = "Cambridge, MA",
|
251 |
+
publisher = "MIT Press",
|
252 |
+
url = "https://aclanthology.org/2022.tacl-1.73",
|
253 |
+
doi = "10.1162/tacl_a_00518",
|
254 |
+
pages = "1266--1284",
|
255 |
+
}
|
256 |
+
|
257 |
+
@article{谷中 瞳2021,
|
258 |
+
title={JSICK: 日本語構成的推論・類似度データセットの構築},
|
259 |
+
author={谷中 瞳 and 峯島 宏次},
|
260 |
+
journal={人工知能学会全国大会論文集},
|
261 |
+
volume={JSAI2021},
|
262 |
+
number={ },
|
263 |
+
pages={4J3GS6f02-4J3GS6f02},
|
264 |
+
year={2021},
|
265 |
+
doi={10.11517/pjsai.JSAI2021.0_4J3GS6f02}
|
266 |
}
|
267 |
```
|
268 |
|
269 |
### Contributions
|
270 |
|
271 |
+
Thanks to [Hitomi Yanaka](https://hitomiyanaka.mystrikingly.com/) and [Koji Mineshima](https://abelard.flet.keio.ac.jp/person/minesima/index-j.html) for creating this dataset.
|
jsick.py
CHANGED
@@ -51,12 +51,12 @@ class JSICKDataset(ds.GeneratorBasedBuilder):
|
|
51 |
ds.BuilderConfig(
|
52 |
name="stress",
|
53 |
version=VERSION,
|
54 |
-
description="
|
55 |
),
|
56 |
ds.BuilderConfig(
|
57 |
name="stress-original",
|
58 |
version=VERSION,
|
59 |
-
description="
|
60 |
),
|
61 |
]
|
62 |
|
|
|
51 |
ds.BuilderConfig(
|
52 |
name="stress",
|
53 |
version=VERSION,
|
54 |
+
description="The dataset to investigate whether models capture word order and case particles in Japanese.",
|
55 |
),
|
56 |
ds.BuilderConfig(
|
57 |
name="stress-original",
|
58 |
version=VERSION,
|
59 |
+
description="The original version of JSICK-stress Test set retaining the unaltered column names.",
|
60 |
),
|
61 |
]
|
62 |
|