repo_name
stringlengths
7
92
path
stringlengths
5
149
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
911
693k
license
stringclasses
15 values
ratnania/pigasus
doc/manual/include/demo/test_neumann_quartcircle.py
1
2730
#! /usr/bin/python # ... try: from matplotlib import pyplot as plt PLOT=True except ImportError: PLOT=False # ... import numpy as np from pigasus.gallery.poisson import * import sys import inspect filename = inspect.getfile(inspect.currentframe()) # script filename (usually with path) # ... sin = np.sin ; cos = np.cos ; pi = np.pi ; exp = np.exp # ... #----------------------------------- try: nx = int(sys.argv[1]) except: nx = 31 try: ny = int(sys.argv[2]) except: ny = 31 try: px = int(sys.argv[3]) except: px = 2 try: py = int(sys.argv[4]) except: py = 2 from igakit.cad_geometry import quart_circle as domain geo = domain(n=[nx,ny],p=[px,py]) #----------------------------------- # ... # exact solution # ... R = 1. r = 0.5 c = 1. # for neumann #c = pi / (R**2-r**2) # for all dirichlet bc u = lambda x,y : [ x * y * sin ( c * (R**2 - x**2 - y**2 )) ] # ... # ... # rhs # ... f = lambda x,y : [4*c**2*x**3*y*sin(c*(R**2 - x**2 - y**2)) \ + 4*c**2*x*y**3*sin(c*(R**2 - x**2 - y**2)) \ + 12*c*x*y*cos(c*(R**2 - x**2 - y**2)) ] # ... # ... # values of gradu.n at the boundary # ... gradu = lambda x,y : [-2*c*x**2*y*cos(c*(R**2 - x**2 - y**2)) + y*sin(c*(R**2 - x**2 - y**2)) \ ,-2*c*x*y**2*cos(c*(R**2 - x**2 - y**2)) + x*sin(c*(R**2 - x**2 - y**2)) ] def func_g (x,y) : du = gradu (x, y) return [ du[0] , du[1] ] # ... # ... # values of u at the boundary # ... bc_neumann={} bc_neumann [0,0] = func_g Dirichlet = [[1,2,3]] #AllDirichlet = True # ... # ... try: bc_dirichlet except NameError: bc_dirichlet = None else: pass try: bc_neumann except NameError: bc_neumann = None else: pass try: AllDirichlet except NameError: AllDirichlet = None else: pass try: Dirichlet except NameError: Dirichlet = None else: pass try: Metric except NameError: Metric = None else: pass # ... # ... PDE = poisson(geometry=geo, bc_dirichlet=bc_dirichlet, bc_neumann=bc_neumann, AllDirichlet=AllDirichlet, Dirichlet=Dirichlet,metric=Metric) # ... # ... PDE.assembly(f=f) PDE.solve() # ... # ... normU = PDE.norm(exact=u) print "norm U = ", normU # ... # ... if PLOT: PDE.plot() ; plt.colorbar(); plt.title('$u_h$') plt.savefig(filename.split('.py')[0]+'.png', format='png') plt.clf() # ... PDE.free()
mit
devanshdalal/scikit-learn
examples/gaussian_process/plot_gpr_noisy_targets.py
64
3706
""" ========================================================= Gaussian Processes regression: basic introductory example ========================================================= A simple one-dimensional regression example computed in two different ways: 1. A noise-free case 2. A noisy case with known noise-level per datapoint In both cases, the kernel's parameters are estimated using the maximum likelihood principle. The figures illustrate the interpolating property of the Gaussian Process model as well as its probabilistic nature in the form of a pointwise 95% confidence interval. Note that the parameter ``alpha`` is applied as a Tikhonov regularization of the assumed covariance between the training points. """ print(__doc__) # Author: Vincent Dubourg <[email protected]> # Jake Vanderplas <[email protected]> # Jan Hendrik Metzen <[email protected]>s # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) # ---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T # Observations y = f(X).ravel() # Mesh the input space for evaluations of the real function, the prediction and # its MSE x = np.atleast_2d(np.linspace(0, 10, 1000)).T # Instanciate a Gaussian Process model kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (1e-2, 1e2)) gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, sigma = gp.predict(x, return_std=True) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = plt.figure() plt.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') plt.plot(X, y, 'r.', markersize=10, label=u'Observations') plt.plot(x, y_pred, 'b-', label=u'Prediction') plt.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 20) plt.legend(loc='upper left') # ---------------------------------------------------------------------- # now the noisy case X = np.linspace(0.1, 9.9, 20) X = np.atleast_2d(X).T # Observations and noise y = f(X).ravel() dy = 0.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise # Instanciate a Gaussian Process model gp = GaussianProcessRegressor(kernel=kernel, alpha=(dy / y) ** 2, n_restarts_optimizer=10) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, sigma = gp.predict(x, return_std=True) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = plt.figure() plt.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') plt.errorbar(X.ravel(), y, dy, fmt='r.', markersize=10, label=u'Observations') plt.plot(x, y_pred, 'b-', label=u'Prediction') plt.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 20) plt.legend(loc='upper left') plt.show()
bsd-3-clause
lordkman/burnman
examples/example_geotherms.py
4
4049
# This file is part of BurnMan - a thermoelastic and thermodynamic toolkit for the Earth and Planetary Sciences # Copyright (C) 2012 - 2015 by the BurnMan team, released under the GNU # GPL v2 or later. """ example_geotherms ----------------- This example shows each of the geotherms currently possible with BurnMan. These are: 1. Brown and Shankland, 1981 :cite:`Brown1981` 2. Anderson, 1982 :cite:`anderson1982earth` 3. Watson and Baxter, 2007 :cite:`Watson2007` 4. linear extrapolation 5. Read in from file from user 6. Adiabatic from potential temperature and choice of mineral *Uses:* * :func:`burnman.geotherm.brown_shankland` * :func:`burnman.geotherm.anderson` * input geotherm file *input_geotherm/example_geotherm.txt* (optional) * :class:`burnman.composite.Composite` for adiabat *Demonstrates:* * the available geotherms """ from __future__ import absolute_import import os import sys import numpy as np import matplotlib.pyplot as plt # hack to allow scripts to be placed in subdirectories next to burnman: if not os.path.exists('burnman') and os.path.exists('../burnman'): sys.path.insert(1, os.path.abspath('..')) import burnman from burnman import minerals if __name__ == "__main__": # we want to evaluate several geotherms at these values pressures = np.arange(9.0e9, 128e9, 3e9) seismic_model = burnman.seismic.PREM() depths = seismic_model.depth(pressures) # load two builtin geotherms and evaluate the temperatures at all pressures temperature1 = burnman.geotherm.brown_shankland(depths) temperature2 = burnman.geotherm.anderson(depths) # a geotherm is actually just a function that returns a list of temperatures given pressures in Pa # so we can just write our own function my_geotherm_function = lambda p: [1500 + (2500 - 1500) * x / 128e9 for x in p] temperature3 = my_geotherm_function(pressures) # what about a geotherm defined from datapoints given in a file (our # inline)? table = [[1e9, 1600], [30e9, 1700], [130e9, 2700]] # this could also be loaded from a file, just uncomment this # table = burnman.tools.read_table("input_geotherm/example_geotherm.txt") table_pressure = np.array(table)[:, 0] table_temperature = np.array(table)[:, 1] my_geotherm_interpolate = lambda p: [np.interp(x, table_pressure, table_temperature) for x in p] temperature4 = my_geotherm_interpolate(pressures) # finally, we can also calculate a self consistent # geotherm for an assemblage of minerals # based on self compression of the composite rock. # First we need to define an assemblage amount_perovskite = 0.8 fe_pv = 0.05 fe_pc = 0.2 pv = minerals.SLB_2011.mg_fe_perovskite() pc = minerals.SLB_2011.ferropericlase() pv.set_composition([1. - fe_pv, fe_pv, 0.]) pc.set_composition([1. - fe_pc, fe_pc]) example_rock = burnman.Composite( [pv, pc], [amount_perovskite, 1.0 - amount_perovskite]) # next, define an anchor temperature at which we are starting. # Perhaps 1500 K for the upper mantle T0 = 1500. # then generate temperature values using the self consistent function. # This takes more time than the above methods temperature5 = burnman.geotherm.adiabatic(pressures, T0, example_rock) # you can also look at burnman/geotherm.py to see how the geotherms are # implemented plt.plot(pressures / 1e9, temperature1, '-r', label="Brown, Shankland") plt.plot(pressures / 1e9, temperature2, '-c', label="Anderson") plt.plot(pressures / 1e9, temperature3, '-b', label="handwritten linear") plt.plot(pressures / 1e9, temperature4, '-k', label="handwritten from table") plt.plot(pressures / 1e9, temperature5, '-m', label="Adiabat with pv (70%) and fp(30%)") plt.legend(loc='lower right') plt.xlim([8.5, 130]) plt.xlabel('Pressure/GPa') plt.ylabel('Temperature') plt.savefig("output_figures/example_geotherm.png") plt.show()
gpl-2.0
francesco-mannella/dmp-esn
parametric/parametric_dmp/bin/tr_datasets/e_cursive_curves_angles_start_none/results/plot.py
18
1043
#!/usr/bin/env python import glob import numpy as np import matplotlib.pyplot as plt import os import sys pathname = os.path.dirname(sys.argv[0]) if pathname: os.chdir(pathname) n_dim = None trains = [] for fname in glob.glob("tl*"): t = np.loadtxt(fname) trains.append(t) tests = [] for fname in glob.glob("tt*"): t = np.loadtxt(fname) tests.append(t) trial_results= [] for fname in glob.glob("rtl*"): t = np.loadtxt(fname) trial_results.append(t) test_results= [] for fname in glob.glob("rtt*"): t = np.loadtxt(fname) test_results.append(t) fig = plt.figure() ax = fig.add_subplot(111, aspect="equal") for d in trains: ax.plot(d[:,1] +d[:,7]*6, d[:,2] +d[:,8]*6, color="blue", lw=3, alpha=0.5) for d in tests: ax.plot(d[:,1] +d[:,7]*6, d[:,2] +d[:,8]*6, color="red", lw=3, alpha=0.5) for d in trial_results: ax.plot(d[:,1] +d[:,7]*6, d[:,2] +d[:,8]*6, color=[0,0,.5], lw=2) for d in test_results: ax.plot(d[:,1] +d[:,7]*6, d[:,2] +d[:,8]*6, color=[.5,0,0], lw=2) plt.show()
gpl-2.0
flowersteam/SESM
SESM/pykinect.py
2
3387
import zmq import numpy import threading from collections import namedtuple Point2D = namedtuple('Point2D', ('x', 'y')) Point3D = namedtuple('Point3D', ('x', 'y', 'z')) Quaternion = namedtuple('Quaternion', ('x', 'y', 'z', 'w')) torso_joints = ('hip_center', 'spine', 'shoulder_center', 'head') left_arm_joints = ('shoulder_left', 'elbow_left', 'wrist_left', 'hand_left') right_arm_joints = ('shoulder_right', 'elbow_right', 'wrist_right', 'hand_right') left_leg_joints = ('hip_left', 'knee_left', 'ankle_left', 'foot_left') right_leg_joints = ('hip_right', 'knee_right', 'ankle_right', 'foot_right') skeleton_joints = torso_joints + left_arm_joints + right_arm_joints + left_leg_joints + right_leg_joints class Skeleton(namedtuple('Skeleton', ('timestamp', 'user_id') + skeleton_joints)): joints = skeleton_joints @property def to_np(self): l = [] for j in self.joints: p = getattr(self, j).position l.append((p.x, p.y, p.z)) return numpy.array(l) Joint = namedtuple('Joint', ('position', 'orientation', 'pixel_coordinate')) class KinectSensor(object): def __init__(self, addr, port): self._lock = threading.Lock() self._skeleton = None context = zmq.Context() self.socket = context.socket(zmq.REQ) self.socket.connect('tcp://{}:{}'.format(addr, port)) t = threading.Thread(target=self.get_skeleton) t.daemon = True t.start() @property def tracked_skeleton(self): with self._lock: return self._skeleton @tracked_skeleton.setter def tracked_skeleton(self, skeleton): with self._lock: self._skeleton = skeleton def get_skeleton(self): while True: self.socket.send('Hello') md = self.socket.recv_json() msg = self.socket.recv() skeleton_array = numpy.frombuffer(buffer(msg), dtype=md['dtype']) skeleton_array = skeleton_array.reshape(md['shape']) joints = [] for i in range(len(skeleton_joints)): x, y, z, w = skeleton_array[i][0:4] position = Point3D(x / w, y / w, z / w) pixel_coord = Point2D(*skeleton_array[i][4:6]) orientation = Quaternion(*skeleton_array[i][6:10]) joints.append(Joint(position, orientation, pixel_coord)) self.tracked_skeleton = Skeleton(md['timestamp'], md['user_index'], *joints) def draw_position(skel, ax): xy, zy = [], [] if not skel: return for j in skeleton_joints: p = getattr(skel, j).position xy.append((p.x, p.y)) zy.append((p.z, p.y)) ax.set_xlim(-2, 5) ax.set_ylim(-1.5, 1.5) ax.scatter(zip(*xy)[0], zip(*xy)[1], 30, 'b') ax.scatter(zip(*zy)[0], zip(*zy)[1], 30, 'r') if __name__ == '__main__': import time import matplotlib.pyplot as plt plt.ion() fig = plt.figure() ax = fig.add_subplot(111) kinect_sensor = KinectSensor('193.50.110.210', 9999) import skelangle kinect_angle = skelangle.AngleFromSkel() try: while True: ax.clear() draw_position(kinect_sensor.tracked_skeleton, ax) plt.draw() time.sleep(0.1) except KeyboardInterrupt: plt.close('all')
gpl-3.0
gwparikh/cvgui
grouping_calibration.py
2
9402
#!/usr/bin/env python import os, sys, subprocess import argparse import subprocess import threading import timeit from multiprocessing import Queue, Lock from configobj import ConfigObj from numpy import loadtxt from numpy.linalg import inv import matplotlib.pyplot as plt import moving from cvguipy import trajstorage, cvgenetic, cvconfig """ Grouping Calibration By Genetic Algorithm. This script uses genetic algorithm to search for the best configuration. It does not monitor RAM usage, therefore, CPU thrashing might be happened when number of parents (selection size) is too large. """ # class for genetic algorithm class GeneticCompare(object): def __init__(self, motalist, motplist, IDlist, cfg_list, lock): self.motalist = motalist self.motplist = motplist self.IDlist = IDlist self.cfg_list = cfg_list self.lock = lock # This is used for calculte fitness of individual in genetic algorithn. # It is modified to create sqlite and cfg file before tuning computeClearMOT. # NOTE errors show up when loading two same ID def computeMOT(self, i): # create sqlite and cfg file with id i cfg_name = config_files +str(i)+'.cfg' sql_name = sqlite_files +str(i)+'.sqlite' open(cfg_name,'w').close() config = ConfigObj(cfg_name) cfg_list.write_config(i ,config) command = ['cp', 'tracking_only.sqlite', sql_name] process = subprocess.Popen(command) process.wait() command = ['trajextract.py', args.inputVideo, '-o', args.homography, '-t', cfg_name, '-d', sql_name, '--gf'] # suppress output of grouping extraction devnull = open(os.devnull, 'wb') process = subprocess.Popen(command, stdout = devnull) process.wait() obj = trajstorage.CVsqlite(sql_name) print "loading", i obj.loadObjects() motp, mota, mt, mme, fpt, gt = moving.computeClearMOT(cdb.annotations, obj.objects, args.matchDistance, firstFrame, lastFrame) if motp is None: motp = 0 self.lock.acquire() self.IDlist.put(i) self.motplist.put(motp) self.motalist.put(mota) obj.close() if args.PrintMOTA: print("ID: mota:{} motp:{}".format(mota, motp)) self.lock.release() return mota if __name__ == '__main__' : parser = argparse.ArgumentParser(description="compare all sqlites that are created by cfg_combination.py to the Annotated version to find the ID of the best configuration") parser.add_argument('inputVideo', help= "input video filename") parser.add_argument('-r', '--configuration-file', dest='range_cfg', help= "the configuration-file contain the range of configuration") parser.add_argument('-t', '--traffintel-config', dest='traffintelConfig', help= "the TrafficIntelligence file to use for running the first extraction.") parser.add_argument('-m', '--mask-File', dest='maskFilename', help="Name of the mask-File for trajextract") parser.add_argument('-d', '--database-file', dest ='databaseFile', help ="Name of the databaseFile.") parser.add_argument('-o', '--homography-file', dest ='homography', help = "Name of the homography file.", required = True) parser.add_argument('-md', '--matching-distance', dest='matchDistance', help = "matchDistance", default = 10, type = float) parser.add_argument('-a', '--accuracy', dest = 'accuracy', help = "accuracy parameter for genetic algorithm", type = int) parser.add_argument('-p', '--population', dest = 'population', help = "population parameter for genetic algorithm", required = True, type = int) parser.add_argument('-np', '--num-of-parents', dest = 'num_of_parents', help = "Number of parents that are selected each generation", type = int) parser.add_argument('-mota', '--print-MOTA', dest='PrintMOTA', action = 'store_true', help = "Print MOTA for each ID.") args = parser.parse_args() os.mkdir('cfg_files') os.mkdir('sql_files') sqlite_files = "sql_files/Sqlite_ID_" config_files = "cfg_files/Cfg_ID_" # ------------------initialize annotated version if not existed ---------- # # inputVideo check if not os.path.exists(args.inputVideo): print("Input video {} does not exist! Exiting...".format(args.inputVideo)) sys.exit(1) # configuration file check if args.range_cfg is None: config = ConfigObj('range.cfg') else: config = ConfigObj(args.range_cfg) # get configuration and put them to a List cfg_list = cvconfig.CVConfigList() thread_cfgtolist = threading.Thread(target = cvconfig.config_to_list, args = (cfg_list, config)) thread_cfgtolist.start(); # check if dbfile name is entered if args.databaseFile is None: print("Database-file is not entered, running trajextract and cvplayer.") if not os.path.exists(args.homography): print("Homography file does not exist! Exiting...") sys.exit(1) else: videofile=args.inputVideo if 'avi' in videofile: if args.maskFilename is not None: command = ['trajextract.py',args.inputVideo,'-m', args.maskFilename,'-o', args.homography] else: command = ['trajextract.py',args.inputVideo,'-o', args.homography] process = subprocess.Popen(command) process.wait() databaseFile = videofile.replace('avi','sqlite') command = ['cvplayer.py',args.inputVideo,'-d',databaseFile,'-o',args.homography] process = subprocess.Popen(command) process.wait() else: print("Input video {} is not 'avi' type. Exiting...".format(args.inputVideo)) sys.exit(1) else: databaseFile = args.databaseFile thread_cfgtolist.join() # ------------------Done initialization for annotation-------------------- # # create first tracking only database template. print("creating the first tracking only database template.") if args.maskFilename is not None: command = map(str, ['trajextract.py',args.inputVideo, '-d', 'tracking_only.sqlite', '-t', args.traffintelConfig, '-o', args.homography, '-m', args.maskFilename, '--tf']) else: command = map(str, ['trajextract.py',args.inputVideo, '-d', sql_name, '-t', args.traffintelConfig, '-o', args.homography, '--tf']) process = subprocess.Popen(command) process.wait() # ----start using genetic algorithm to search for best configuration-------# start = timeit.default_timer() dbfile = databaseFile; homography = loadtxt(args.homography) cdb = trajstorage.CVsqlite(dbfile) cdb.open() cdb.getLatestAnnotation() cdb.createBoundingBoxTable(cdb.latestannotations, inv(homography)) cdb.loadAnnotaion() for a in cdb.annotations: a.computeCentroidTrajectory(homography) print "Latest Annotaions in "+dbfile+": ", cdb.latestannotations cdb.frameNumbers = cdb.getFrameList() firstFrame = cdb.frameNumbers[0] lastFrame = cdb.frameNumbers[-1] foundmota = Queue() foundmotp = Queue() IDs = Queue() lock = Lock() Comp = GeneticCompare(foundmota, foundmotp, IDs, cfg_list, lock) if args.accuracy != None: GeneticCal = cvgenetic.CVGenetic(args.population, cfg_list, Comp.computeMOT, args.accuracy) else: GeneticCal = cvgenetic.CVGenetic(args.population, cfg_list, Comp.computeMOT) if args.num_of_parents != None: GeneticCal.run_thread(args.num_of_parents) else: GeneticCal.run_thread() # tranform queues to lists foundmota = cvgenetic.Queue_to_list(foundmota) foundmotp = cvgenetic.Queue_to_list(foundmotp) IDs = cvgenetic.Queue_to_list(IDs) for i in range(len(foundmotp)): foundmotp[i] /= args.matchDistance Best_mota = max(foundmota) Best_ID = IDs[foundmota.index(Best_mota)] print "Best multiple object tracking accuracy (MOTA)", Best_mota print "ID:", Best_ID stop = timeit.default_timer() print str(stop-start) + "s" total = [] for i in range(len(foundmota)): total.append(foundmota[i]- 0.1 * foundmotp[i]) Best_total = max(total) Best_total_ID = IDs[total.index(Best_total)] # ------------------------------Done searching----------------------------# # use matplot to plot a graph of all calculated IDs along with thier mota plt.figure(1) plt.plot(foundmota ,IDs ,'bo') plt.plot(foundmotp ,IDs ,'yo') plt.plot(Best_mota, Best_ID, 'ro') plt.axis([-1, 1, -1, cfg_list.get_total_combination()]) plt.xlabel('mota') plt.ylabel('ID') plt.title(b'Best MOTA: '+str(Best_mota) +'\nwith ID: '+str(Best_ID)) plotFile = os.path.splitext(dbfile)[0] + '_CalibrationResult_mota.png' plt.savefig(plotFile) plt.figure(2) plt.plot(total, IDs, 'bo') plt.plot(Best_total, Best_total_ID, 'ro') plt.xlabel('mota + motp') plt.ylabel('ID') plt.title(b'Best total: '+str(Best_total) +'\nwith ID: '+str(Best_total_ID)) # save the plot plotFile = os.path.splitext(dbfile)[0] + '_CalibrationResult_motp.png' plt.savefig(plotFile) plt.show() cdb.close()
mit
keflavich/pyspeckit-obsolete
pyspeckit/spectrum/models/ammonia.py
1
28836
""" ======================================== Ammonia inversion transition TKIN fitter ======================================== Ammonia inversion transition TKIN fitter translated from Erik Rosolowsky's http://svn.ok.ubc.ca/svn/signals/nh3fit/ .. moduleauthor:: Adam Ginsburg <[email protected]> Module API ^^^^^^^^^^ """ import numpy as np from pyspeckit.mpfit import mpfit from pyspeckit.spectrum.parinfo import ParinfoList,Parinfo import fitter import matplotlib.cbook as mpcb import copy import model line_names = ['oneone','twotwo','threethree','fourfour'] freq_dict = { 'oneone': 23.694506e9, 'twotwo': 23.722633335e9, 'threethree': 23.8701296e9, 'fourfour': 24.1394169e9, } aval_dict = { 'oneone': 1.712e-7, #64*!pi**4/(3*h*c**3)*nu11**3*mu0**2*(1/2.) 'twotwo': 2.291e-7, #64*!pi**4/(3*h*c**3)*nu22**3*mu0**2*(2/3.) 'threethree': 2.625e-7, #64*!pi**4/(3*h*c**3)*nu33**3*mu0**2*(3/4.) 'fourfour': 3.167e-7, #64*!pi**4/(3*h*c**3)*nu44**3*mu0**2*(4/5.) } ortho_dict = { 'oneone': False, 'twotwo': False, 'threethree': True, 'fourfour': False, } n_ortho = np.arange(0,28,3) # 0..3..27 n_para = np.array([x for x in range(28) if x % 3 != 0]) voff_lines_dict = { 'oneone': [19.8513, 19.3159, 7.88669, 7.46967, 7.35132, 0.460409, 0.322042, -0.0751680, -0.213003, 0.311034, 0.192266, -0.132382, -0.250923, -7.23349, -7.37280, -7.81526, -19.4117, -19.5500], 'twotwo':[26.5263, 26.0111, 25.9505, 16.3917, 16.3793, 15.8642, 0.562503, 0.528408, 0.523745, 0.0132820, -0.00379100, -0.0132820, -0.501831, -0.531340, -0.589080, -15.8547, -16.3698, -16.3822, -25.9505, -26.0111, -26.5263], 'threethree':[29.195098, 29.044147, 28.941877, 28.911408, 21.234827, 21.214619, 21.136387, 21.087456, 1.005122, 0.806082, 0.778062, 0.628569, 0.016754, -0.005589, -0.013401, -0.639734, -0.744554, -1.031924, -21.125222, -21.203441, -21.223649, -21.076291, -28.908067, -28.938523, -29.040794, -29.191744], 'fourfour':[ 0. , -30.49783692, 30.49783692, 0., 24.25907811, -24.25907811, 0. ] } tau_wts_dict = { 'oneone': [0.0740740, 0.148148, 0.0925930, 0.166667, 0.0185190, 0.0370370, 0.0185190, 0.0185190, 0.0925930, 0.0333330, 0.300000, 0.466667, 0.0333330, 0.0925930, 0.0185190, 0.166667, 0.0740740, 0.148148], 'twotwo': [0.00418600, 0.0376740, 0.0209300, 0.0372090, 0.0260470, 0.00186000, 0.0209300, 0.0116280, 0.0106310, 0.267442, 0.499668, 0.146512, 0.0116280, 0.0106310, 0.0209300, 0.00186000, 0.0260470, 0.0372090, 0.0209300, 0.0376740, 0.00418600], 'threethree': [0.012263, 0.008409, 0.003434, 0.005494, 0.006652, 0.008852, 0.004967, 0.011589, 0.019228, 0.010387, 0.010820, 0.009482, 0.293302, 0.459109, 0.177372, 0.009482, 0.010820, 0.019228, 0.004967, 0.008852, 0.006652, 0.011589, 0.005494, 0.003434, 0.008409, 0.012263], 'fourfour': [0.2431, 0.0162, 0.0162, 0.3008, 0.0163, 0.0163, 0.3911]} def ammonia(xarr, tkin=20, tex=None, ntot=1e14, width=1, xoff_v=0.0, fortho=0.0, tau=None, fillingfraction=None, return_tau=False, thin=False, verbose=False, return_components=False, debug=False ): """ Generate a model Ammonia spectrum based on input temperatures, column, and gaussian parameters ntot can be specified as a column density (e.g., 10^15) or a log-column-density (e.g., 15) tex can be specified or can be assumed LTE if unspecified, if tex>tkin, or if "thin" is specified "thin" uses a different parametetrization and requires only the optical depth, width, offset, and tkin to be specified. In the 'thin' approximation, tex is not used in computation of the partition function - LTE is implicitly assumed If tau is specified, ntot is NOT fit but is set to a fixed value fillingfraction is an arbitrary scaling factor to apply to the model fortho is the ortho/(ortho+para) fraction. The default is to assume all ortho. xoff_v is the velocity offset in km/s tau refers to the optical depth of the 1-1 line. The optical depths of the other lines are fixed relative to tau_oneone (not implemented) if tau is specified, ntot is ignored """ # Convert X-units to frequency in GHz xarr = xarr.as_unit('GHz') if tex is not None: if tex > tkin: # cannot have Tex > Tkin tex = tkin elif thin: # tex is not used in this case tex = tkin else: tex = tkin if thin: ntot = 1e15 elif 5 < ntot < 25: # allow ntot to be specified as a logarithm. This is # safe because ntot < 1e10 gives a spectrum of all zeros, and the # plausible range of columns is not outside the specified range ntot = 10**ntot elif (25 < ntot < 1e5) or (ntot < 5): # these are totally invalid for log/non-log return 0 # fillingfraction is an arbitrary scaling for the data # The model will be (normal model) * fillingfraction if fillingfraction is None: fillingfraction = 1.0 ckms = 2.99792458e5 ccms = ckms*1e5 g1 = 1 g2 = 1 h = 6.6260693e-27 kb = 1.3806505e-16 mu0 = 1.476e-18 # Dipole Moment in cgs (1.476 Debeye) # Generate Partition Functions nlevs = 51 jv=np.arange(nlevs) ortho = jv % 3 == 0 para = True-ortho Jpara = jv[para] Jortho = jv[ortho] Brot = 298117.06e6 Crot = 186726.36e6 runspec = np.zeros(len(xarr)) tau_dict = {} para_count = 0 ortho_count = 1 # ignore 0-0 if tau is not None and thin: """ Use optical depth in the 1-1 line as a free parameter The optical depths of the other lines are then set by the kinetic temperature Tex is still a free parameter in the final spectrum calculation at the bottom (technically, I think this process assumes LTE; Tex should come into play in these equations, not just the final one) """ dT0 = 41.5 # Energy diff between (2,2) and (1,1) in K trot = tkin/(1+tkin/dT0*np.log(1+0.6*np.exp(-15.7/tkin))) tau_dict['oneone'] = tau tau_dict['twotwo'] = tau*(23.722/23.694)**2*4/3.*5/3.*np.exp(-41.5/trot) tau_dict['threethree'] = tau*(23.8701279/23.694)**2*3/2.*14./3.*np.exp(-101.1/trot) tau_dict['fourfour'] = tau*(24.1394169/23.694)**2*8/5.*9/3.*np.exp(-177.34/trot) else: """ Column density is the free parameter. It is used in conjunction with the full partition function to compute the optical depth in each band Given the complexity of these equations, it would be worth my while to comment each step carefully. """ Zpara = (2*Jpara+1)*np.exp(-h*(Brot*Jpara*(Jpara+1)+ (Crot-Brot)*Jpara**2)/(kb*tkin)) Zortho = 2*(2*Jortho+1)*np.exp(-h*(Brot*Jortho*(Jortho+1)+ (Crot-Brot)*Jortho**2)/(kb*tkin)) for linename in line_names: if ortho_dict[linename]: orthoparafrac = fortho Z = Zortho count = ortho_count ortho_count += 1 else: orthoparafrac = 1.0-fortho Z = Zpara count = para_count # need to treat partition function separately para_count += 1 tau_dict[linename] = (ntot * orthoparafrac * Z[count]/(Z.sum()) / ( 1 + np.exp(-h*freq_dict[linename]/(kb*tkin) )) * ccms**2 / (8*np.pi*freq_dict[linename]**2) * aval_dict[linename]* (1-np.exp(-h*freq_dict[linename]/(kb*tex))) / (width/ckms*freq_dict[linename]*np.sqrt(2*np.pi)) ) # allow tau(11) to be specified instead of ntot # in the thin case, this is not needed: ntot plays no role # this process allows you to specify tau without using the approximate equations specified # above. It should remove ntot from the calculations anyway... if tau is not None and not thin: tau11_temp = tau_dict['oneone'] # re-scale all optical depths so that tau is as specified, but the relative taus # are sest by the kinetic temperature and partition functions for linename,t in tau_dict.iteritems(): tau_dict[linename] = t * tau/tau11_temp components =[] for linename in line_names: voff_lines = np.array(voff_lines_dict[linename]) tau_wts = np.array(tau_wts_dict[linename]) lines = (1-voff_lines/ckms)*freq_dict[linename]/1e9 tau_wts = tau_wts / (tau_wts).sum() nuwidth = np.abs(width/ckms*lines) nuoff = xoff_v/ckms*lines # tau array tauprof = np.zeros(len(xarr)) for kk,no in enumerate(nuoff): tauprof += (tau_dict[linename] * tau_wts[kk] * np.exp(-(xarr+no-lines[kk])**2 / (2.0*nuwidth[kk]**2)) * fillingfraction) components.append( tauprof ) T0 = (h*xarr*1e9/kb) # "temperature" of wavelength if tau is not None and thin: #runspec = tauprof+runspec # is there ever a case where you want to ignore the optical depth function? I think no runspec = (T0/(np.exp(T0/tex)-1)-T0/(np.exp(T0/2.73)-1))*(1-np.exp(-tauprof))+runspec else: runspec = (T0/(np.exp(T0/tex)-1)-T0/(np.exp(T0/2.73)-1))*(1-np.exp(-tauprof))+runspec if runspec.min() < 0: raise ValueError("Model dropped below zero. That is not possible normally. Here are the input values: "+ ("tex: %f " % tex) + ("tkin: %f " % tkin) + ("ntot: %f " % ntot) + ("width: %f " % width) + ("xoff_v: %f " % xoff_v) + ("fortho: %f " % fortho) ) if verbose or debug: print "tkin: %g tex: %g ntot: %g width: %g xoff_v: %g fortho: %g fillingfraction: %g" % (tkin,tex,ntot,width,xoff_v,fortho,fillingfraction) if return_components: return (T0/(np.exp(T0/tex)-1)-T0/(np.exp(T0/2.73)-1))*(1-np.exp(-1*np.array(components))) if return_tau: return tau_dict return runspec class ammonia_model(model.SpectralModel): def __init__(self,npeaks=1,npars=6,multisingle='multi',**kwargs): self.npeaks = npeaks self.npars = npars self._default_parnames = ['tkin','tex','ntot','width','xoff_v','fortho'] self.parnames = copy.copy(self._default_parnames) # all fitters must have declared modelfuncs, which should take the fitted pars... self.modelfunc = ammonia self.n_modelfunc = self.n_ammonia # for fitting ammonia simultaneously with a flat background self.onepeakammonia = fitter.vheightmodel(ammonia) #self.onepeakammoniafit = self._fourparfitter(self.onepeakammonia) if multisingle in ('multi','single'): self.multisingle = multisingle else: raise Exception("multisingle must be multi or single") self.default_parinfo = None self.default_parinfo, kwargs = self._make_parinfo(**kwargs) # enforce ammonia-specific parameter limits for par in self.default_parinfo: if 'tex' in par.parname.lower(): par.limited = (True,par.limited[1]) par.limits = (max(par.limits[0],2.73), par.limits[1]) if 'tkin' in par.parname.lower(): par.limited = (True,par.limited[1]) par.limits = (max(par.limits[0],2.73), par.limits[1]) if 'width' in par.parname.lower(): par.limited = (True,par.limited[1]) par.limits = (max(par.limits[0],0), par.limits[1]) if 'fortho' in par.parname.lower(): par.limited = (True,True) if par.limits[1] != 0: par.limits = (max(par.limits[0],0), min(par.limits[1],1)) else: par.limits = (max(par.limits[0],0), 1) if 'ntot' in par.parname.lower(): par.limited = (True,par.limited[1]) par.limits = (max(par.limits[0],0), par.limits[1]) self.parinfo = copy.copy(self.default_parinfo) self.modelfunc_kwargs = kwargs # lower case? self.modelfunc_kwargs.update({'parnames':self.parinfo.parnames}) def __call__(self,*args,**kwargs): #if 'use_lmfit' in kwargs: kwargs.pop('use_lmfit') use_lmfit = kwargs.pop('use_lmfit') if 'use_lmfit' in kwargs else self.use_lmfit if use_lmfit: return self.lmfitter(*args,**kwargs) if self.multisingle == 'single': return self.onepeakammoniafit(*args,**kwargs) elif self.multisingle == 'multi': return self.multinh3fit(*args,**kwargs) def n_ammonia(self, pars=None, parnames=None, **kwargs): """ Returns a function that sums over N ammonia line profiles, where N is the length of tkin,tex,ntot,width,xoff_v,fortho *OR* N = len(pars) / 6 The background "height" is assumed to be zero (you must "baseline" your spectrum before fitting) *pars* [ list ] a list with len(pars) = (6-nfixed)n, assuming tkin,tex,ntot,width,xoff_v,fortho repeated *parnames* [ list ] len(parnames) must = len(pars). parnames determine how the ammonia function parses the arguments """ if hasattr(pars,'values'): # important to treat as Dictionary, since lmfit params & parinfo both have .items parnames,parvals = zip(*pars.items()) parnames = [p.lower() for p in parnames] parvals = [p.value for p in parvals] elif parnames is None: parvals = pars parnames = self.parnames else: parvals = pars if len(pars) != len(parnames): # this should only be needed when other codes are changing the number of peaks # during a copy, as opposed to letting them be set by a __call__ # (n_modelfuncs = n_ammonia can be called directly) # n_modelfuncs doesn't care how many peaks there are if len(pars) % len(parnames) == 0: parnames = [p for ii in range(len(pars)/len(parnames)) for p in parnames] npars = len(parvals) / self.npeaks else: raise ValueError("Wrong array lengths passed to n_ammonia!") else: npars = len(parvals) / self.npeaks self._components = [] def L(x): v = np.zeros(len(x)) for jj in xrange(self.npeaks): modelkwargs = kwargs.copy() for ii in xrange(npars): name = parnames[ii+jj*npars].strip('0123456789').lower() modelkwargs.update({name:parvals[ii+jj*npars]}) v += ammonia(x,**modelkwargs) return v return L def components(self, xarr, pars, hyperfine=False): """ Ammonia components don't follow the default, since in Galactic astronomy the hyperfine components should be well-separated. If you want to see the individual components overlaid, you'll need to pass hyperfine to the plot_fit call """ comps=[] for ii in xrange(self.npeaks): if hyperfine: modelkwargs = dict(zip(self.parnames[ii*self.npars:(ii+1)*self.npars],pars[ii*self.npars:(ii+1)*self.npars])) comps.append( ammonia(xarr,return_components=True,**modelkwargs) ) else: modelkwargs = dict(zip(self.parnames[ii*self.npars:(ii+1)*self.npars],pars[ii*self.npars:(ii+1)*self.npars])) comps.append( [ammonia(xarr,return_components=False,**modelkwargs)] ) modelcomponents = np.concatenate(comps) return modelcomponents def multinh3fit(self, xax, data, npeaks=1, err=None, params=(20,20,14,1.0,0.0,0.5), parnames=None, fixed=(False,False,False,False,False,False), limitedmin=(True,True,True,True,False,True), limitedmax=(False,False,False,False,False,True), minpars=(2.73,2.73,0,0,0,0), parinfo=None, maxpars=(0,0,0,0,0,1), quiet=True, shh=True, veryverbose=False, **kwargs): """ Fit multiple nh3 profiles (multiple can be 1) Inputs: xax - x axis data - y axis npeaks - How many nh3 profiles to fit? Default 1 (this could supersede onedgaussfit) err - error corresponding to data These parameters need to have length = 6*npeaks. If npeaks > 1 and length = 6, they will be replicated npeaks times, otherwise they will be reset to defaults: params - Fit parameters: [tkin, tex, ntot (or tau), width, offset, ortho fraction] * npeaks If len(params) % 6 == 0, npeaks will be set to len(params) / 6 fixed - Is parameter fixed? limitedmin/minpars - set lower limits on each parameter (default: width>0, Tex and Tkin > Tcmb) limitedmax/maxpars - set upper limits on each parameter parnames - default parameter names, important for setting kwargs in model ['tkin','tex','ntot','width','xoff_v','fortho'] quiet - should MPFIT output each iteration? shh - output final parameters? Returns: Fit parameters Model Fit errors chi2 """ if parinfo is None: self.npars = len(params) / npeaks if len(params) != npeaks and (len(params) / self.npars) > npeaks: npeaks = len(params) / self.npars self.npeaks = npeaks if isinstance(params,np.ndarray): params=params.tolist() # this is actually a hack, even though it's decently elegant # somehow, parnames was being changed WITHOUT being passed as a variable # this doesn't make sense - at all - but it happened. # (it is possible for self.parnames to have npars*npeaks elements where # npeaks > 1 coming into this function even though only 6 pars are specified; # _default_parnames is the workaround) if parnames is None: parnames = copy.copy(self._default_parnames) partype_dict = dict(zip(['params','parnames','fixed','limitedmin','limitedmax','minpars','maxpars'], [params,parnames,fixed,limitedmin,limitedmax,minpars,maxpars])) # make sure all various things are the right length; if they're not, fix them using the defaults for partype,parlist in partype_dict.iteritems(): if len(parlist) != self.npars*self.npeaks: # if you leave the defaults, or enter something that can be multiplied by npars to get to the # right number of gaussians, it will just replicate if len(parlist) == self.npars: partype_dict[partype] *= npeaks elif len(parlist) > self.npars: # DANGER: THIS SHOULD NOT HAPPEN! print "WARNING! Input parameters were longer than allowed for variable ",parlist partype_dict[partype] = partype_dict[partype][:self.npars] elif parlist==params: # this instance shouldn't really be possible partype_dict[partype] = [20,20,1e10,1.0,0.0,0.5] * npeaks elif parlist==fixed: partype_dict[partype] = [False] * len(params) elif parlist==limitedmax: # only fortho, fillingfraction have upper limits partype_dict[partype] = (np.array(parnames) == 'fortho') + (np.array(parnames) == 'fillingfraction') elif parlist==limitedmin: # no physical values can be negative except velocity partype_dict[partype] = (np.array(parnames) != 'xoff_v') elif parlist==minpars: # all have minima of zero except kinetic temperature, which can't be below CMB. Excitation temperature technically can be, but not in this model partype_dict[partype] = ((np.array(parnames) == 'tkin') + (np.array(parnames) == 'tex')) * 2.73 elif parlist==maxpars: # fractions have upper limits of 1.0 partype_dict[partype] = ((np.array(parnames) == 'fortho') + (np.array(parnames) == 'fillingfraction')).astype('float') elif parlist==parnames: # assumes the right number of parnames (essential) partype_dict[partype] = list(parnames) * self.npeaks if len(parnames) != len(partype_dict['params']): raise ValueError("Wrong array lengths AFTER fixing them") # used in components. Is this just a hack? self.parnames = partype_dict['parnames'] parinfo = [ {'n':ii, 'value':partype_dict['params'][ii], 'limits':[partype_dict['minpars'][ii],partype_dict['maxpars'][ii]], 'limited':[partype_dict['limitedmin'][ii],partype_dict['limitedmax'][ii]], 'fixed':partype_dict['fixed'][ii], 'parname':partype_dict['parnames'][ii]+str(ii/self.npars), 'mpmaxstep':float(partype_dict['parnames'][ii] in ('tex','tkin')), # must force small steps in temperature (True = 1.0) 'error': 0} for ii in xrange(len(partype_dict['params'])) ] # hack: remove 'fixed' pars parinfo_with_fixed = parinfo parinfo = [p for p in parinfo_with_fixed if not p['fixed']] fixed_kwargs = dict((p['parname'].strip("0123456789").lower(),p['value']) for p in parinfo_with_fixed if p['fixed']) # don't do this - it breaks the NEXT call because npars != len(parnames) self.parnames = [p['parname'] for p in parinfo] # this is OK - not a permanent change parnames = [p['parname'] for p in parinfo] # not OK self.npars = len(parinfo)/self.npeaks parinfo = ParinfoList([Parinfo(p) for p in parinfo], preserve_order=True) #import pdb; pdb.set_trace() else: self.parinfo = ParinfoList([Parinfo(p) for p in parinfo], preserve_order=True) parinfo_with_fixed = None fixed_kwargs = {} fitfun_kwargs = dict(kwargs.items()+fixed_kwargs.items()) npars = len(parinfo)/self.npeaks # (fortho0 is not fortho) # this doesn't work if parinfo_with_fixed is not None: # this doesn't work for p in parinfo_with_fixed: # this doesn't work # users can change the defaults while holding them fixed # this doesn't work if p['fixed']: # this doesn't work kwargs.update({p['parname']:p['value']}) def mpfitfun(x,y,err): if err is None: def f(p,fjac=None): return [0,(y-self.n_ammonia(pars=p, parnames=parinfo.parnames, **fitfun_kwargs)(x))] else: def f(p,fjac=None): return [0,(y-self.n_ammonia(pars=p, parnames=parinfo.parnames, **fitfun_kwargs)(x))/err] return f if veryverbose: print "GUESSES: " print "\n".join(["%s: %s" % (p['parname'],p['value']) for p in parinfo]) mp = mpfit(mpfitfun(xax,data,err),parinfo=parinfo,quiet=quiet) mpp = mp.params if mp.perror is not None: mpperr = mp.perror else: mpperr = mpp*0 chi2 = mp.fnorm if mp.status == 0: raise Exception(mp.errmsg) for i,p in enumerate(mpp): parinfo[i]['value'] = p parinfo[i]['error'] = mpperr[i] if not shh: print "Fit status: ",mp.status print "Fit message: ",mp.errmsg print "Final fit values: " for i,p in enumerate(mpp): print parinfo[i]['parname'],p," +/- ",mpperr[i] print "Chi2: ",mp.fnorm," Reduced Chi2: ",mp.fnorm/len(data)," DOF:",len(data)-len(mpp) if any(['tex' in s for s in parnames]) and any(['tkin' in s for s in parnames]): texnum = (i for i,s in enumerate(parnames) if 'tex' in s) tkinnum = (i for i,s in enumerate(parnames) if 'tkin' in s) for txn,tkn in zip(texnum,tkinnum): if mpp[txn] > mpp[tkn]: mpp[txn] = mpp[tkn] # force Tex>Tkin to Tex=Tkin (already done in n_ammonia) self.mp = mp if parinfo_with_fixed is not None: # self self.parinfo preserving the 'fixed' parameters # ORDER MATTERS! for p in parinfo: parinfo_with_fixed[p['n']] = p self.parinfo = ParinfoList([Parinfo(p) for p in parinfo_with_fixed], preserve_order=True) else: self.parinfo = parinfo self.parinfo = ParinfoList([Parinfo(p) for p in parinfo], preserve_order=True) # I don't THINK these are necessary? #self.parinfo = parinfo #self.parinfo = ParinfoList([Parinfo(p) for p in self.parinfo]) # need to restore the fixed parameters.... # though the above commented out section indicates that I've done and undone this dozens of times now # (a test has been added to test_nh3.py) # this was NEVER included or tested because it breaks the order #for par in parinfo_with_fixed: # if par.parname not in self.parinfo.keys(): # self.parinfo.append(par) self.mpp = self.parinfo.values self.mpperr = self.parinfo.errors self.mppnames = self.parinfo.names self.model = self.n_ammonia(pars=self.mpp, parnames=self.mppnames, **kwargs)(xax) #if self.model.sum() == 0: # print "DON'T FORGET TO REMOVE THIS ERROR!" # raise ValueError("Model is zeros.") indiv_parinfo = [self.parinfo[jj*self.npars:(jj+1)*self.npars] for jj in xrange(len(self.parinfo)/self.npars)] modelkwargs = [ dict([(p['parname'].strip("0123456789").lower(),p['value']) for p in pi]) for pi in indiv_parinfo] self.tau_list = [ammonia(xax,return_tau=True,**mk) for mk in modelkwargs] return self.mpp,self.model,self.mpperr,chi2 def moments(self, Xax, data, negamp=None, veryverbose=False, **kwargs): """ Returns a very simple and likely incorrect guess """ # TKIN, TEX, ntot, width, center, ortho fraction return [20,10, 1e15, 1.0, 0.0, 1.0] def annotations(self): from decimal import Decimal # for formatting tex_key = {'tkin':'T_K','tex':'T_{ex}','ntot':'N','fortho':'F_o','width':'\\sigma','xoff_v':'v','fillingfraction':'FF','tau':'\\tau_{1-1}'} # small hack below: don't quantize if error > value. We want to see the values. label_list = [] for pinfo in self.parinfo: parname = tex_key[pinfo['parname'].strip("0123456789").lower()] parnum = int(pinfo['parname'][-1]) if pinfo['fixed']: formatted_value = "%s" % pinfo['value'] pm = "" formatted_error="" else: formatted_value = Decimal("%g" % pinfo['value']).quantize(Decimal("%0.2g" % (min(pinfo['error'],pinfo['value'])))) pm = "$\\pm$" formatted_error = Decimal("%g" % pinfo['error']).quantize(Decimal("%0.2g" % pinfo['error'])) label = "$%s(%i)$=%8s %s %8s" % (parname, parnum, formatted_value, pm, formatted_error) label_list.append(label) labels = tuple(mpcb.flatten(label_list)) return labels class ammonia_model_vtau(ammonia_model): def __init__(self,**kwargs): super(ammonia_model_vtau,self).__init__() self.parnames = ['tkin','tex','tau','width','xoff_v','fortho'] def moments(self, Xax, data, negamp=None, veryverbose=False, **kwargs): """ Returns a very simple and likely incorrect guess """ # TKIN, TEX, ntot, width, center, ortho fraction return [20,10, 1, 1.0, 0.0, 1.0] def __call__(self,*args,**kwargs): if self.multisingle == 'single': return self.onepeakammoniafit(*args,**kwargs) elif self.multisingle == 'multi': return self.multinh3fit(*args,**kwargs)
mit
jakevdp/seaborn
doc/sphinxext/ipython_directive.py
37
37557
# -*- coding: utf-8 -*- """ Sphinx directive to support embedded IPython code. This directive allows pasting of entire interactive IPython sessions, prompts and all, and their code will actually get re-executed at doc build time, with all prompts renumbered sequentially. It also allows you to input code as a pure python input by giving the argument python to the directive. The output looks like an interactive ipython section. To enable this directive, simply list it in your Sphinx ``conf.py`` file (making sure the directory where you placed it is visible to sphinx, as is needed for all Sphinx directives). For example, to enable syntax highlighting and the IPython directive:: extensions = ['IPython.sphinxext.ipython_console_highlighting', 'IPython.sphinxext.ipython_directive'] The IPython directive outputs code-blocks with the language 'ipython'. So if you do not have the syntax highlighting extension enabled as well, then all rendered code-blocks will be uncolored. By default this directive assumes that your prompts are unchanged IPython ones, but this can be customized. The configurable options that can be placed in conf.py are: ipython_savefig_dir: The directory in which to save the figures. This is relative to the Sphinx source directory. The default is `html_static_path`. ipython_rgxin: The compiled regular expression to denote the start of IPython input lines. The default is re.compile('In \[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_rgxout: The compiled regular expression to denote the start of IPython output lines. The default is re.compile('Out\[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_promptin: The string to represent the IPython input prompt in the generated ReST. The default is 'In [%d]:'. This expects that the line numbers are used in the prompt. ipython_promptout: The string to represent the IPython prompt in the generated ReST. The default is 'Out [%d]:'. This expects that the line numbers are used in the prompt. ipython_mplbackend: The string which specifies if the embedded Sphinx shell should import Matplotlib and set the backend. The value specifies a backend that is passed to `matplotlib.use()` before any lines in `ipython_execlines` are executed. If not specified in conf.py, then the default value of 'agg' is used. To use the IPython directive without matplotlib as a dependency, set the value to `None`. It may end up that matplotlib is still imported if the user specifies so in `ipython_execlines` or makes use of the @savefig pseudo decorator. ipython_execlines: A list of strings to be exec'd in the embedded Sphinx shell. Typical usage is to make certain packages always available. Set this to an empty list if you wish to have no imports always available. If specified in conf.py as `None`, then it has the effect of making no imports available. If omitted from conf.py altogether, then the default value of ['import numpy as np', 'import matplotlib.pyplot as plt'] is used. ipython_holdcount When the @suppress pseudo-decorator is used, the execution count can be incremented or not. The default behavior is to hold the execution count, corresponding to a value of `True`. Set this to `False` to increment the execution count after each suppressed command. As an example, to use the IPython directive when `matplotlib` is not available, one sets the backend to `None`:: ipython_mplbackend = None An example usage of the directive is: .. code-block:: rst .. ipython:: In [1]: x = 1 In [2]: y = x**2 In [3]: print(y) See http://matplotlib.org/sampledoc/ipython_directive.html for additional documentation. ToDo ---- - Turn the ad-hoc test() function into a real test suite. - Break up ipython-specific functionality from matplotlib stuff into better separated code. Authors ------- - John D Hunter: orignal author. - Fernando Perez: refactoring, documentation, cleanups, port to 0.11. - VáclavŠmilauer <eudoxos-AT-arcig.cz>: Prompt generalizations. - Skipper Seabold, refactoring, cleanups, pure python addition """ from __future__ import print_function from __future__ import unicode_literals #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Stdlib import os import re import sys import tempfile import ast from pandas.compat import zip, range, map, lmap, u, cStringIO as StringIO import warnings # To keep compatibility with various python versions try: from hashlib import md5 except ImportError: from md5 import md5 # Third-party import sphinx from docutils.parsers.rst import directives from docutils import nodes from sphinx.util.compat import Directive # Our own from IPython import Config, InteractiveShell from IPython.core.profiledir import ProfileDir from IPython.utils import io from IPython.utils.py3compat import PY3 if PY3: from io import StringIO text_type = str else: from StringIO import StringIO text_type = unicode #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- # for tokenizing blocks COMMENT, INPUT, OUTPUT = range(3) #----------------------------------------------------------------------------- # Functions and class declarations #----------------------------------------------------------------------------- def block_parser(part, rgxin, rgxout, fmtin, fmtout): """ part is a string of ipython text, comprised of at most one input, one ouput, comments, and blank lines. The block parser parses the text into a list of:: blocks = [ (TOKEN0, data0), (TOKEN1, data1), ...] where TOKEN is one of [COMMENT | INPUT | OUTPUT ] and data is, depending on the type of token:: COMMENT : the comment string INPUT: the (DECORATOR, INPUT_LINE, REST) where DECORATOR: the input decorator (or None) INPUT_LINE: the input as string (possibly multi-line) REST : any stdout generated by the input line (not OUTPUT) OUTPUT: the output string, possibly multi-line """ block = [] lines = part.split('\n') N = len(lines) i = 0 decorator = None while 1: if i==N: # nothing left to parse -- the last line break line = lines[i] i += 1 line_stripped = line.strip() if line_stripped.startswith('#'): block.append((COMMENT, line)) continue if line_stripped.startswith('@'): # we're assuming at most one decorator -- may need to # rethink decorator = line_stripped continue # does this look like an input line? matchin = rgxin.match(line) if matchin: lineno, inputline = int(matchin.group(1)), matchin.group(2) # the ....: continuation string continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) # input lines can continue on for more than one line, if # we have a '\' line continuation char or a function call # echo line 'print'. The input line can only be # terminated by the end of the block or an output line, so # we parse out the rest of the input line if it is # multiline as well as any echo text rest = [] while i<N: # look ahead; if the next line is blank, or a comment, or # an output line, we're done nextline = lines[i] matchout = rgxout.match(nextline) #print "nextline=%s, continuation=%s, starts=%s"%(nextline, continuation, nextline.startswith(continuation)) if matchout or nextline.startswith('#'): break elif nextline.startswith(continuation): nextline = nextline[Nc:] if nextline and nextline[0] == ' ': nextline = nextline[1:] inputline += '\n' + nextline else: rest.append(nextline) i+= 1 block.append((INPUT, (decorator, inputline, '\n'.join(rest)))) continue # if it looks like an output line grab all the text to the end # of the block matchout = rgxout.match(line) if matchout: lineno, output = int(matchout.group(1)), matchout.group(2) if i<N-1: output = '\n'.join([output] + lines[i:]) block.append((OUTPUT, output)) break return block class DecodingStringIO(StringIO, object): def __init__(self,buf='',encodings=('utf8',), *args, **kwds): super(DecodingStringIO, self).__init__(buf, *args, **kwds) self.set_encodings(encodings) def set_encodings(self, encodings): self.encodings = encodings def write(self,data): if isinstance(data, text_type): return super(DecodingStringIO, self).write(data) else: for enc in self.encodings: try: data = data.decode(enc) return super(DecodingStringIO, self).write(data) except : pass # default to brute utf8 if no encoding succeded return super(DecodingStringIO, self).write(data.decode('utf8', 'replace')) class EmbeddedSphinxShell(object): """An embedded IPython instance to run inside Sphinx""" def __init__(self, exec_lines=None,state=None): self.cout = DecodingStringIO(u'') if exec_lines is None: exec_lines = [] self.state = state # Create config object for IPython config = Config() config.InteractiveShell.autocall = False config.InteractiveShell.autoindent = False config.InteractiveShell.colors = 'NoColor' # create a profile so instance history isn't saved tmp_profile_dir = tempfile.mkdtemp(prefix='profile_') profname = 'auto_profile_sphinx_build' pdir = os.path.join(tmp_profile_dir,profname) profile = ProfileDir.create_profile_dir(pdir) # Create and initialize global ipython, but don't start its mainloop. # This will persist across different EmbededSphinxShell instances. IP = InteractiveShell.instance(config=config, profile_dir=profile) # io.stdout redirect must be done after instantiating InteractiveShell io.stdout = self.cout io.stderr = self.cout # For debugging, so we can see normal output, use this: #from IPython.utils.io import Tee #io.stdout = Tee(self.cout, channel='stdout') # dbg #io.stderr = Tee(self.cout, channel='stderr') # dbg # Store a few parts of IPython we'll need. self.IP = IP self.user_ns = self.IP.user_ns self.user_global_ns = self.IP.user_global_ns self.input = '' self.output = '' self.is_verbatim = False self.is_doctest = False self.is_suppress = False # Optionally, provide more detailed information to shell. self.directive = None # on the first call to the savefig decorator, we'll import # pyplot as plt so we can make a call to the plt.gcf().savefig self._pyplot_imported = False # Prepopulate the namespace. for line in exec_lines: self.process_input_line(line, store_history=False) def clear_cout(self): self.cout.seek(0) self.cout.truncate(0) def process_input_line(self, line, store_history=True): """process the input, capturing stdout""" stdout = sys.stdout splitter = self.IP.input_splitter try: sys.stdout = self.cout splitter.push(line) more = splitter.push_accepts_more() if not more: try: source_raw = splitter.source_raw_reset()[1] except: # recent ipython #4504 source_raw = splitter.raw_reset() self.IP.run_cell(source_raw, store_history=store_history) finally: sys.stdout = stdout def process_image(self, decorator): """ # build out an image directive like # .. image:: somefile.png # :width 4in # # from an input like # savefig somefile.png width=4in """ savefig_dir = self.savefig_dir source_dir = self.source_dir saveargs = decorator.split(' ') filename = saveargs[1] # insert relative path to image file in source outfile = os.path.relpath(os.path.join(savefig_dir,filename), source_dir) imagerows = ['.. image:: %s'%outfile] for kwarg in saveargs[2:]: arg, val = kwarg.split('=') arg = arg.strip() val = val.strip() imagerows.append(' :%s: %s'%(arg, val)) image_file = os.path.basename(outfile) # only return file name image_directive = '\n'.join(imagerows) return image_file, image_directive # Callbacks for each type of token def process_input(self, data, input_prompt, lineno): """ Process data block for INPUT token. """ decorator, input, rest = data image_file = None image_directive = None is_verbatim = decorator=='@verbatim' or self.is_verbatim is_doctest = (decorator is not None and \ decorator.startswith('@doctest')) or self.is_doctest is_suppress = decorator=='@suppress' or self.is_suppress is_okexcept = decorator=='@okexcept' or self.is_okexcept is_okwarning = decorator=='@okwarning' or self.is_okwarning is_savefig = decorator is not None and \ decorator.startswith('@savefig') # set the encodings to be used by DecodingStringIO # to convert the execution output into unicode if # needed. this attrib is set by IpythonDirective.run() # based on the specified block options, defaulting to ['ut self.cout.set_encodings(self.output_encoding) input_lines = input.split('\n') if len(input_lines) > 1: if input_lines[-1] != "": input_lines.append('') # make sure there's a blank line # so splitter buffer gets reset continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) if is_savefig: image_file, image_directive = self.process_image(decorator) ret = [] is_semicolon = False # Hold the execution count, if requested to do so. if is_suppress and self.hold_count: store_history = False else: store_history = True # Note: catch_warnings is not thread safe with warnings.catch_warnings(record=True) as ws: for i, line in enumerate(input_lines): if line.endswith(';'): is_semicolon = True if i == 0: # process the first input line if is_verbatim: self.process_input_line('') self.IP.execution_count += 1 # increment it anyway else: # only submit the line in non-verbatim mode self.process_input_line(line, store_history=store_history) formatted_line = '%s %s'%(input_prompt, line) else: # process a continuation line if not is_verbatim: self.process_input_line(line, store_history=store_history) formatted_line = '%s %s'%(continuation, line) if not is_suppress: ret.append(formatted_line) if not is_suppress and len(rest.strip()) and is_verbatim: # the "rest" is the standard output of the # input, which needs to be added in # verbatim mode ret.append(rest) self.cout.seek(0) output = self.cout.read() if not is_suppress and not is_semicolon: ret.append(output) elif is_semicolon: # get spacing right ret.append('') # context information filename = self.state.document.current_source lineno = self.state.document.current_line # output any exceptions raised during execution to stdout # unless :okexcept: has been specified. if not is_okexcept and "Traceback" in output: s = "\nException in %s at block ending on line %s\n" % (filename, lineno) s += "Specify :okexcept: as an option in the ipython:: block to suppress this message\n" sys.stdout.write('\n\n>>>' + ('-' * 73)) sys.stdout.write(s) sys.stdout.write(output) sys.stdout.write('<<<' + ('-' * 73) + '\n\n') # output any warning raised during execution to stdout # unless :okwarning: has been specified. if not is_okwarning: for w in ws: s = "\nWarning in %s at block ending on line %s\n" % (filename, lineno) s += "Specify :okwarning: as an option in the ipython:: block to suppress this message\n" sys.stdout.write('\n\n>>>' + ('-' * 73)) sys.stdout.write(s) sys.stdout.write('-' * 76 + '\n') s=warnings.formatwarning(w.message, w.category, w.filename, w.lineno, w.line) sys.stdout.write(s) sys.stdout.write('<<<' + ('-' * 73) + '\n') self.cout.truncate(0) return (ret, input_lines, output, is_doctest, decorator, image_file, image_directive) def process_output(self, data, output_prompt, input_lines, output, is_doctest, decorator, image_file): """ Process data block for OUTPUT token. """ TAB = ' ' * 4 if is_doctest and output is not None: found = output found = found.strip() submitted = data.strip() if self.directive is None: source = 'Unavailable' content = 'Unavailable' else: source = self.directive.state.document.current_source content = self.directive.content # Add tabs and join into a single string. content = '\n'.join([TAB + line for line in content]) # Make sure the output contains the output prompt. ind = found.find(output_prompt) if ind < 0: e = ('output does not contain output prompt\n\n' 'Document source: {0}\n\n' 'Raw content: \n{1}\n\n' 'Input line(s):\n{TAB}{2}\n\n' 'Output line(s):\n{TAB}{3}\n\n') e = e.format(source, content, '\n'.join(input_lines), repr(found), TAB=TAB) raise RuntimeError(e) found = found[len(output_prompt):].strip() # Handle the actual doctest comparison. if decorator.strip() == '@doctest': # Standard doctest if found != submitted: e = ('doctest failure\n\n' 'Document source: {0}\n\n' 'Raw content: \n{1}\n\n' 'On input line(s):\n{TAB}{2}\n\n' 'we found output:\n{TAB}{3}\n\n' 'instead of the expected:\n{TAB}{4}\n\n') e = e.format(source, content, '\n'.join(input_lines), repr(found), repr(submitted), TAB=TAB) raise RuntimeError(e) else: self.custom_doctest(decorator, input_lines, found, submitted) def process_comment(self, data): """Process data fPblock for COMMENT token.""" if not self.is_suppress: return [data] def save_image(self, image_file): """ Saves the image file to disk. """ self.ensure_pyplot() command = ('plt.gcf().savefig("%s", bbox_inches="tight", ' 'dpi=100)' % image_file) #print 'SAVEFIG', command # dbg self.process_input_line('bookmark ipy_thisdir', store_history=False) self.process_input_line('cd -b ipy_savedir', store_history=False) self.process_input_line(command, store_history=False) self.process_input_line('cd -b ipy_thisdir', store_history=False) self.process_input_line('bookmark -d ipy_thisdir', store_history=False) self.clear_cout() def process_block(self, block): """ process block from the block_parser and return a list of processed lines """ ret = [] output = None input_lines = None lineno = self.IP.execution_count input_prompt = self.promptin % lineno output_prompt = self.promptout % lineno image_file = None image_directive = None for token, data in block: if token == COMMENT: out_data = self.process_comment(data) elif token == INPUT: (out_data, input_lines, output, is_doctest, decorator, image_file, image_directive) = \ self.process_input(data, input_prompt, lineno) elif token == OUTPUT: out_data = \ self.process_output(data, output_prompt, input_lines, output, is_doctest, decorator, image_file) if out_data: ret.extend(out_data) # save the image files if image_file is not None: self.save_image(image_file) return ret, image_directive def ensure_pyplot(self): """ Ensures that pyplot has been imported into the embedded IPython shell. Also, makes sure to set the backend appropriately if not set already. """ # We are here if the @figure pseudo decorator was used. Thus, it's # possible that we could be here even if python_mplbackend were set to # `None`. That's also strange and perhaps worthy of raising an # exception, but for now, we just set the backend to 'agg'. if not self._pyplot_imported: if 'matplotlib.backends' not in sys.modules: # Then ipython_matplotlib was set to None but there was a # call to the @figure decorator (and ipython_execlines did # not set a backend). #raise Exception("No backend was set, but @figure was used!") import matplotlib matplotlib.use('agg') # Always import pyplot into embedded shell. self.process_input_line('import matplotlib.pyplot as plt', store_history=False) self._pyplot_imported = True def process_pure_python(self, content): """ content is a list of strings. it is unedited directive content This runs it line by line in the InteractiveShell, prepends prompts as needed capturing stderr and stdout, then returns the content as a list as if it were ipython code """ output = [] savefig = False # keep up with this to clear figure multiline = False # to handle line continuation multiline_start = None fmtin = self.promptin ct = 0 for lineno, line in enumerate(content): line_stripped = line.strip() if not len(line): output.append(line) continue # handle decorators if line_stripped.startswith('@'): output.extend([line]) if 'savefig' in line: savefig = True # and need to clear figure continue # handle comments if line_stripped.startswith('#'): output.extend([line]) continue # deal with lines checking for multiline continuation = u' %s:'% ''.join(['.']*(len(str(ct))+2)) if not multiline: modified = u"%s %s" % (fmtin % ct, line_stripped) output.append(modified) ct += 1 try: ast.parse(line_stripped) output.append(u'') except Exception: # on a multiline multiline = True multiline_start = lineno else: # still on a multiline modified = u'%s %s' % (continuation, line) output.append(modified) # if the next line is indented, it should be part of multiline if len(content) > lineno + 1: nextline = content[lineno + 1] if len(nextline) - len(nextline.lstrip()) > 3: continue try: mod = ast.parse( '\n'.join(content[multiline_start:lineno+1])) if isinstance(mod.body[0], ast.FunctionDef): # check to see if we have the whole function for element in mod.body[0].body: if isinstance(element, ast.Return): multiline = False else: output.append(u'') multiline = False except Exception: pass if savefig: # clear figure if plotted self.ensure_pyplot() self.process_input_line('plt.clf()', store_history=False) self.clear_cout() savefig = False return output def custom_doctest(self, decorator, input_lines, found, submitted): """ Perform a specialized doctest. """ from .custom_doctests import doctests args = decorator.split() doctest_type = args[1] if doctest_type in doctests: doctests[doctest_type](self, args, input_lines, found, submitted) else: e = "Invalid option to @doctest: {0}".format(doctest_type) raise Exception(e) class IPythonDirective(Directive): has_content = True required_arguments = 0 optional_arguments = 4 # python, suppress, verbatim, doctest final_argumuent_whitespace = True option_spec = { 'python': directives.unchanged, 'suppress' : directives.flag, 'verbatim' : directives.flag, 'doctest' : directives.flag, 'okexcept': directives.flag, 'okwarning': directives.flag, 'output_encoding': directives.unchanged_required } shell = None seen_docs = set() def get_config_options(self): # contains sphinx configuration variables config = self.state.document.settings.env.config # get config variables to set figure output directory confdir = self.state.document.settings.env.app.confdir savefig_dir = config.ipython_savefig_dir source_dir = os.path.dirname(self.state.document.current_source) if savefig_dir is None: savefig_dir = config.html_static_path if isinstance(savefig_dir, list): savefig_dir = savefig_dir[0] # safe to assume only one path? savefig_dir = os.path.join(confdir, savefig_dir) # get regex and prompt stuff rgxin = config.ipython_rgxin rgxout = config.ipython_rgxout promptin = config.ipython_promptin promptout = config.ipython_promptout mplbackend = config.ipython_mplbackend exec_lines = config.ipython_execlines hold_count = config.ipython_holdcount return (savefig_dir, source_dir, rgxin, rgxout, promptin, promptout, mplbackend, exec_lines, hold_count) def setup(self): # Get configuration values. (savefig_dir, source_dir, rgxin, rgxout, promptin, promptout, mplbackend, exec_lines, hold_count) = self.get_config_options() if self.shell is None: # We will be here many times. However, when the # EmbeddedSphinxShell is created, its interactive shell member # is the same for each instance. if mplbackend: import matplotlib # Repeated calls to use() will not hurt us since `mplbackend` # is the same each time. matplotlib.use(mplbackend) # Must be called after (potentially) importing matplotlib and # setting its backend since exec_lines might import pylab. self.shell = EmbeddedSphinxShell(exec_lines, self.state) # Store IPython directive to enable better error messages self.shell.directive = self # reset the execution count if we haven't processed this doc #NOTE: this may be borked if there are multiple seen_doc tmp files #check time stamp? if not self.state.document.current_source in self.seen_docs: self.shell.IP.history_manager.reset() self.shell.IP.execution_count = 1 self.shell.IP.prompt_manager.width = 0 self.seen_docs.add(self.state.document.current_source) # and attach to shell so we don't have to pass them around self.shell.rgxin = rgxin self.shell.rgxout = rgxout self.shell.promptin = promptin self.shell.promptout = promptout self.shell.savefig_dir = savefig_dir self.shell.source_dir = source_dir self.shell.hold_count = hold_count # setup bookmark for saving figures directory self.shell.process_input_line('bookmark ipy_savedir %s'%savefig_dir, store_history=False) self.shell.clear_cout() return rgxin, rgxout, promptin, promptout def teardown(self): # delete last bookmark self.shell.process_input_line('bookmark -d ipy_savedir', store_history=False) self.shell.clear_cout() def run(self): debug = False #TODO, any reason block_parser can't be a method of embeddable shell # then we wouldn't have to carry these around rgxin, rgxout, promptin, promptout = self.setup() options = self.options self.shell.is_suppress = 'suppress' in options self.shell.is_doctest = 'doctest' in options self.shell.is_verbatim = 'verbatim' in options self.shell.is_okexcept = 'okexcept' in options self.shell.is_okwarning = 'okwarning' in options self.shell.output_encoding = [options.get('output_encoding', 'utf8')] # handle pure python code if 'python' in self.arguments: content = self.content self.content = self.shell.process_pure_python(content) parts = '\n'.join(self.content).split('\n\n') lines = ['.. code-block:: ipython', ''] figures = [] for part in parts: block = block_parser(part, rgxin, rgxout, promptin, promptout) if len(block): rows, figure = self.shell.process_block(block) for row in rows: lines.extend([' %s'%line for line in row.split('\n')]) if figure is not None: figures.append(figure) for figure in figures: lines.append('') lines.extend(figure.split('\n')) lines.append('') if len(lines)>2: if debug: print('\n'.join(lines)) else: # This has to do with input, not output. But if we comment # these lines out, then no IPython code will appear in the # final output. self.state_machine.insert_input( lines, self.state_machine.input_lines.source(0)) # cleanup self.teardown() return [] # Enable as a proper Sphinx directive def setup(app): setup.app = app app.add_directive('ipython', IPythonDirective) app.add_config_value('ipython_savefig_dir', None, 'env') app.add_config_value('ipython_rgxin', re.compile('In \[(\d+)\]:\s?(.*)\s*'), 'env') app.add_config_value('ipython_rgxout', re.compile('Out\[(\d+)\]:\s?(.*)\s*'), 'env') app.add_config_value('ipython_promptin', 'In [%d]:', 'env') app.add_config_value('ipython_promptout', 'Out[%d]:', 'env') # We could just let matplotlib pick whatever is specified as the default # backend in the matplotlibrc file, but this would cause issues if the # backend didn't work in headless environments. For this reason, 'agg' # is a good default backend choice. app.add_config_value('ipython_mplbackend', 'agg', 'env') # If the user sets this config value to `None`, then EmbeddedSphinxShell's # __init__ method will treat it as []. execlines = ['import numpy as np', 'import matplotlib.pyplot as plt'] app.add_config_value('ipython_execlines', execlines, 'env') app.add_config_value('ipython_holdcount', True, 'env') # Simple smoke test, needs to be converted to a proper automatic test. def test(): examples = [ r""" In [9]: pwd Out[9]: '/home/jdhunter/py4science/book' In [10]: cd bookdata/ /home/jdhunter/py4science/book/bookdata In [2]: from pylab import * In [2]: ion() In [3]: im = imread('stinkbug.png') @savefig mystinkbug.png width=4in In [4]: imshow(im) Out[4]: <matplotlib.image.AxesImage object at 0x39ea850> """, r""" In [1]: x = 'hello world' # string methods can be # used to alter the string @doctest In [2]: x.upper() Out[2]: 'HELLO WORLD' @verbatim In [3]: x.st<TAB> x.startswith x.strip """, r""" In [130]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\ .....: &d=9&e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv' In [131]: print url.split('&') ['http://ichart.finance.yahoo.com/table.csv?s=CROX', 'd=9', 'e=22', 'f=2009', 'g=d', 'a=1', 'b=8', 'c=2006', 'ignore=.csv'] In [60]: import urllib """, r"""\ In [133]: import numpy.random @suppress In [134]: numpy.random.seed(2358) @doctest In [135]: numpy.random.rand(10,2) Out[135]: array([[ 0.64524308, 0.59943846], [ 0.47102322, 0.8715456 ], [ 0.29370834, 0.74776844], [ 0.99539577, 0.1313423 ], [ 0.16250302, 0.21103583], [ 0.81626524, 0.1312433 ], [ 0.67338089, 0.72302393], [ 0.7566368 , 0.07033696], [ 0.22591016, 0.77731835], [ 0.0072729 , 0.34273127]]) """, r""" In [106]: print x jdh In [109]: for i in range(10): .....: print i .....: .....: 0 1 2 3 4 5 6 7 8 9 """, r""" In [144]: from pylab import * In [145]: ion() # use a semicolon to suppress the output @savefig test_hist.png width=4in In [151]: hist(np.random.randn(10000), 100); @savefig test_plot.png width=4in In [151]: plot(np.random.randn(10000), 'o'); """, r""" # use a semicolon to suppress the output In [151]: plt.clf() @savefig plot_simple.png width=4in In [151]: plot([1,2,3]) @savefig hist_simple.png width=4in In [151]: hist(np.random.randn(10000), 100); """, r""" # update the current fig In [151]: ylabel('number') In [152]: title('normal distribution') @savefig hist_with_text.png In [153]: grid(True) @doctest float In [154]: 0.1 + 0.2 Out[154]: 0.3 @doctest float In [155]: np.arange(16).reshape(4,4) Out[155]: array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) In [1]: x = np.arange(16, dtype=float).reshape(4,4) In [2]: x[0,0] = np.inf In [3]: x[0,1] = np.nan @doctest float In [4]: x Out[4]: array([[ inf, nan, 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [ 12., 13., 14., 15.]]) """, ] # skip local-file depending first example: examples = examples[1:] #ipython_directive.DEBUG = True # dbg #options = dict(suppress=True) # dbg options = dict() for example in examples: content = example.split('\n') IPythonDirective('debug', arguments=None, options=options, content=content, lineno=0, content_offset=None, block_text=None, state=None, state_machine=None, ) # Run test suite as a script if __name__=='__main__': if not os.path.isdir('_static'): os.mkdir('_static') test() print('All OK? Check figures in _static/')
bsd-3-clause
INCF/BIDS2ISATab
setup.py
1
2176
from setuptools import setup import os here = os.path.abspath(os.path.dirname(__file__)) setup( name="BIDS2ISATab", # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # http://packaging.python.org/en/latest/tutorial.html#version version='0.1.0', description="Command line tool generating ISA-Tab compatible description from a Brain Imaging Data Structure " "compatible dataset.", long_description="Command line tool generating ISA-Tab compatible description from a Brain Imaging Data Structure " "compatible dataset.", # The project URL. url='https://github.com/INCF/BIDS2ISATab', # Choose your license license='BSD', classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 4 - Beta', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: BSD License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.5', ], # What does your project relate to? keywords='bids isatab', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages. packages=["bids2isatab"], # List run-time dependencies here. These will be installed by pip when your # project is installed. install_requires = ["future", "pandas", 'nibabel'], include_package_data=True, # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # pip to create the appropriate form of executable for the target platform. entry_points={ 'console_scripts': [ 'bids2isatab=bids2isatab.main:main', ], }, )
apache-2.0
zooniverse/aggregation
experimental/clusteringAlg/adaptiveDBSCAN.py
2
4734
#!/usr/bin/env python __author__ = 'greg' from sklearn.cluster import DBSCAN import numpy as np import math def dist(c1,c2): return math.sqrt((c1[0]-c2[0])**2 + (c1[1]-c2[1])**2) class CannotSplit(Exception): def __init__(self,value): self.value = value def __str__(self): return "" samples_needed = 3 def adaptiveDBSCAN(XYpts,user_ids): if XYpts == []: return [] pts_in_each_cluster = [] users_in_each_cluster = [] cluster_centers = [] #increase the epsilon until we don't have any nearby clusters corresponding to non-overlapping #sets of users X = np.array(XYpts) #for epsilon in [5,10,15,20,25,30]: for first_epsilon in [100,200,300,400]: db = DBSCAN(eps=first_epsilon, min_samples=samples_needed).fit(X) labels = db.labels_ pts_in_each_cluster = [] users_in_each_cluster = [] cluster_centers = [] for k in sorted(set(labels)): if k == -1: continue class_member_mask = (labels == k) pts_in_cluster = list(X[class_member_mask]) xSet,ySet = zip(*pts_in_cluster) cluster_centers.append((np.mean(xSet),np.mean(ySet))) pts_in_each_cluster.append(pts_in_cluster[:]) users_in_each_cluster.append([u for u,l in zip(user_ids,labels) if l == k]) #do we have any adjacent clusters with non-overlapping sets of users #if so, we should merge them by increasing the epsilon value cluster_compare = [] for cluster_index, (c1,users) in enumerate(zip(cluster_centers,users_in_each_cluster)): for cluster_index, (c2,users2) in enumerate(zip(cluster_centers[cluster_index+1:],users_in_each_cluster[cluster_index+1:])): overlappingUsers = [u for u in users if u in users2] cluster_compare.append((dist(c1,c2),overlappingUsers)) cluster_compare.sort(key = lambda x:x[0]) needToMerge = [] in [c[1] for c in cluster_compare[:10]] if not(needToMerge): break #print epsilon #print [c[1] for c in cluster_compare[:10]] centers_to_return = [] assert not(needToMerge) #do we need to split any clusters? for cluster_index in range(len(cluster_centers)): #print "splitting" needToSplit = (sorted(users_in_each_cluster[cluster_index]) != sorted(list(set(users_in_each_cluster[cluster_index])))) if needToSplit: subcluster_centers = [] stillToSplit = [] X = np.array(pts_in_each_cluster[cluster_index]) #for epsilon in [30,25,20,15,10,5,1,0.1,0.01]: for second_epsilon in range(200,1,-2):#[400,300,200,100,80,75,65,60,50,25,24,23,22,21,20,19,18,17,16,15,14,13,10,5,1]: db = DBSCAN(eps=second_epsilon, min_samples=samples_needed).fit(X) labels = db.labels_ subcluster_centers = [] needToSplit = False for k in sorted(set(labels)): if k == -1: continue class_member_mask = (labels == k) users_in_subcluster = [u for u,l in zip(users_in_each_cluster[cluster_index],labels) if l == k] needToSplit = (sorted(users_in_subcluster) != sorted(list(set(users_in_subcluster)))) if needToSplit: stillToSplit = list(X[class_member_mask]) break pts_in_cluster = list(X[class_member_mask]) xSet,ySet = zip(*pts_in_cluster) subcluster_centers.append((np.mean(xSet),np.mean(ySet))) if not(needToSplit): break if needToSplit: print "second is " + str(second_epsilon) print stillToSplit for i in range(len(stillToSplit)): p1 = stillToSplit[i] for j in range(len(stillToSplit[i+1:])): p2 = stillToSplit[j+i+1] print math.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2), #print (i,j+i+1), print print X print users_in_each_cluster[cluster_index] raise CannotSplit(pts_in_each_cluster[cluster_index]) centers_to_return.extend(subcluster_centers) #if needToSplit: # print pts_in_each_cluster[cluster_index] # print users_in_each_cluster[cluster_index] #else: else: centers_to_return.append(cluster_centers[cluster_index]) return centers_to_return
apache-2.0
jrleja/bsfh
misc/timings_pyfsps.py
3
4274
#compare a lookup table of spectra at ages and metallicities to #calls to fsps.sps.get_spectrum() for different metallicities import time, os, subprocess, re, sys import numpy as np #import matplotlib.pyplot as pl import fsps from prospect import sources as sps_basis from prospect.models import sedmodel def run_command(cmd): """ Open a child process, and return its exit status and stdout. """ child = subprocess.Popen(cmd, shell=True, stderr=subprocess.PIPE, stdin=subprocess.PIPE, stdout=subprocess.PIPE) out = [s for s in child.stdout] w = child.wait() return os.WEXITSTATUS(w), out # Check to make sure that the required environment variable is present. try: ev = os.environ["SPS_HOME"] except KeyError: raise ImportError("You need to have the SPS_HOME environment variable") # Check the SVN revision number. cmd = ["svnversion", ev] stat, out = run_command(" ".join(cmd)) fsps_vers = int(re.match("^([0-9])+", out[0]).group(0)) sps = fsps.StellarPopulation(zcontinuous=True) print('FSPS version = {}'.format(fsps_vers)) print('Zs={0}, N_lambda={1}'.format(sps.zlegend, len(sps.wavelengths))) print('single age') def spec_from_fsps(z, t, s): t0 = time.time() sps.params['logzsol'] = z sps.params['sigma_smooth'] = s sps.params['tage'] = t wave, spec = sps.get_spectrum(peraa=True, tage = sps.params['tage']) #print(spec.shape) return time.time()-t0 def mags_from_fsps(z, t, s): t0 = time.time() sps.params['zred']=t sps.params['logzsol'] = z sps.params['sigma_smooth'] = s sps.params['tage'] = t mags = sps.get_mags(tage = sps.params['tage'], redshift=0.0) #print(spec.shape) return time.time()-t0 def spec_from_ztinterp(z, t, s): t0 = time.time() sps.params['logzsol'] = z sps.params['sigma_smooth'] = s sps.params['tage'] = t sps.params['imf3'] = s spec, m, l = sps.ztinterp(sps.params['logzsol'], sps.params['tage'], peraa=True) #print(spec.shape) return time.time()-t0 if sys.argv[1] == 'mags': from_fsps = mags_from_fsps print('timing get_mags') print('nbands = {}'.format(len(sps.get_mags(tage=1.0)))) elif sys.argv[1] == 'spec': from_fsps = spec_from_fsps print('timing get_spectrum') elif sys.argv[1] == 'ztinterp': from_fsps = spec_from_ztinterp print('timing get_spectrum') elif sys.argv[1] == 'sedpy': from sedpy import observate nbands = len(sps.get_mags(tage=1.0)) fnames = nbands * ['sdss_r0'] filters = observate.load_filters(fnames) def mags_from_sedpy(z, t, s): t0 = time.time() sps.params['logzsol'] = z sps.params['sigma_smooth'] = s sps.params['tage'] = t wave, spec = sps.get_spectrum(peraa=True, tage = sps.params['tage']) mags = observate.getSED(wave, spec, filters) return time.time()-t0 from_fsps = mags_from_sedpy sps.params['add_neb_emission'] = False sps.params['smooth_velocity'] = True sps.params['sfh'] = 0 ntry = 30 zz = np.random.uniform(-1,0,ntry) tt = np.random.uniform(0.1,4,ntry) ss = np.random.uniform(1,2.5,ntry) #make sure all z's already compiled _ =[from_fsps(z, 1.0, 0.0) for z in [-1, -0.8, -0.6, -0.4, -0.2, 0.0]] all_dur = [] print('no neb emission:') dur_many = np.zeros(ntry) for i in xrange(ntry): dur_many[i] = from_fsps(zz[i], tt[i], ss[i]) print('<t/call>={0}s, sigma_t={1}s'.format(dur_many.mean(), dur_many.std())) all_dur += [dur_many] print('no neb emission, no smooth:') dur_many = np.zeros(ntry) for i in xrange(ntry): dur_many[i] = from_fsps(zz[i], tt[i], 0.0) print('<t/call>={0}s, sigma_t={1}s'.format(dur_many.mean(), dur_many.std())) all_dur += [dur_many] sps.params['add_neb_emission'] = True print('neb emission:') dur_many = np.zeros(ntry) for i in xrange(ntry): dur_many[i] = from_fsps(zz[i], tt[i], ss[i]) print('<t/call>={0}s, sigma_t={1}s'.format(dur_many.mean(), dur_many.std())) all_dur += [dur_many] print('neb emission, no smooth:') dur_many = np.zeros(ntry) for i in xrange(ntry): dur_many[i] = from_fsps(zz[i], tt[i], 0.0) print('<t/call>={0}s, sigma_t={1}s'.format(dur_many.mean(), dur_many.std())) all_dur += [dur_many]
mit
ClinicalGraphics/scikit-image
doc/examples/xx_applications/plot_morphology.py
6
8329
""" ======================= Morphological Filtering ======================= Morphological image processing is a collection of non-linear operations related to the shape or morphology of features in an image, such as boundaries, skeletons, etc. In any given technique, we probe an image with a small shape or template called a structuring element, which defines the region of interest or neighborhood around a pixel. In this document we outline the following basic morphological operations: 1. Erosion 2. Dilation 3. Opening 4. Closing 5. White Tophat 6. Black Tophat 7. Skeletonize 8. Convex Hull To get started, let's load an image using ``io.imread``. Note that morphology functions only work on gray-scale or binary images, so we set ``as_grey=True``. """ import matplotlib.pyplot as plt from skimage.data import data_dir from skimage.util import img_as_ubyte from skimage import io phantom = img_as_ubyte(io.imread(data_dir+'/phantom.png', as_grey=True)) fig, ax = plt.subplots() ax.imshow(phantom, cmap=plt.cm.gray) """ .. image:: PLOT2RST.current_figure Let's also define a convenience function for plotting comparisons: """ def plot_comparison(original, filtered, filter_name): fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 4), sharex=True, sharey=True) ax1.imshow(original, cmap=plt.cm.gray) ax1.set_title('original') ax1.axis('off') ax1.set_adjustable('box-forced') ax2.imshow(filtered, cmap=plt.cm.gray) ax2.set_title(filter_name) ax2.axis('off') ax2.set_adjustable('box-forced') """ Erosion ======= Morphological ``erosion`` sets a pixel at (i, j) to the *minimum over all pixels in the neighborhood centered at (i, j)*. The structuring element, ``selem``, passed to ``erosion`` is a boolean array that describes this neighborhood. Below, we use ``disk`` to create a circular structuring element, which we use for most of the following examples. """ from skimage.morphology import erosion, dilation, opening, closing, white_tophat from skimage.morphology import black_tophat, skeletonize, convex_hull_image from skimage.morphology import disk selem = disk(6) eroded = erosion(phantom, selem) plot_comparison(phantom, eroded, 'erosion') """ .. image:: PLOT2RST.current_figure Notice how the white boundary of the image disappears or gets eroded as we increase the size of the disk. Also notice the increase in size of the two black ellipses in the center and the disappearance of the 3 light grey patches in the lower part of the image. Dilation ======== Morphological ``dilation`` sets a pixel at (i, j) to the *maximum over all pixels in the neighborhood centered at (i, j)*. Dilation enlarges bright regions and shrinks dark regions. """ dilated = dilation(phantom, selem) plot_comparison(phantom, dilated, 'dilation') """ .. image:: PLOT2RST.current_figure Notice how the white boundary of the image thickens, or gets dilated, as we increase the size of the disk. Also notice the decrease in size of the two black ellipses in the centre, and the thickening of the light grey circle in the center and the 3 patches in the lower part of the image. Opening ======= Morphological ``opening`` on an image is defined as an *erosion followed by a dilation*. Opening can remove small bright spots (i.e. "salt") and connect small dark cracks. """ opened = opening(phantom, selem) plot_comparison(phantom, opened, 'opening') """ .. image:: PLOT2RST.current_figure Since ``opening`` an image starts with an erosion operation, light regions that are *smaller* than the structuring element are removed. The dilation operation that follows ensures that light regions that are *larger* than the structuring element retain their original size. Notice how the light and dark shapes in the center their original thickness but the 3 lighter patches in the bottom get completely eroded. The size dependence is highlighted by the outer white ring: The parts of the ring thinner than the structuring element were completely erased, while the thicker region at the top retains its original thickness. Closing ======= Morphological ``closing`` on an image is defined as a *dilation followed by an erosion*. Closing can remove small dark spots (i.e. "pepper") and connect small bright cracks. To illustrate this more clearly, let's add a small crack to the white border: """ phantom = img_as_ubyte(io.imread(data_dir+'/phantom.png', as_grey=True)) phantom[10:30, 200:210] = 0 closed = closing(phantom, selem) plot_comparison(phantom, closed, 'closing') """ .. image:: PLOT2RST.current_figure Since ``closing`` an image starts with an dilation operation, dark regions that are *smaller* than the structuring element are removed. The dilation operation that follows ensures that dark regions that are *larger* than the structuring element retain their original size. Notice how the white ellipses at the bottom get connected because of dilation, but other dark region retain their original sizes. Also notice how the crack we added is mostly removed. White tophat ============ The ``white_tophat`` of an image is defined as the *image minus its morphological opening*. This operation returns the bright spots of the image that are smaller than the structuring element. To make things interesting, we'll add bright and dark spots to the image: """ phantom = img_as_ubyte(io.imread(data_dir+'/phantom.png', as_grey=True)) phantom[340:350, 200:210] = 255 phantom[100:110, 200:210] = 0 w_tophat = white_tophat(phantom, selem) plot_comparison(phantom, w_tophat, 'white tophat') """ .. image:: PLOT2RST.current_figure As you can see, the 10-pixel wide white square is highlighted since it is smaller than the structuring element. Also, the thin, white edges around most of the ellipse are retained because they're smaller than the structuring element, but the thicker region at the top disappears. Black tophat ============ The ``black_tophat`` of an image is defined as its morphological **closing minus the original image**. This operation returns the *dark spots of the image that are smaller than the structuring element*. """ b_tophat = black_tophat(phantom, selem) plot_comparison(phantom, b_tophat, 'black tophat') """ .. image:: PLOT2RST.current_figure As you can see, the 10-pixel wide black square is highlighted since it is smaller than the structuring element. Duality ------- As you should have noticed, many of these operations are simply the reverse of another operation. This duality can be summarized as follows: 1. Erosion <-> Dilation 2. Opening <-> Closing 3. White tophat <-> Black tophat Skeletonize =========== Thinning is used to reduce each connected component in a binary image to a *single-pixel wide skeleton*. It is important to note that this is performed on binary images only. """ from skimage import img_as_bool horse = ~img_as_bool(io.imread(data_dir+'/horse.png', as_grey=True)) sk = skeletonize(horse) plot_comparison(horse, sk, 'skeletonize') """ .. image:: PLOT2RST.current_figure As the name suggests, this technique is used to thin the image to 1-pixel wide skeleton by applying thinning successively. Convex hull =========== The ``convex_hull_image`` is the *set of pixels included in the smallest convex polygon that surround all white pixels in the input image*. Again note that this is also performed on binary images. """ hull1 = convex_hull_image(horse) plot_comparison(horse, hull1, 'convex hull') """ .. image:: PLOT2RST.current_figure As the figure illustrates, ``convex_hull_image`` gives the smallest polygon which covers the white or True completely in the image. If we add a small grain to the image, we can see how the convex hull adapts to enclose that grain: """ import numpy as np horse2 = np.copy(horse) horse2[45:50, 75:80] = 1 hull2 = convex_hull_image(horse2) plot_comparison(horse2, hull2, 'convex hull') """ .. image:: PLOT2RST.current_figure Additional Resources ==================== 1. `MathWorks tutorial on morphological processing <http://www.mathworks.com/help/images/morphology-fundamentals-dilation-and-erosion.html>`_ 2. `Auckland university's tutorial on Morphological Image Processing <http://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm>`_ 3. http://en.wikipedia.org/wiki/Mathematical_morphology """ plt.show()
bsd-3-clause
codenote/chromium-test
ppapi/native_client/tests/breakpad_crash_test/crash_dump_tester.py
6
8213
#!/usr/bin/python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import subprocess import sys import tempfile import time script_dir = os.path.dirname(__file__) sys.path.append(os.path.join(script_dir, '../../tools/browser_tester')) import browser_tester import browsertester.browserlauncher # This script extends browser_tester to check for the presence of # Breakpad crash dumps. # This reads a file of lines containing 'key:value' pairs. # The file contains entries like the following: # plat:Win32 # prod:Chromium # ptype:nacl-loader # rept:crash svc def ReadDumpTxtFile(filename): dump_info = {} fh = open(filename, 'r') for line in fh: if ':' in line: key, value = line.rstrip().split(':', 1) dump_info[key] = value fh.close() return dump_info def StartCrashService(browser_path, dumps_dir, windows_pipe_name, cleanup_funcs, crash_service_exe): # Find crash_service.exe relative to chrome.exe. This is a bit icky. browser_dir = os.path.dirname(browser_path) proc = subprocess.Popen([os.path.join(browser_dir, crash_service_exe), '--v=1', # Verbose output for debugging failures '--dumps-dir=%s' % dumps_dir, '--pipe-name=%s' % windows_pipe_name]) def Cleanup(): # Note that if the process has already exited, this will raise # an 'Access is denied' WindowsError exception, but # crash_service.exe is not supposed to do this and such # behaviour should make the test fail. proc.terminate() status = proc.wait() sys.stdout.write('crash_dump_tester: %s exited with status %s\n' % (crash_service_exe, status)) cleanup_funcs.append(Cleanup) def ListPathsInDir(dir_path): if os.path.exists(dir_path): return [os.path.join(dir_path, name) for name in os.listdir(dir_path)] else: return [] def GetDumpFiles(dumps_dirs): all_files = [filename for dumps_dir in dumps_dirs for filename in ListPathsInDir(dumps_dir)] sys.stdout.write('crash_dump_tester: Found %i files\n' % len(all_files)) for dump_file in all_files: sys.stdout.write(' %s (size %i)\n' % (dump_file, os.stat(dump_file).st_size)) return [dump_file for dump_file in all_files if dump_file.endswith('.dmp')] def Main(cleanup_funcs): parser = browser_tester.BuildArgParser() parser.add_option('--expected_crash_dumps', dest='expected_crash_dumps', type=int, default=0, help='The number of crash dumps that we should expect') parser.add_option('--expected_process_type_for_crash', dest='expected_process_type_for_crash', type=str, default='nacl-loader', help='The type of Chromium process that we expect the ' 'crash dump to be for') # Ideally we would just query the OS here to find out whether we are # running x86-32 or x86-64 Windows, but Python's win32api module # does not contain a wrapper for GetNativeSystemInfo(), which is # what NaCl uses to check this, or for IsWow64Process(), which is # what Chromium uses. Instead, we just rely on the build system to # tell us. parser.add_option('--win64', dest='win64', action='store_true', help='Pass this if we are running tests for x86-64 Windows') options, args = parser.parse_args() temp_dir = tempfile.mkdtemp(prefix='nacl_crash_dump_tester_') def CleanUpTempDir(): browsertester.browserlauncher.RemoveDirectory(temp_dir) cleanup_funcs.append(CleanUpTempDir) # To get a guaranteed unique pipe name, use the base name of the # directory we just created. windows_pipe_name = r'\\.\pipe\%s_crash_service' % os.path.basename(temp_dir) # This environment variable enables Breakpad crash dumping in # non-official builds of Chromium. os.environ['CHROME_HEADLESS'] = '1' if sys.platform == 'win32': dumps_dir = temp_dir # Override the default (global) Windows pipe name that Chromium will # use for out-of-process crash reporting. os.environ['CHROME_BREAKPAD_PIPE_NAME'] = windows_pipe_name # Launch the x86-32 crash service so that we can handle crashes in # the browser process. StartCrashService(options.browser_path, dumps_dir, windows_pipe_name, cleanup_funcs, 'crash_service.exe') if options.win64: # Launch the x86-64 crash service so that we can handle crashes # in the NaCl loader process (nacl64.exe). StartCrashService(options.browser_path, dumps_dir, windows_pipe_name, cleanup_funcs, 'crash_service64.exe') # We add a delay because there is probably a race condition: # crash_service.exe might not have finished doing # CreateNamedPipe() before NaCl does a crash dump and tries to # connect to that pipe. # TODO(mseaborn): We could change crash_service.exe to report when # it has successfully created the named pipe. time.sleep(1) elif sys.platform == 'darwin': dumps_dir = temp_dir os.environ['BREAKPAD_DUMP_LOCATION'] = dumps_dir elif sys.platform.startswith('linux'): # The "--user-data-dir" option is not effective for the Breakpad # setup in Linux Chromium, because Breakpad is initialized before # "--user-data-dir" is read. So we set HOME to redirect the crash # dumps to a temporary directory. home_dir = temp_dir os.environ['HOME'] = home_dir options.enable_crash_reporter = True result = browser_tester.Run(options.url, options) # Find crash dump results. if sys.platform.startswith('linux'): # Look in "~/.config/*/Crash Reports". This will find crash # reports under ~/.config/chromium or ~/.config/google-chrome, or # under other subdirectories in case the branding is changed. dumps_dirs = [os.path.join(path, 'Crash Reports') for path in ListPathsInDir(os.path.join(home_dir, '.config'))] else: dumps_dirs = [dumps_dir] dmp_files = GetDumpFiles(dumps_dirs) failed = False msg = ('crash_dump_tester: ERROR: Got %i crash dumps but expected %i\n' % (len(dmp_files), options.expected_crash_dumps)) if len(dmp_files) != options.expected_crash_dumps: sys.stdout.write(msg) failed = True for dump_file in dmp_files: # Sanity check: Make sure dumping did not fail after opening the file. msg = 'crash_dump_tester: ERROR: Dump file is empty\n' if os.stat(dump_file).st_size == 0: sys.stdout.write(msg) failed = True # On Windows, the crash dumps should come in pairs of a .dmp and # .txt file. if sys.platform == 'win32': second_file = dump_file[:-4] + '.txt' msg = ('crash_dump_tester: ERROR: File %r is missing a corresponding ' '%r file\n' % (dump_file, second_file)) if not os.path.exists(second_file): sys.stdout.write(msg) failed = True continue # Check that the crash dump comes from the NaCl process. dump_info = ReadDumpTxtFile(second_file) if 'ptype' in dump_info: msg = ('crash_dump_tester: ERROR: Unexpected ptype value: %r != %r\n' % (dump_info['ptype'], options.expected_process_type_for_crash)) if dump_info['ptype'] != options.expected_process_type_for_crash: sys.stdout.write(msg) failed = True else: sys.stdout.write('crash_dump_tester: ERROR: Missing ptype field\n') failed = True # TODO(mseaborn): Ideally we would also check that a backtrace # containing an expected function name can be extracted from the # crash dump. if failed: sys.stdout.write('crash_dump_tester: FAILED\n') result = 1 else: sys.stdout.write('crash_dump_tester: PASSED\n') return result def MainWrapper(): cleanup_funcs = [] try: return Main(cleanup_funcs) finally: for func in cleanup_funcs: func() if __name__ == '__main__': sys.exit(MainWrapper())
bsd-3-clause
hainm/dask
dask/dataframe/shuffle.py
4
2967
from itertools import count from collections import Iterator from math import ceil from toolz import merge, accumulate, merge_sorted import toolz from operator import getitem, setitem import pandas as pd import numpy as np from pframe import pframe from .. import threaded from .core import DataFrame, Series, get, names from ..compatibility import unicode from ..utils import ignoring tokens = ('-%d' % i for i in count(1)) def set_index(f, index, npartitions=None, **kwargs): """ Set DataFrame index to new column Sorts index and realigns Dataframe to new sorted order. This shuffles and repartitions your data. """ npartitions = npartitions or f.npartitions if not isinstance(index, Series): index2 = f[index] else: index2 = index divisions = (index2 .quantiles(np.linspace(0, 100, npartitions+1)[1:-1]) .compute()) return f.set_partition(index, divisions, **kwargs) partition_names = ('set_partition-%d' % i for i in count(1)) def set_partition(f, index, divisions, get=threaded.get, **kwargs): """ Set new partitioning along index given divisions """ divisions = unique(divisions) name = next(names) if isinstance(index, Series): assert index.divisions == f.divisions dsk = dict(((name, i), (f._partition_type.set_index, block, ind)) for i, (block, ind) in enumerate(zip(f._keys(), index._keys()))) f2 = type(f)(merge(f.dask, index.dask, dsk), name, f.column_info, f.divisions) else: dsk = dict(((name, i), (f._partition_type.set_index, block, index)) for i, block in enumerate(f._keys())) f2 = type(f)(merge(f.dask, dsk), name, f.column_info, f.divisions) head = f2.head() pf = pframe(like=head, divisions=divisions, **kwargs) def append(block): pf.append(block) return 0 f2.map_blocks(append).compute(get=get) pf.flush() return from_pframe(pf) def from_pframe(pf): """ Load dask.array from pframe """ name = next(names) dsk = dict(((name, i), (pframe.get_partition, pf, i)) for i in range(pf.npartitions)) return DataFrame(dsk, name, pf.columns, pf.divisions) def unique(divisions): """ Polymorphic unique function >>> list(unique([1, 2, 3, 1, 2, 3])) [1, 2, 3] >>> unique(np.array([1, 2, 3, 1, 2, 3])) array([1, 2, 3]) >>> unique(pd.Categorical(['Alice', 'Bob', 'Alice'], ordered=False)) [Alice, Bob] Categories (2, object): [Alice, Bob] """ if isinstance(divisions, np.ndarray): return np.unique(divisions) if isinstance(divisions, pd.Categorical): return pd.Categorical.from_codes(np.unique(divisions.codes), divisions.categories, divisions.ordered) if isinstance(divisions, (tuple, list, Iterator)): return tuple(toolz.unique(divisions)) raise NotImplementedError()
bsd-3-clause
allanino/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_tkagg.py
69
24593
# Todd Miller [email protected] from __future__ import division import os, sys, math import Tkinter as Tk, FileDialog import tkagg # Paint image to Tk photo blitter extension from backend_agg import FigureCanvasAgg import os.path import matplotlib from matplotlib.cbook import is_string_like from matplotlib.backend_bases import RendererBase, GraphicsContextBase, \ FigureManagerBase, FigureCanvasBase, NavigationToolbar2, cursors from matplotlib.figure import Figure from matplotlib._pylab_helpers import Gcf import matplotlib.windowing as windowing from matplotlib.widgets import SubplotTool import matplotlib.cbook as cbook rcParams = matplotlib.rcParams verbose = matplotlib.verbose backend_version = Tk.TkVersion # the true dots per inch on the screen; should be display dependent # see http://groups.google.com/groups?q=screen+dpi+x11&hl=en&lr=&ie=UTF-8&oe=UTF-8&safe=off&selm=7077.26e81ad5%40swift.cs.tcd.ie&rnum=5 for some info about screen dpi PIXELS_PER_INCH = 75 cursord = { cursors.MOVE: "fleur", cursors.HAND: "hand2", cursors.POINTER: "arrow", cursors.SELECT_REGION: "tcross", } def round(x): return int(math.floor(x+0.5)) def raise_msg_to_str(msg): """msg is a return arg from a raise. Join with new lines""" if not is_string_like(msg): msg = '\n'.join(map(str, msg)) return msg def error_msg_tkpaint(msg, parent=None): import tkMessageBox tkMessageBox.showerror("matplotlib", msg) def draw_if_interactive(): if matplotlib.is_interactive(): figManager = Gcf.get_active() if figManager is not None: figManager.show() def show(): """ Show all the figures and enter the gtk mainloop This should be the last line of your script. This function sets interactive mode to True, as detailed on http://matplotlib.sf.net/interactive.html """ for manager in Gcf.get_all_fig_managers(): manager.show() import matplotlib matplotlib.interactive(True) if rcParams['tk.pythoninspect']: os.environ['PYTHONINSPECT'] = '1' if show._needmain: Tk.mainloop() show._needmain = False show._needmain = True def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ _focus = windowing.FocusManager() FigureClass = kwargs.pop('FigureClass', Figure) figure = FigureClass(*args, **kwargs) window = Tk.Tk() canvas = FigureCanvasTkAgg(figure, master=window) figManager = FigureManagerTkAgg(canvas, num, window) if matplotlib.is_interactive(): figManager.show() return figManager class FigureCanvasTkAgg(FigureCanvasAgg): keyvald = {65507 : 'control', 65505 : 'shift', 65513 : 'alt', 65508 : 'control', 65506 : 'shift', 65514 : 'alt', 65361 : 'left', 65362 : 'up', 65363 : 'right', 65364 : 'down', 65307 : 'escape', 65470 : 'f1', 65471 : 'f2', 65472 : 'f3', 65473 : 'f4', 65474 : 'f5', 65475 : 'f6', 65476 : 'f7', 65477 : 'f8', 65478 : 'f9', 65479 : 'f10', 65480 : 'f11', 65481 : 'f12', 65300 : 'scroll_lock', 65299 : 'break', 65288 : 'backspace', 65293 : 'enter', 65379 : 'insert', 65535 : 'delete', 65360 : 'home', 65367 : 'end', 65365 : 'pageup', 65366 : 'pagedown', 65438 : '0', 65436 : '1', 65433 : '2', 65435 : '3', 65430 : '4', 65437 : '5', 65432 : '6', 65429 : '7', 65431 : '8', 65434 : '9', 65451 : '+', 65453 : '-', 65450 : '*', 65455 : '/', 65439 : 'dec', 65421 : 'enter', } def __init__(self, figure, master=None, resize_callback=None): FigureCanvasAgg.__init__(self, figure) self._idle = True t1,t2,w,h = self.figure.bbox.bounds w, h = int(w), int(h) self._tkcanvas = Tk.Canvas( master=master, width=w, height=h, borderwidth=4) self._tkphoto = Tk.PhotoImage( master=self._tkcanvas, width=w, height=h) self._tkcanvas.create_image(w/2, h/2, image=self._tkphoto) self._resize_callback = resize_callback self._tkcanvas.bind("<Configure>", self.resize) self._tkcanvas.bind("<Key>", self.key_press) self._tkcanvas.bind("<Motion>", self.motion_notify_event) self._tkcanvas.bind("<KeyRelease>", self.key_release) for name in "<Button-1>", "<Button-2>", "<Button-3>": self._tkcanvas.bind(name, self.button_press_event) for name in "<ButtonRelease-1>", "<ButtonRelease-2>", "<ButtonRelease-3>": self._tkcanvas.bind(name, self.button_release_event) # Mouse wheel on Linux generates button 4/5 events for name in "<Button-4>", "<Button-5>": self._tkcanvas.bind(name, self.scroll_event) # Mouse wheel for windows goes to the window with the focus. # Since the canvas won't usually have the focus, bind the # event to the window containing the canvas instead. # See http://wiki.tcl.tk/3893 (mousewheel) for details root = self._tkcanvas.winfo_toplevel() root.bind("<MouseWheel>", self.scroll_event_windows) self._master = master self._tkcanvas.focus_set() # a dict from func-> cbook.Scheduler threads self.sourced = dict() # call the idle handler def on_idle(*ignore): self.idle_event() return True # disable until you figure out how to handle threads and interrupts #t = cbook.Idle(on_idle) #self._tkcanvas.after_idle(lambda *ignore: t.start()) def resize(self, event): width, height = event.width, event.height if self._resize_callback is not None: self._resize_callback(event) # compute desired figure size in inches dpival = self.figure.dpi winch = width/dpival hinch = height/dpival self.figure.set_size_inches(winch, hinch) self._tkcanvas.delete(self._tkphoto) self._tkphoto = Tk.PhotoImage( master=self._tkcanvas, width=width, height=height) self._tkcanvas.create_image(width/2,height/2,image=self._tkphoto) self.resize_event() self.show() def draw(self): FigureCanvasAgg.draw(self) tkagg.blit(self._tkphoto, self.renderer._renderer, colormode=2) self._master.update_idletasks() def blit(self, bbox=None): tkagg.blit(self._tkphoto, self.renderer._renderer, bbox=bbox, colormode=2) self._master.update_idletasks() show = draw def draw_idle(self): 'update drawing area only if idle' d = self._idle self._idle = False def idle_draw(*args): self.draw() self._idle = True if d: self._tkcanvas.after_idle(idle_draw) def get_tk_widget(self): """returns the Tk widget used to implement FigureCanvasTkAgg. Although the initial implementation uses a Tk canvas, this routine is intended to hide that fact. """ return self._tkcanvas def motion_notify_event(self, event): x = event.x # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.y FigureCanvasBase.motion_notify_event(self, x, y, guiEvent=event) def button_press_event(self, event): x = event.x # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.y num = getattr(event, 'num', None) if sys.platform=='darwin': # 2 and 3 were reversed on the OSX platform I # tested under tkagg if num==2: num=3 elif num==3: num=2 FigureCanvasBase.button_press_event(self, x, y, num, guiEvent=event) def button_release_event(self, event): x = event.x # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.y num = getattr(event, 'num', None) if sys.platform=='darwin': # 2 and 3 were reversed on the OSX platform I # tested under tkagg if num==2: num=3 elif num==3: num=2 FigureCanvasBase.button_release_event(self, x, y, num, guiEvent=event) def scroll_event(self, event): x = event.x y = self.figure.bbox.height - event.y num = getattr(event, 'num', None) if num==4: step = -1 elif num==5: step = +1 else: step = 0 FigureCanvasBase.scroll_event(self, x, y, step, guiEvent=event) def scroll_event_windows(self, event): """MouseWheel event processor""" # need to find the window that contains the mouse w = event.widget.winfo_containing(event.x_root, event.y_root) if w == self._tkcanvas: x = event.x_root - w.winfo_rootx() y = event.y_root - w.winfo_rooty() y = self.figure.bbox.height - y step = event.delta/120. FigureCanvasBase.scroll_event(self, x, y, step, guiEvent=event) def _get_key(self, event): val = event.keysym_num if val in self.keyvald: key = self.keyvald[val] elif val<256: key = chr(val) else: key = None return key def key_press(self, event): key = self._get_key(event) FigureCanvasBase.key_press_event(self, key, guiEvent=event) def key_release(self, event): key = self._get_key(event) FigureCanvasBase.key_release_event(self, key, guiEvent=event) def flush_events(self): self._master.update() def start_event_loop(self,timeout): FigureCanvasBase.start_event_loop_default(self,timeout) start_event_loop.__doc__=FigureCanvasBase.start_event_loop_default.__doc__ def stop_event_loop(self): FigureCanvasBase.stop_event_loop_default(self) stop_event_loop.__doc__=FigureCanvasBase.stop_event_loop_default.__doc__ class FigureManagerTkAgg(FigureManagerBase): """ Public attributes canvas : The FigureCanvas instance num : The Figure number toolbar : The tk.Toolbar window : The tk.Window """ def __init__(self, canvas, num, window): FigureManagerBase.__init__(self, canvas, num) self.window = window self.window.withdraw() self.window.wm_title("Figure %d" % num) self.canvas = canvas self._num = num t1,t2,w,h = canvas.figure.bbox.bounds w, h = int(w), int(h) self.window.minsize(int(w*3/4),int(h*3/4)) if matplotlib.rcParams['toolbar']=='classic': self.toolbar = NavigationToolbar( canvas, self.window ) elif matplotlib.rcParams['toolbar']=='toolbar2': self.toolbar = NavigationToolbar2TkAgg( canvas, self.window ) else: self.toolbar = None if self.toolbar is not None: self.toolbar.update() self.canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) self._shown = False def notify_axes_change(fig): 'this will be called whenever the current axes is changed' if self.toolbar != None: self.toolbar.update() self.canvas.figure.add_axobserver(notify_axes_change) # attach a show method to the figure for pylab ease of use self.canvas.figure.show = lambda *args: self.show() def resize(self, event): width, height = event.width, event.height self.toolbar.configure(width=width) # , height=height) def show(self): """ this function doesn't segfault but causes the PyEval_RestoreThread: NULL state bug on win32 """ def destroy(*args): self.window = None Gcf.destroy(self._num) if not self._shown: self.canvas._tkcanvas.bind("<Destroy>", destroy) _focus = windowing.FocusManager() if not self._shown: self.window.deiconify() # anim.py requires this if sys.platform=='win32' : self.window.update() else: self.canvas.draw() self._shown = True def destroy(self, *args): if Gcf.get_num_fig_managers()==0 and not matplotlib.is_interactive(): if self.window is not None: self.window.quit() if self.window is not None: #self.toolbar.destroy() self.window.destroy() pass self.window = None def set_window_title(self, title): self.window.wm_title(title) class AxisMenu: def __init__(self, master, naxes): self._master = master self._naxes = naxes self._mbar = Tk.Frame(master=master, relief=Tk.RAISED, borderwidth=2) self._mbar.pack(side=Tk.LEFT) self._mbutton = Tk.Menubutton( master=self._mbar, text="Axes", underline=0) self._mbutton.pack(side=Tk.LEFT, padx="2m") self._mbutton.menu = Tk.Menu(self._mbutton) self._mbutton.menu.add_command( label="Select All", command=self.select_all) self._mbutton.menu.add_command( label="Invert All", command=self.invert_all) self._axis_var = [] self._checkbutton = [] for i in range(naxes): self._axis_var.append(Tk.IntVar()) self._axis_var[i].set(1) self._checkbutton.append(self._mbutton.menu.add_checkbutton( label = "Axis %d" % (i+1), variable=self._axis_var[i], command=self.set_active)) self._mbutton.menu.invoke(self._mbutton.menu.index("Select All")) self._mbutton['menu'] = self._mbutton.menu self._mbar.tk_menuBar(self._mbutton) self.set_active() def adjust(self, naxes): if self._naxes < naxes: for i in range(self._naxes, naxes): self._axis_var.append(Tk.IntVar()) self._axis_var[i].set(1) self._checkbutton.append( self._mbutton.menu.add_checkbutton( label = "Axis %d" % (i+1), variable=self._axis_var[i], command=self.set_active)) elif self._naxes > naxes: for i in range(self._naxes-1, naxes-1, -1): del self._axis_var[i] self._mbutton.menu.forget(self._checkbutton[i]) del self._checkbutton[i] self._naxes = naxes self.set_active() def get_indices(self): a = [i for i in range(len(self._axis_var)) if self._axis_var[i].get()] return a def set_active(self): self._master.set_active(self.get_indices()) def invert_all(self): for a in self._axis_var: a.set(not a.get()) self.set_active() def select_all(self): for a in self._axis_var: a.set(1) self.set_active() class NavigationToolbar(Tk.Frame): """ Public attriubutes canvas - the FigureCanvas (gtk.DrawingArea) win - the gtk.Window """ def _Button(self, text, file, command): file = os.path.join(rcParams['datapath'], 'images', file) im = Tk.PhotoImage(master=self, file=file) b = Tk.Button( master=self, text=text, padx=2, pady=2, image=im, command=command) b._ntimage = im b.pack(side=Tk.LEFT) return b def __init__(self, canvas, window): self.canvas = canvas self.window = window xmin, xmax = canvas.figure.bbox.intervalx height, width = 50, xmax-xmin Tk.Frame.__init__(self, master=self.window, width=width, height=height, borderwidth=2) self.update() # Make axes menu self.bLeft = self._Button( text="Left", file="stock_left.ppm", command=lambda x=-1: self.panx(x)) self.bRight = self._Button( text="Right", file="stock_right.ppm", command=lambda x=1: self.panx(x)) self.bZoomInX = self._Button( text="ZoomInX",file="stock_zoom-in.ppm", command=lambda x=1: self.zoomx(x)) self.bZoomOutX = self._Button( text="ZoomOutX", file="stock_zoom-out.ppm", command=lambda x=-1: self.zoomx(x)) self.bUp = self._Button( text="Up", file="stock_up.ppm", command=lambda y=1: self.pany(y)) self.bDown = self._Button( text="Down", file="stock_down.ppm", command=lambda y=-1: self.pany(y)) self.bZoomInY = self._Button( text="ZoomInY", file="stock_zoom-in.ppm", command=lambda y=1: self.zoomy(y)) self.bZoomOutY = self._Button( text="ZoomOutY",file="stock_zoom-out.ppm", command=lambda y=-1: self.zoomy(y)) self.bSave = self._Button( text="Save", file="stock_save_as.ppm", command=self.save_figure) self.pack(side=Tk.BOTTOM, fill=Tk.X) def set_active(self, ind): self._ind = ind self._active = [ self._axes[i] for i in self._ind ] def panx(self, direction): for a in self._active: a.xaxis.pan(direction) self.canvas.draw() def pany(self, direction): for a in self._active: a.yaxis.pan(direction) self.canvas.draw() def zoomx(self, direction): for a in self._active: a.xaxis.zoom(direction) self.canvas.draw() def zoomy(self, direction): for a in self._active: a.yaxis.zoom(direction) self.canvas.draw() def save_figure(self): fs = FileDialog.SaveFileDialog(master=self.window, title='Save the figure') try: self.lastDir except AttributeError: self.lastDir = os.curdir fname = fs.go(dir_or_file=self.lastDir) # , pattern="*.png") if fname is None: # Cancel return self.lastDir = os.path.dirname(fname) try: self.canvas.print_figure(fname) except IOError, msg: err = '\n'.join(map(str, msg)) msg = 'Failed to save %s: Error msg was\n\n%s' % ( fname, err) error_msg_tkpaint(msg) def update(self): _focus = windowing.FocusManager() self._axes = self.canvas.figure.axes naxes = len(self._axes) if not hasattr(self, "omenu"): self.set_active(range(naxes)) self.omenu = AxisMenu(master=self, naxes=naxes) else: self.omenu.adjust(naxes) class NavigationToolbar2TkAgg(NavigationToolbar2, Tk.Frame): """ Public attriubutes canvas - the FigureCanvas (gtk.DrawingArea) win - the gtk.Window """ def __init__(self, canvas, window): self.canvas = canvas self.window = window self._idle = True #Tk.Frame.__init__(self, master=self.canvas._tkcanvas) NavigationToolbar2.__init__(self, canvas) def destroy(self, *args): del self.message Tk.Frame.destroy(self, *args) def set_message(self, s): self.message.set(s) def draw_rubberband(self, event, x0, y0, x1, y1): height = self.canvas.figure.bbox.height y0 = height-y0 y1 = height-y1 try: self.lastrect except AttributeError: pass else: self.canvas._tkcanvas.delete(self.lastrect) self.lastrect = self.canvas._tkcanvas.create_rectangle(x0, y0, x1, y1) #self.canvas.draw() def release(self, event): try: self.lastrect except AttributeError: pass else: self.canvas._tkcanvas.delete(self.lastrect) del self.lastrect def set_cursor(self, cursor): self.window.configure(cursor=cursord[cursor]) def _Button(self, text, file, command): file = os.path.join(rcParams['datapath'], 'images', file) im = Tk.PhotoImage(master=self, file=file) b = Tk.Button( master=self, text=text, padx=2, pady=2, image=im, command=command) b._ntimage = im b.pack(side=Tk.LEFT) return b def _init_toolbar(self): xmin, xmax = self.canvas.figure.bbox.intervalx height, width = 50, xmax-xmin Tk.Frame.__init__(self, master=self.window, width=width, height=height, borderwidth=2) self.update() # Make axes menu self.bHome = self._Button( text="Home", file="home.ppm", command=self.home) self.bBack = self._Button( text="Back", file="back.ppm", command = self.back) self.bForward = self._Button(text="Forward", file="forward.ppm", command = self.forward) self.bPan = self._Button( text="Pan", file="move.ppm", command = self.pan) self.bZoom = self._Button( text="Zoom", file="zoom_to_rect.ppm", command = self.zoom) self.bsubplot = self._Button( text="Configure Subplots", file="subplots.ppm", command = self.configure_subplots) self.bsave = self._Button( text="Save", file="filesave.ppm", command = self.save_figure) self.message = Tk.StringVar(master=self) self._message_label = Tk.Label(master=self, textvariable=self.message) self._message_label.pack(side=Tk.RIGHT) self.pack(side=Tk.BOTTOM, fill=Tk.X) def configure_subplots(self): toolfig = Figure(figsize=(6,3)) window = Tk.Tk() canvas = FigureCanvasTkAgg(toolfig, master=window) toolfig.subplots_adjust(top=0.9) tool = SubplotTool(self.canvas.figure, toolfig) canvas.show() canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) def save_figure(self): from tkFileDialog import asksaveasfilename from tkMessageBox import showerror filetypes = self.canvas.get_supported_filetypes().copy() default_filetype = self.canvas.get_default_filetype() # Tk doesn't provide a way to choose a default filetype, # so we just have to put it first default_filetype_name = filetypes[default_filetype] del filetypes[default_filetype] sorted_filetypes = filetypes.items() sorted_filetypes.sort() sorted_filetypes.insert(0, (default_filetype, default_filetype_name)) tk_filetypes = [ (name, '*.%s' % ext) for (ext, name) in sorted_filetypes] fname = asksaveasfilename( master=self.window, title='Save the figure', filetypes = tk_filetypes, defaultextension = self.canvas.get_default_filetype() ) if fname == "" or fname == (): return else: try: # This method will handle the delegation to the correct type self.canvas.print_figure(fname) except Exception, e: showerror("Error saving file", str(e)) def set_active(self, ind): self._ind = ind self._active = [ self._axes[i] for i in self._ind ] def update(self): _focus = windowing.FocusManager() self._axes = self.canvas.figure.axes naxes = len(self._axes) #if not hasattr(self, "omenu"): # self.set_active(range(naxes)) # self.omenu = AxisMenu(master=self, naxes=naxes) #else: # self.omenu.adjust(naxes) NavigationToolbar2.update(self) def dynamic_update(self): 'update drawing area only if idle' # legacy method; new method is canvas.draw_idle self.canvas.draw_idle() FigureManager = FigureManagerTkAgg
agpl-3.0
mhoffman/kmos
kmos/cli.py
1
16514
#!/usr/bin/env python """Entry point module for the command-line interface. The kmos executable should be on the program path, import this modules main function and run it. To call kmos command as you would from the shell, use :: kmos.cli.main('...') Every command can be shortened as long as it is non-ambiguous, e.g. :: kmos ex <xml-file> instead of :: kmos export <xml-file> etc. """ # Copyright 2009-2013 Max J. Hoffmann ([email protected]) # This file is part of kmos. # # kmos is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # kmos is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with kmos. If not, see <http://www.gnu.org/licenses/>. from __future__ import with_statement import os import shutil usage = {} usage['all'] = """kmos help all Display documentation for all commands. """ usage['benchmark'] = """kmos benchmark Run 1 mio. kMC steps on model in current directory and report runtime. """ usage['build'] = """kmos build Build kmc_model.%s from *f90 files in the current directory. Additional Parameters :: -d/--debug Turn on assertion statements in F90 code -n/--no-compiler-optimization Do not send optimizing flags to compiler. """ % ('pyd' if os.name == 'nt' else 'so') usage['help'] = """kmos help <command> Print usage information for the given command. """ usage['export'] = """kmos export <xml-file> [<export-path>] Take a kmos xml-file and export all generated source code to the export-path. There try to build the kmc_model.%s. Additional Parameters :: -s/--source-only Export source only and don't build binary -b/--backend (local_smart|lat_int) Choose backend. Default is "local_smart". lat_int is EXPERIMENTAL and not made for production, yet. -d/--debug Turn on assertion statements in F90 code. (Only active in compile step) --acf Build the modules base_acf.f90 and proclist_acf.f90. Default is false. This both modules contain functions to calculate ACF (autocorrelation function) and MSD (mean squared displacement). -n/--no-compiler-optimization Do not send optimizing flags to compiler. """ % ('pyd' if os.name == 'nt' else 'so') usage['settings-export'] = """kmos settings-export <xml-file> [<export-path>] Take a kmos xml-file and export kmc_settings.py to the export-path. """ usage['edit'] = """kmos edit <xml-file> Open the kmos xml-file in a GUI to edit the model. """ usage['import'] = """kmos import <xml-file> Take a kmos xml-file and open an ipython shell with the project_tree imported as pt. """ usage['rebuild'] = """kmos rebuild Export code and rebuild binary module from XML information included in kmc_settings.py in current directory. Additional Parameters :: -d/--debug Turn on assertion statements in F90 code """ usage['shell'] = """kmos shell Open an interactive shell and create a KMC_Model in it run == shell """ usage['run'] = """kmos run Open an interactive shell and create a KMC_Model in it run == shell """ usage['version'] = """kmos version Print version number and exit. """ usage['view'] = """kmos view Take a kmc_model.%s and kmc_settings.py in the same directory and start to simulate the model visually. Additional Parameters :: -v/--steps-per-frame <number> Number of steps per frame """ % ('pyd' if os.name == 'nt' else 'so') usage['xml'] = """kmos xml Print xml representation of model to stdout """ def get_options(args=None, get_parser=False): import optparse import os from glob import glob import kmos parser = optparse.OptionParser( 'Usage: %prog [help] (' + '|'.join(sorted(usage.keys())) + ') [options]', version=kmos.__version__) parser.add_option('-s', '--source-only', dest='source_only', action='store_true', default=False) parser.add_option('-p', '--path-to-f2py', dest='path_to_f2py', default='f2py') parser.add_option('-b', '--backend', dest='backend', default='local_smart') parser.add_option('-a', '--avoid-default-state', dest='avoid_default_state', action='store_true', default=False, ) parser.add_option('-v', '--steps-per-frame', dest='steps_per_frame', type='int', default='50000') parser.add_option('-d', '--debug', default=False, dest='debug', action='store_true') parser.add_option('-n', '--no-compiler-optimization', default=False, dest='no_optimize', action='store_true') parser.add_option('-o', '--overwrite', default=False, action='store_true') parser.add_option('-l', '--variable-length', dest='variable_length', default=95, type='int') parser.add_option('-c', '--catmap', default=False, action='store_true') parser.add_option('--acf', dest='acf', action='store_true', default=False, ) try: from numpy.distutils.fcompiler import get_default_fcompiler from numpy.distutils import log log.set_verbosity(-1, True) fcompiler = get_default_fcompiler() except: fcompiler = 'gfortran' parser.add_option('-f', '--fcompiler', dest='fcompiler', default=os.environ.get('F2PY_FCOMPILER', fcompiler)) if args is not None: options, args = parser.parse_args(args.split()) else: options, args = parser.parse_args() if len(args) < 1: parser.error('Command expected') if get_parser: return options, args, parser else: return options, args def match_keys(arg, usage, parser): """Try to match part of a command against the set of commands from usage. Throws an error if not successful. """ possible_args = [key for key in usage if key.startswith(arg)] if len(possible_args) == 0: parser.error('Command "%s" not understood.' % arg) elif len(possible_args) > 1: parser.error(('Command "%s" ambiguous.\n' 'Could be one of %s\n\n') % (arg, possible_args)) else: return possible_args[0] def main(args=None): """The CLI main entry point function. The optional argument args, can be used to directly supply command line argument like $ kmos <args> otherwise args will be taken from STDIN. """ from glob import glob options, args, parser = get_options(args, get_parser=True) global model, pt, np, cm_model if not args[0] in usage.keys(): args[0] = match_keys(args[0], usage, parser) if args[0] == 'benchmark': from sys import path path.append(os.path.abspath(os.curdir)) nsteps = 1000000 from time import time from kmos.run import KMC_Model model = KMC_Model(print_rates=False, banner=False) time0 = time() try: model.proclist.do_kmc_steps(nsteps) except: # kmos < 0.3 had no model.proclist.do_kmc_steps model.do_steps(nsteps) needed_time = time() - time0 print('Using the [%s] backend.' % model.get_backend()) print('%s steps took %.2f seconds' % (nsteps, needed_time)) print('Or %.2e steps/s' % (1e6 / needed_time)) model.deallocate() elif args[0] == 'build': from kmos.utils import build build(options) elif args[0] == 'edit': from kmos import gui gui.main() elif args[0] == 'settings-export': import kmos.types import kmos.io from kmos.io import ProcListWriter if len(args) < 2: parser.error('XML file and export path expected.') if len(args) < 3: out_dir = '%s_%s' % (os.path.splitext(args[1])[0], options.backend) print('No export path provided. Exporting to %s' % out_dir) args.append(out_dir) xml_file = args[1] export_dir = args[2] project = kmos.types.Project() project.import_file(xml_file) writer = ProcListWriter(project, export_dir) writer.write_settings() elif args[0] == 'export': import kmos.types import kmos.io from kmos.utils import build if len(args) < 2: parser.error('XML file and export path expected.') if len(args) < 3: out_dir = '%s_%s' % (os.path.splitext(args[1])[0], options.backend) print('No export path provided. Exporting to %s' % out_dir) args.append(out_dir) xml_file = args[1] export_dir = os.path.join(args[2], 'src') project = kmos.types.Project() project.import_file(xml_file) project.shorten_names(max_length=options.variable_length) kmos.io.export_source(project, export_dir, options=options) if ((os.name == 'posix' and os.uname()[0] in ['Linux', 'Darwin']) or os.name == 'nt') \ and not options.source_only: os.chdir(export_dir) build(options) for out in glob('kmc_*'): if os.path.exists('../%s' % out) : if options.overwrite : overwrite = 'y' else: overwrite = raw_input(('Should I overwrite existing %s ?' '[y/N] ') % out).lower() if overwrite.startswith('y') : print('Overwriting {out}'.format(**locals())) os.remove('../%s' % out) shutil.move(out, '..') else : print('Skipping {out}'.format(**locals())) else: shutil.move(out, '..') elif args[0] == 'settings-export': import kmos.io pt = kmos.io.import_file(args[1]) if len(args) < 3: out_dir = os.path.splitext(args[1])[0] print('No export path provided. Exporting kmc_settings.py to %s' % out_dir) args.append(out_dir) if not os.path.exists(args[2]): os.mkdir(args[2]) elif not os.path.isdir(args[2]): raise UserWarning("Cannot overwrite %s; Exiting;" % args[2]) writer = kmos.io.ProcListWriter(pt, args[2]) writer.write_settings() elif args[0] == 'help': if len(args) < 2: parser.error('Which help do you want?') if args[1] == 'all': for command in sorted(usage): print(usage[command]) elif args[1] in usage: print('Usage: %s\n' % usage[args[1]]) else: arg = match_keys(args[1], usage, parser) print('Usage: %s\n' % usage[arg]) elif args[0] == 'import': import kmos.io if not len(args) >= 2: raise UserWarning('XML file name expected.') pt = kmos.io.import_xml_file(args[1]) if len(args) == 2: sh(banner='Note: pt = kmos.io.import_xml(\'%s\')' % args[1]) elif len(args) == 3: # if optional 3rd argument is given, store model there and exit pt.save(args[2]) elif args[0] == 'rebuild': from time import sleep print('Will rebuild model from kmc_settings.py in current directory') print('Please do not interrupt,' ' build process, as you will most likely') print('loose the current model files.') sleep(2.) from sys import path path.append(os.path.abspath(os.curdir)) from tempfile import mktemp if not os.path.exists('kmc_model.so') \ and not os.path.exists('kmc_model.pyd'): raise Exception('No kmc_model.so found.') if not os.path.exists('kmc_settings.py'): raise Exception('No kmc_settings.py found.') from kmos.run import KMC_Model model = KMC_Model(print_rates=False, banner=False) tempfile = mktemp() f = file(tempfile, 'w') f.write(model.xml()) f.close() for kmc_model in glob('kmc_model.*'): os.remove(kmc_model) os.remove('kmc_settings.py') main('export %s -b %s .' % (tempfile, options.backend)) os.remove(tempfile) model.deallocate() elif args[0] in ['run', 'shell']: from sys import path path.append(os.path.abspath(os.curdir)) from kmos.run import KMC_Model # useful to have in interactive mode import numpy as np try: from matplotlib import pyplot as plt except: plt = None if options.catmap: import catmap import catmap.cli.kmc_runner seed = catmap.cli.kmc_runner.get_seed_from_path('.') cm_model = catmap.ReactionModel(setup_file='{seed}.mkm'.format(**locals())) catmap_message = '\nSide-loaded catmap_model {seed}.mkm into cm_model = ReactionModel(setup_file="{seed}.mkm")'.format(**locals()) else: catmap_message = '' try: model = KMC_Model(print_rates=False) except: print("Warning: could not import kmc_model!" " Please make sure you are in the right directory") sh(banner='Note: model = KMC_Model(print_rates=False){catmap_message}'.format(**locals())) try: model.deallocate() except: print("Warning: could not deallocate model. Was is allocated?") elif args[0] == 'version': from kmos import VERSION print(VERSION) elif args[0] == 'view': from sys import path path.append(os.path.abspath(os.curdir)) from kmos import view view.main(steps_per_frame=options.steps_per_frame) elif args[0] == 'xml': from sys import path path.append(os.path.abspath(os.curdir)) from kmos.run import KMC_Model model = KMC_Model(banner=False, print_rates=False) print(model.xml()) else: parser.error('Command "%s" not understood.' % args[0]) def sh(banner): """Wrapper around interactive ipython shell that factors out ipython version depencies. """ from distutils.version import LooseVersion import IPython if hasattr(IPython, 'release'): try: from IPython.terminal.embed import InteractiveShellEmbed InteractiveShellEmbed(banner1=banner)() except ImportError: try: from IPython.frontend.terminal.embed \ import InteractiveShellEmbed InteractiveShellEmbed(banner1=banner)() except ImportError: from IPython.Shell import IPShellEmbed IPShellEmbed(banner=banner)() else: from IPython.Shell import IPShellEmbed IPShellEmbed(banner=banner)()
gpl-3.0
zorojean/scikit-learn
sklearn/preprocessing/data.py
113
56747
# Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Andreas Mueller <[email protected]> # Eric Martin <[email protected]> # License: BSD 3 clause from itertools import chain, combinations import numbers import warnings import numpy as np from scipy import sparse from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..utils import check_array from ..utils.extmath import row_norms from ..utils.fixes import combinations_with_replacement as combinations_w_r from ..utils.sparsefuncs_fast import (inplace_csr_row_normalize_l1, inplace_csr_row_normalize_l2) from ..utils.sparsefuncs import (inplace_column_scale, mean_variance_axis, min_max_axis, inplace_row_scale) from ..utils.validation import check_is_fitted, FLOAT_DTYPES zip = six.moves.zip map = six.moves.map range = six.moves.range __all__ = [ 'Binarizer', 'KernelCenterer', 'MinMaxScaler', 'MaxAbsScaler', 'Normalizer', 'OneHotEncoder', 'RobustScaler', 'StandardScaler', 'add_dummy_feature', 'binarize', 'normalize', 'scale', 'robust_scale', 'maxabs_scale', 'minmax_scale', ] def _mean_and_std(X, axis=0, with_mean=True, with_std=True): """Compute mean and std deviation for centering, scaling. Zero valued std components are reset to 1.0 to avoid NaNs when scaling. """ X = np.asarray(X) Xr = np.rollaxis(X, axis) if with_mean: mean_ = Xr.mean(axis=0) else: mean_ = None if with_std: std_ = Xr.std(axis=0) std_ = _handle_zeros_in_scale(std_) else: std_ = None return mean_, std_ def _handle_zeros_in_scale(scale): ''' Makes sure that whenever scale is zero, we handle it correctly. This happens in most scalers when we have constant features.''' # if we are fitting on 1D arrays, scale might be a scalar if np.isscalar(scale): if scale == 0: scale = 1. elif isinstance(scale, np.ndarray): scale[scale == 0.0] = 1.0 scale[~np.isfinite(scale)] = 1.0 return scale def scale(X, axis=0, with_mean=True, with_std=True, copy=True): """Standardize a dataset along any axis Center to the mean and component wise scale to unit variance. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : array-like or CSR matrix. The data to center and scale. axis : int (0 by default) axis used to compute the means and standard deviations along. If 0, independently standardize each feature, otherwise (if 1) standardize each sample. with_mean : boolean, True by default If True, center the data before scaling. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_mean=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. See also -------- :class:`sklearn.preprocessing.StandardScaler` to perform centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ X = check_array(X, accept_sparse='csr', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator='the scale function', dtype=FLOAT_DTYPES) if sparse.issparse(X): if with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` instead" " See docstring for motivation and alternatives.") if axis != 0: raise ValueError("Can only scale sparse matrix on axis=0, " " got axis=%d" % axis) if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() _, var = mean_variance_axis(X, axis=0) var = _handle_zeros_in_scale(var) inplace_column_scale(X, 1 / np.sqrt(var)) else: X = np.asarray(X) mean_, std_ = _mean_and_std( X, axis, with_mean=with_mean, with_std=with_std) if copy: X = X.copy() # Xr is a view on the original array that enables easy use of # broadcasting on the axis in which we are interested in Xr = np.rollaxis(X, axis) if with_mean: Xr -= mean_ mean_1 = Xr.mean(axis=0) # Verify that mean_1 is 'close to zero'. If X contains very # large values, mean_1 can also be very large, due to a lack of # precision of mean_. In this case, a pre-scaling of the # concerned feature is efficient, for instance by its mean or # maximum. if not np.allclose(mean_1, 0): warnings.warn("Numerical issues were encountered " "when centering the data " "and might not be solved. Dataset may " "contain too large values. You may need " "to prescale your features.") Xr -= mean_1 if with_std: Xr /= std_ if with_mean: mean_2 = Xr.mean(axis=0) # If mean_2 is not 'close to zero', it comes from the fact that # std_ is very small so that mean_2 = mean_1/std_ > 0, even if # mean_1 was close to zero. The problem is thus essentially due # to the lack of precision of mean_. A solution is then to # substract the mean again: if not np.allclose(mean_2, 0): warnings.warn("Numerical issues were encountered " "when scaling the data " "and might not be solved. The standard " "deviation of the data is probably " "very close to 0. ") Xr -= mean_2 return X class MinMaxScaler(BaseEstimator, TransformerMixin): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. copy : boolean, optional, default True Set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array). Attributes ---------- min_ : ndarray, shape (n_features,) Per feature adjustment for minimum. scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. """ def __init__(self, feature_range=(0, 1), copy=True): self.feature_range = feature_range self.copy = copy def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ X = check_array(X, copy=self.copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) feature_range = self.feature_range if feature_range[0] >= feature_range[1]: raise ValueError("Minimum of desired feature range must be smaller" " than maximum. Got %s." % str(feature_range)) data_min = np.min(X, axis=0) data_range = np.max(X, axis=0) - data_min data_range = _handle_zeros_in_scale(data_range) self.scale_ = (feature_range[1] - feature_range[0]) / data_range self.min_ = feature_range[0] - data_min * self.scale_ self.data_range = data_range self.data_min = data_min return self def transform(self, X): """Scaling features of X according to feature_range. Parameters ---------- X : array-like with shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, ensure_2d=False) X *= self.scale_ X += self.min_ return X def inverse_transform(self, X): """Undo the scaling of X according to feature_range. Parameters ---------- X : array-like with shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, ensure_2d=False) X -= self.min_ X /= self.scale_ return X def minmax_scale(X, feature_range=(0, 1), axis=0, copy=True): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). """ s = MinMaxScaler(feature_range=feature_range, copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class StandardScaler(BaseEstimator, TransformerMixin): """Standardize features by removing the mean and scaling to unit variance Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Mean and standard deviation are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual feature do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance). For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger that others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_mean : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- mean_ : array of floats with shape [n_features] The mean value for each feature in the training set. std_ : array of floats with shape [n_features] The standard deviation for each feature in the training set. Set to one if the standard deviation is zero for a given feature. See also -------- :func:`sklearn.preprocessing.scale` to perform centering and scaling without using the ``Transformer`` object oriented API :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True` to further remove the linear correlation across features. """ def __init__(self, copy=True, with_mean=True, with_std=True): self.with_mean = with_mean self.with_std = with_std self.copy = copy def fit(self, X, y=None): """Compute the mean and std to be used for later scaling. Parameters ---------- X : array-like or CSR matrix with shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. """ X = check_array(X, accept_sparse='csr', copy=self.copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") self.mean_ = None if self.with_std: var = mean_variance_axis(X, axis=0)[1] self.std_ = np.sqrt(var) self.std_ = _handle_zeros_in_scale(self.std_) else: self.std_ = None return self else: self.mean_, self.std_ = _mean_and_std( X, axis=0, with_mean=self.with_mean, with_std=self.with_std) return self def transform(self, X, y=None, copy=None): """Perform standardization by centering and scaling Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'std_') copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") if self.std_ is not None: inplace_column_scale(X, 1 / self.std_) else: if self.with_mean: X -= self.mean_ if self.with_std: X /= self.std_ return X def inverse_transform(self, X, copy=None): """Scale back the data to the original representation Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'std_') copy = copy if copy is not None else self.copy if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot uncenter sparse matrices: pass `with_mean=False` " "instead See docstring for motivation and alternatives.") if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() if self.std_ is not None: inplace_column_scale(X, self.std_) else: X = np.asarray(X) if copy: X = X.copy() if self.with_std: X *= self.std_ if self.with_mean: X += self.mean_ return X class MaxAbsScaler(BaseEstimator, TransformerMixin): """Scale each feature by its maximum absolute value. This estimator scales and translates each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity. This scaler can also be applied to sparse CSR or CSC matrices. Parameters ---------- copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). Attributes ---------- scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. """ def __init__(self, copy=True): self.copy = copy def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): mins, maxs = min_max_axis(X, axis=0) scales = np.maximum(np.abs(mins), np.abs(maxs)) else: scales = np.abs(X).max(axis=0) scales = np.array(scales) scales = scales.reshape(-1) self.scale_ = _handle_zeros_in_scale(scales) return self def transform(self, X, y=None): """Scale the data Parameters ---------- X : array-like or CSR matrix. The data that should be scaled. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if X.shape[0] == 1: inplace_row_scale(X, 1.0 / self.scale_) else: inplace_column_scale(X, 1.0 / self.scale_) else: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : array-like or CSR matrix. The data that should be transformed back. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if X.shape[0] == 1: inplace_row_scale(X, self.scale_) else: inplace_column_scale(X, self.scale_) else: X *= self.scale_ return X def maxabs_scale(X, axis=0, copy=True): """Scale each feature to the [-1, 1] range without breaking the sparsity. This estimator scales each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. This scaler can also be applied to sparse CSR or CSC matrices. Parameters ---------- axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). """ s = MaxAbsScaler(copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class RobustScaler(BaseEstimator, TransformerMixin): """Scale features using statistics that are robust to outliers. This Scaler removes the median and scales the data according to the Interquartile Range (IQR). The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile). Centering and scaling happen independently on each feature (or each sample, depending on the `axis` argument) by computing the relevant statistics on the samples in the training set. Median and interquartile range are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators. Typically this is done by removing the mean and scaling to unit variance. However, outliers can often influence the sample mean / variance in a negative way. In such cases, the median and the interquartile range often give better results. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_centering : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_scaling : boolean, True by default If True, scale the data to interquartile range. copy : boolean, optional, default is True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- center_ : array of floats The median value for each feature in the training set. scale_ : array of floats The (scaled) interquartile range for each feature in the training set. See also -------- :class:`sklearn.preprocessing.StandardScaler` to perform centering and scaling using mean and variance. :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True` to further remove the linear correlation across features. Notes ----- See examples/preprocessing/plot_robust_scaling.py for an example. http://en.wikipedia.org/wiki/Median_(statistics) http://en.wikipedia.org/wiki/Interquartile_range """ def __init__(self, with_centering=True, with_scaling=True, copy=True): self.with_centering = with_centering self.with_scaling = with_scaling self.copy = copy def _check_array(self, X, copy): """Makes sure centering is not enabled for sparse matrices.""" X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_centering: raise ValueError( "Cannot center sparse matrices: use `with_centering=False`" " instead. See docstring for motivation and alternatives.") return X def fit(self, X, y=None): """Compute the median and quantiles to be used for scaling. Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to compute the median and quantiles used for later scaling along the features axis. """ if sparse.issparse(X): raise TypeError("RobustScaler cannot be fitted on sparse inputs") X = self._check_array(X, self.copy) if self.with_centering: self.center_ = np.median(X, axis=0) if self.with_scaling: q = np.percentile(X, (25, 75), axis=0) self.scale_ = (q[1] - q[0]) self.scale_ = _handle_zeros_in_scale(self.scale_) return self def transform(self, X, y=None): """Center and scale the data Parameters ---------- X : array-like or CSR matrix. The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: if X.shape[0] == 1: inplace_row_scale(X, 1.0 / self.scale_) elif self.axis == 0: inplace_column_scale(X, 1.0 / self.scale_) else: if self.with_centering: X -= self.center_ if self.with_scaling: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : array-like or CSR matrix. The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: if X.shape[0] == 1: inplace_row_scale(X, self.scale_) else: inplace_column_scale(X, self.scale_) else: if self.with_scaling: X *= self.scale_ if self.with_centering: X += self.center_ return X def robust_scale(X, axis=0, with_centering=True, with_scaling=True, copy=True): """Standardize a dataset along any axis Center to the median and component wise scale according to the interquartile range. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : array-like. The data to center and scale. axis : int (0 by default) axis used to compute the medians and IQR along. If 0, independently scale each feature, otherwise (if 1) scale each sample. with_centering : boolean, True by default If True, center the data before scaling. with_scaling : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default is True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_centering=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. See also -------- :class:`sklearn.preprocessing.RobustScaler` to perform centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ s = RobustScaler(with_centering=with_centering, with_scaling=with_scaling, copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class PolynomialFeatures(BaseEstimator, TransformerMixin): """Generate polynomial and interaction features. Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, if an input sample is two dimensional and of the form [a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2]. Parameters ---------- degree : integer The degree of the polynomial features. Default = 2. interaction_only : boolean, default = False If true, only interaction features are produced: features that are products of at most ``degree`` *distinct* input features (so not ``x[1] ** 2``, ``x[0] * x[2] ** 3``, etc.). include_bias : boolean If True (default), then include a bias column, the feature in which all polynomial powers are zero (i.e. a column of ones - acts as an intercept term in a linear model). Examples -------- >>> X = np.arange(6).reshape(3, 2) >>> X array([[0, 1], [2, 3], [4, 5]]) >>> poly = PolynomialFeatures(2) >>> poly.fit_transform(X) array([[ 1, 0, 1, 0, 0, 1], [ 1, 2, 3, 4, 6, 9], [ 1, 4, 5, 16, 20, 25]]) >>> poly = PolynomialFeatures(interaction_only=True) >>> poly.fit_transform(X) array([[ 1, 0, 1, 0], [ 1, 2, 3, 6], [ 1, 4, 5, 20]]) Attributes ---------- powers_ : array, shape (n_input_features, n_output_features) powers_[i, j] is the exponent of the jth input in the ith output. n_input_features_ : int The total number of input features. n_output_features_ : int The total number of polynomial output features. The number of output features is computed by iterating over all suitably sized combinations of input features. Notes ----- Be aware that the number of features in the output array scales polynomially in the number of features of the input array, and exponentially in the degree. High degrees can cause overfitting. See :ref:`examples/linear_model/plot_polynomial_interpolation.py <example_linear_model_plot_polynomial_interpolation.py>` """ def __init__(self, degree=2, interaction_only=False, include_bias=True): self.degree = degree self.interaction_only = interaction_only self.include_bias = include_bias @staticmethod def _combinations(n_features, degree, interaction_only, include_bias): comb = (combinations if interaction_only else combinations_w_r) start = int(not include_bias) return chain.from_iterable(comb(range(n_features), i) for i in range(start, degree + 1)) @property def powers_(self): check_is_fitted(self, 'n_input_features_') combinations = self._combinations(self.n_input_features_, self.degree, self.interaction_only, self.include_bias) return np.vstack(np.bincount(c, minlength=self.n_input_features_) for c in combinations) def fit(self, X, y=None): """ Compute number of output features. """ n_samples, n_features = check_array(X).shape combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) self.n_input_features_ = n_features self.n_output_features_ = sum(1 for _ in combinations) return self def transform(self, X, y=None): """Transform data to polynomial features Parameters ---------- X : array with shape [n_samples, n_features] The data to transform, row by row. Returns ------- XP : np.ndarray shape [n_samples, NP] The matrix of features, where NP is the number of polynomial features generated from the combination of inputs. """ check_is_fitted(self, ['n_input_features_', 'n_output_features_']) X = check_array(X) n_samples, n_features = X.shape if n_features != self.n_input_features_: raise ValueError("X shape does not match training shape") # allocate output data XP = np.empty((n_samples, self.n_output_features_), dtype=X.dtype) combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) for i, c in enumerate(combinations): XP[:, i] = X[:, c].prod(1) return XP def normalize(X, norm='l2', axis=1, copy=True): """Scale input vectors individually to unit norm (vector length). Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to normalize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample (or each non-zero feature if axis is 0). axis : 0 or 1, optional (1 by default) axis used to normalize the data along. If 1, independently normalize each sample, otherwise (if 0) normalize each feature. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). See also -------- :class:`sklearn.preprocessing.Normalizer` to perform normalization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ if norm not in ('l1', 'l2', 'max'): raise ValueError("'%s' is not a supported norm" % norm) if axis == 0: sparse_format = 'csc' elif axis == 1: sparse_format = 'csr' else: raise ValueError("'%d' is not a supported axis" % axis) X = check_array(X, sparse_format, copy=copy, warn_on_dtype=True, estimator='the normalize function', dtype=FLOAT_DTYPES) if axis == 0: X = X.T if sparse.issparse(X): if norm == 'l1': inplace_csr_row_normalize_l1(X) elif norm == 'l2': inplace_csr_row_normalize_l2(X) elif norm == 'max': _, norms = min_max_axis(X, 1) norms = norms.repeat(np.diff(X.indptr)) mask = norms != 0 X.data[mask] /= norms[mask] else: if norm == 'l1': norms = np.abs(X).sum(axis=1) elif norm == 'l2': norms = row_norms(X) elif norm == 'max': norms = np.max(X, axis=1) norms = _handle_zeros_in_scale(norms) X /= norms[:, np.newaxis] if axis == 0: X = X.T return X class Normalizer(BaseEstimator, TransformerMixin): """Normalize samples individually to unit norm. Each sample (i.e. each row of the data matrix) with at least one non zero component is rescaled independently of other samples so that its norm (l1 or l2) equals one. This transformer is able to work both with dense numpy arrays and scipy.sparse matrix (use CSR format if you want to avoid the burden of a copy / conversion). Scaling inputs to unit norms is a common operation for text classification or clustering for instance. For instance the dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and is the base similarity metric for the Vector Space Model commonly used by the Information Retrieval community. Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. See also -------- :func:`sklearn.preprocessing.normalize` equivalent function without the object oriented API """ def __init__(self, norm='l2', copy=True): self.norm = norm self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ X = check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Scale each non zero row of X to unit norm Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to normalize, row by row. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr') return normalize(X, norm=self.norm, axis=1, copy=copy) def binarize(X, threshold=0.0, copy=True): """Boolean thresholding of array-like or scipy.sparse matrix Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR or CSC format to avoid an un-necessary copy. threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR / CSC matrix and if axis is 1). See also -------- :class:`sklearn.preprocessing.Binarizer` to perform binarization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ X = check_array(X, accept_sparse=['csr', 'csc'], copy=copy) if sparse.issparse(X): if threshold < 0: raise ValueError('Cannot binarize a sparse matrix with threshold ' '< 0') cond = X.data > threshold not_cond = np.logical_not(cond) X.data[cond] = 1 X.data[not_cond] = 0 X.eliminate_zeros() else: cond = X > threshold not_cond = np.logical_not(cond) X[cond] = 1 X[not_cond] = 0 return X class Binarizer(BaseEstimator, TransformerMixin): """Binarize data (set feature values to 0 or 1) according to a threshold Values greater than the threshold map to 1, while values less than or equal to the threshold map to 0. With the default threshold of 0, only positive values map to 1. Binarization is a common operation on text count data where the analyst can decide to only consider the presence or absence of a feature rather than a quantified number of occurrences for instance. It can also be used as a pre-processing step for estimators that consider boolean random variables (e.g. modelled using the Bernoulli distribution in a Bayesian setting). Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- If the input is a sparse matrix, only the non-zero values are subject to update by the Binarizer class. This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. """ def __init__(self, threshold=0.0, copy=True): self.threshold = threshold self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Binarize each element of X Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy return binarize(X, threshold=self.threshold, copy=copy) class KernelCenterer(BaseEstimator, TransformerMixin): """Center a kernel matrix Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False). Read more in the :ref:`User Guide <kernel_centering>`. """ def fit(self, K, y=None): """Fit KernelCenterer Parameters ---------- K : numpy array of shape [n_samples, n_samples] Kernel matrix. Returns ------- self : returns an instance of self. """ K = check_array(K) n_samples = K.shape[0] self.K_fit_rows_ = np.sum(K, axis=0) / n_samples self.K_fit_all_ = self.K_fit_rows_.sum() / n_samples return self def transform(self, K, y=None, copy=True): """Center kernel matrix. Parameters ---------- K : numpy array of shape [n_samples1, n_samples2] Kernel matrix. copy : boolean, optional, default True Set to False to perform inplace computation. Returns ------- K_new : numpy array of shape [n_samples1, n_samples2] """ check_is_fitted(self, 'K_fit_all_') K = check_array(K) if copy: K = K.copy() K_pred_cols = (np.sum(K, axis=1) / self.K_fit_rows_.shape[0])[:, np.newaxis] K -= self.K_fit_rows_ K -= K_pred_cols K += self.K_fit_all_ return K def add_dummy_feature(X, value=1.0): """Augment dataset with an additional dummy feature. This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] Data. value : float Value to use for the dummy feature. Returns ------- X : array or scipy.sparse matrix with shape [n_samples, n_features + 1] Same data with dummy feature added as first column. Examples -------- >>> from sklearn.preprocessing import add_dummy_feature >>> add_dummy_feature([[0, 1], [1, 0]]) array([[ 1., 0., 1.], [ 1., 1., 0.]]) """ X = check_array(X, accept_sparse=['csc', 'csr', 'coo']) n_samples, n_features = X.shape shape = (n_samples, n_features + 1) if sparse.issparse(X): if sparse.isspmatrix_coo(X): # Shift columns to the right. col = X.col + 1 # Column indices of dummy feature are 0 everywhere. col = np.concatenate((np.zeros(n_samples), col)) # Row indices of dummy feature are 0, ..., n_samples-1. row = np.concatenate((np.arange(n_samples), X.row)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.coo_matrix((data, (row, col)), shape) elif sparse.isspmatrix_csc(X): # Shift index pointers since we need to add n_samples elements. indptr = X.indptr + n_samples # indptr[0] must be 0. indptr = np.concatenate((np.array([0]), indptr)) # Row indices of dummy feature are 0, ..., n_samples-1. indices = np.concatenate((np.arange(n_samples), X.indices)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.csc_matrix((data, indices, indptr), shape) else: klass = X.__class__ return klass(add_dummy_feature(X.tocoo(), value)) else: return np.hstack((np.ones((n_samples, 1)) * value, X)) def _transform_selected(X, transform, selected="all", copy=True): """Apply a transform function to portion of selected features Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Dense array or sparse matrix. transform : callable A callable transform(X) -> X_transformed copy : boolean, optional Copy X even if it could be avoided. selected: "all" or array of indices or mask Specify which features to apply the transform to. Returns ------- X : array or sparse matrix, shape=(n_samples, n_features_new) """ if selected == "all": return transform(X) X = check_array(X, accept_sparse='csc', copy=copy) if len(selected) == 0: return X n_features = X.shape[1] ind = np.arange(n_features) sel = np.zeros(n_features, dtype=bool) sel[np.asarray(selected)] = True not_sel = np.logical_not(sel) n_selected = np.sum(sel) if n_selected == 0: # No features selected. return X elif n_selected == n_features: # All features selected. return transform(X) else: X_sel = transform(X[:, ind[sel]]) X_not_sel = X[:, ind[not_sel]] if sparse.issparse(X_sel) or sparse.issparse(X_not_sel): return sparse.hstack((X_sel, X_not_sel)) else: return np.hstack((X_sel, X_not_sel)) class OneHotEncoder(BaseEstimator, TransformerMixin): """Encode categorical integer features using a one-hot aka one-of-K scheme. The input to this transformer should be a matrix of integers, denoting the values taken on by categorical (discrete) features. The output will be a sparse matrix where each column corresponds to one possible value of one feature. It is assumed that input features take on values in the range [0, n_values). This encoding is needed for feeding categorical data to many scikit-learn estimators, notably linear models and SVMs with the standard kernels. Read more in the :ref:`User Guide <preprocessing_categorical_features>`. Parameters ---------- n_values : 'auto', int or array of ints Number of values per feature. - 'auto' : determine value range from training data. - int : maximum value for all features. - array : maximum value per feature. categorical_features: "all" or array of indices or mask Specify what features are treated as categorical. - 'all' (default): All features are treated as categorical. - array of indices: Array of categorical feature indices. - mask: Array of length n_features and with dtype=bool. Non-categorical features are always stacked to the right of the matrix. dtype : number type, default=np.float Desired dtype of output. sparse : boolean, default=True Will return sparse matrix if set True else will return an array. handle_unknown : str, 'error' or 'ignore' Whether to raise an error or ignore if a unknown categorical feature is present during transform. Attributes ---------- active_features_ : array Indices for active features, meaning values that actually occur in the training set. Only available when n_values is ``'auto'``. feature_indices_ : array of shape (n_features,) Indices to feature ranges. Feature ``i`` in the original data is mapped to features from ``feature_indices_[i]`` to ``feature_indices_[i+1]`` (and then potentially masked by `active_features_` afterwards) n_values_ : array of shape (n_features,) Maximum number of values per feature. Examples -------- Given a dataset with three features and two samples, we let the encoder find the maximum value per feature and transform the data to a binary one-hot encoding. >>> from sklearn.preprocessing import OneHotEncoder >>> enc = OneHotEncoder() >>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], \ [1, 0, 2]]) # doctest: +ELLIPSIS OneHotEncoder(categorical_features='all', dtype=<... 'float'>, handle_unknown='error', n_values='auto', sparse=True) >>> enc.n_values_ array([2, 3, 4]) >>> enc.feature_indices_ array([0, 2, 5, 9]) >>> enc.transform([[0, 1, 1]]).toarray() array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]]) See also -------- sklearn.feature_extraction.DictVectorizer : performs a one-hot encoding of dictionary items (also handles string-valued features). sklearn.feature_extraction.FeatureHasher : performs an approximate one-hot encoding of dictionary items or strings. """ def __init__(self, n_values="auto", categorical_features="all", dtype=np.float, sparse=True, handle_unknown='error'): self.n_values = n_values self.categorical_features = categorical_features self.dtype = dtype self.sparse = sparse self.handle_unknown = handle_unknown def fit(self, X, y=None): """Fit OneHotEncoder to X. Parameters ---------- X : array-like, shape=(n_samples, n_feature) Input array of type int. Returns ------- self """ self.fit_transform(X) return self def _fit_transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape if self.n_values == 'auto': n_values = np.max(X, axis=0) + 1 elif isinstance(self.n_values, numbers.Integral): if (np.max(X, axis=0) >= self.n_values).any(): raise ValueError("Feature out of bounds for n_values=%d" % self.n_values) n_values = np.empty(n_features, dtype=np.int) n_values.fill(self.n_values) else: try: n_values = np.asarray(self.n_values, dtype=int) except (ValueError, TypeError): raise TypeError("Wrong type for parameter `n_values`. Expected" " 'auto', int or array of ints, got %r" % type(X)) if n_values.ndim < 1 or n_values.shape[0] != X.shape[1]: raise ValueError("Shape mismatch: if n_values is an array," " it has to be of shape (n_features,).") self.n_values_ = n_values n_values = np.hstack([[0], n_values]) indices = np.cumsum(n_values) self.feature_indices_ = indices column_indices = (X + indices[:-1]).ravel() row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features) data = np.ones(n_samples * n_features) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if self.n_values == 'auto': mask = np.array(out.sum(axis=0)).ravel() != 0 active_features = np.where(mask)[0] out = out[:, active_features] self.active_features_ = active_features return out if self.sparse else out.toarray() def fit_transform(self, X, y=None): """Fit OneHotEncoder to X, then transform X. Equivalent to self.fit(X).transform(X), but more convenient and more efficient. See fit for the parameters, transform for the return value. """ return _transform_selected(X, self._fit_transform, self.categorical_features, copy=True) def _transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape indices = self.feature_indices_ if n_features != indices.shape[0] - 1: raise ValueError("X has different shape than during fitting." " Expected %d, got %d." % (indices.shape[0] - 1, n_features)) # We use only those catgorical features of X that are known using fit. # i.e lesser than n_values_ using mask. # This means, if self.handle_unknown is "ignore", the row_indices and # col_indices corresponding to the unknown categorical feature are # ignored. mask = (X < self.n_values_).ravel() if np.any(~mask): if self.handle_unknown not in ['error', 'ignore']: raise ValueError("handle_unknown should be either error or " "unknown got %s" % self.handle_unknown) if self.handle_unknown == 'error': raise ValueError("unknown categorical feature present %s " "during transform." % X[~mask]) column_indices = (X + indices[:-1]).ravel()[mask] row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features)[mask] data = np.ones(np.sum(mask)) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if self.n_values == 'auto': out = out[:, self.active_features_] return out if self.sparse else out.toarray() def transform(self, X): """Transform X using one-hot encoding. Parameters ---------- X : array-like, shape=(n_samples, n_features) Input array of type int. Returns ------- X_out : sparse matrix if sparse=True else a 2-d array, dtype=int Transformed input. """ return _transform_selected(X, self._transform, self.categorical_features, copy=True)
bsd-3-clause
Tong-Chen/scikit-learn
sklearn/cluster/bicluster/tests/test_utils.py
10
1427
"""Tests for bicluster utilities.""" import numpy as np from scipy.sparse import csr_matrix, issparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_true from sklearn.cluster.bicluster.utils import get_indicators from sklearn.cluster.bicluster.utils import get_shape from sklearn.cluster.bicluster.utils import get_submatrix def test_get_indicators(): rows = [2, 4, 5] columns = [0, 1, 3] shape = (6, 4) row_ind, col_ind = get_indicators(rows, columns, shape) assert_array_equal(row_ind, [False, False, True, False, True, True]) assert_array_equal(col_ind, [True, True, False, True]) def test_get_shape(): rows = [True, True, False, False] cols = [True, False, True, True] assert_equal(get_shape(rows, cols), (2, 3)) def test_get_submatrix(): data = np.arange(20).reshape(5, 4) rows = [True, True, False, False, True] cols = [False, False, True, True] for X in (data, csr_matrix(data)): submatrix = get_submatrix(rows, cols, X) if issparse(submatrix): submatrix = submatrix.todense() assert_array_equal(submatrix, [[2, 3], [6, 7], [18, 19]]) submatrix[:] = -1 if issparse(X): X = X.todense() assert_true(np.all(X != -1))
bsd-3-clause
doutib/lobpredict
lobpredictrst/execute_model.py
1
5878
import sys import imp import yaml import csv import pandas as pd import re from rf import * from svm import * modl = imp.load_source('read_model_yaml', 'read_model_yaml.py') # Parse the YAML file location as the first parameter inp_yaml = sys.argv[1] def write_results_txt(filename, result): """ Write results into csv file. Parameters ---------- filename : string filename to output the result labels : list labels for the results, i.e. names of parameters and metrics """ with open(filename, "w") as fp: for item in result: fp.write("%s\n\n" % item) def execute_model(inp_yaml): """Apply trees in the forest to X, return leaf indices. Parameters ---------- inp_yaml : A yaml file with model specifications Returns ------- parameters_dict : A python dictionary with the model specifications to be used to encode metadata for the model and pass into specific model functions e.g. random forest """ # Read in and parse all parameters from the YAML file yaml_params = modl.read_model_yaml(inp_yaml) # Define output file name based on input folder_name = re.split("/", inp_yaml)[2] file_name = re.split("/", inp_yaml)[3][:-5] output_txt_file = 'data/output/' + folder_name + '/' + file_name + '.txt' #------------------------------------------------- # Create Train and Test Datasets #------------------------------------------------- data_source_dir = yaml_params["data_source_dir"] test_type = yaml_params["test_type"] print('data source dir is: %s' % (data_source_dir)) print('test type is: %s' % (test_type)) if test_type == "test": train_ds_name = "train.tar.gz" test_ds_name = "test.tar.gz" elif test_type == "validation": train_ds_name = "train_test.tar.gz" test_ds_name = "validation.tar.gz" else: train_ds_name = "train_test_validation.tar.gz" test_ds_name = "strategy_validation.tar.gz" train_ds_ref = "data/output/model_clean_data/" + data_source_dir + "/" + train_ds_name test_ds_ref = "data/output/model_clean_data/" + data_source_dir + "/" + test_ds_name print('training dataset is: %s' % (train_ds_ref)) print('test dataset is: %s' % (test_ds_ref)) # Open test and train sets df_train = pd.read_csv(train_ds_ref , compression='gzip', index_col = None) df_test = pd.read_csv(test_ds_ref , compression='gzip', index_col = None) # Drop the first columns - they are not useful df_train_clean = df_train.iloc[:,1:] df_test_clean = df_test.iloc[:,1:] # Traning data column names - used for variale importance X_train_cols = list(df_train_clean.drop(['labels', 'index', 'Time'], axis=1).columns.values) # Define test/training set X_train = np.array(df_train_clean.drop(['labels', 'index', 'Time'], axis = 1)) Y_train = np.array(df_train_clean[['labels']])[:,0] X_test = np.array(df_test_clean.drop(['labels', 'index', 'Time'], axis = 1)) Y_test = np.array(df_test_clean[['labels']])[:,0] #------------------------------------------------- # Run RF (RANDOM FOREST) #------------------------------------------------- if yaml_params["model_type"] == "RF": # Extract the RF model variables from the YAML file n_estimators = yaml_params["parameters"]["n_estimators"] criterion = yaml_params["parameters"]["criterion"] max_features = yaml_params["parameters"]["max_features"] max_depth = yaml_params["parameters"]["max_depth"] n_jobs = yaml_params["parameters"]["n_jobs"] print('number of trees is: %d' % (n_estimators)) print('max depth is: %d' % (max_depth)) print("running RF WITHOUT simulation...") # Run simulation result = rf(X_train_cols = X_train_cols , X_train = X_train , Y_train = Y_train , X_test = X_test , Y_test = Y_test , n_estimators = n_estimators , criterion = criterion , max_features = max_features , max_depth = max_depth) print("finished - rf without simulation") # Write into text file write_results_txt(output_txt_file, result) #------------------------------------------------- # Run SVM (SUPPORT VECTOR MACHINE) #------------------------------------------------- # Extract the SVM model variables from the YAML file if yaml_params["model_type"] == "SVM": kernel = yaml_params["parameters"]["kernel"] degree = yaml_params["parameters"]["degree"] gamma = yaml_params["parameters"]["gamma"] tol = yaml_params["parameters"]["tol"] C = yaml_params["parameters"]["C"] print('The value of C is: %.2f' % (C)) print("running SVM WITHOUT simulation...") # Run a single simulation result = svm(X_train = X_train , Y_train = Y_train , X_test = X_test , Y_test = Y_test , kernel = kernel , C = C , degree = degree , gamma = gamma , tol = tol , decision_function_shape='ovr') # Write into text file write_results_txt(output_txt_file, result) print("finished - SVM without simulation") # Run the execute model code execute_model(inp_yaml)
isc
hep-gc/panda-autopyfactory
bin/factory.py
1
6335
#! /usr/bin/env python # # Simple(ish) python condor_g factory for panda pilots # # $Id$ # # # Copyright (C) 2007,2008,2009 Graeme Andrew Stewart # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from optparse import OptionParser import logging import logging.handlers import time import os import sys import traceback # Need to set PANDA_URL_MAP before the Client module is loaded (which happens # when the Factory module is loaded). Unfortunately this means that logging # is not yet available. if not 'APF_NOSQUID' in os.environ: if not 'PANDA_URL_MAP' in os.environ: os.environ['PANDA_URL_MAP'] = 'CERN,http://pandaserver.cern.ch:25085/server/panda,https://pandaserver.cern.ch:25443/server/panda' print >>sys.stderr, 'FACTORY DEBUG: Set PANDA_URL_MAP to %s' % os.environ['PANDA_URL_MAP'] else: print >>sys.stderr, 'FACTORY DEBUG: Found PANDA_URL_MAP set to %s. Not changed.' % os.environ['PANDA_URL_MAP'] if not 'PANDA_URL' in os.environ: os.environ['PANDA_URL'] = 'http://pandaserver.cern.ch:25085/server/panda' print >>sys.stderr, 'FACTORY DEBUG: Set PANDA_URL to %s' % os.environ['PANDA_URL'] else: print >>sys.stderr, 'FACTORY DEBUG: Found PANDA_URL set to %s. Not changed.' % os.environ['PANDA_URL'] else: print >>sys.stderr, 'FACTORY DEBUG: Found APF_NOSQUID set. Not changing/setting panda client environment.' from autopyfactory.Factory import factory from autopyfactory.Exceptions import FactoryConfigurationFailure def main(): parser = OptionParser(usage='''%prog [OPTIONS] autopyfactory is an ATLAS pilot factory. This program is licenced under the GPL, as set out in LICENSE file. Author(s): Graeme A Stewart <[email protected]>, Peter Love <[email protected]> ''', version="%prog $Id$") parser.add_option("--verbose", "--debug", dest="logLevel", default=logging.INFO, action="store_const", const=logging.DEBUG, help="Set logging level to DEBUG [default INFO]") parser.add_option("--quiet", dest="logLevel", action="store_const", const=logging.WARNING, help="Set logging level to WARNING [default INFO]") parser.add_option("--test", "--dry-run", dest="dryRun", default=False, action="store_true", help="Dry run - supress job submission") parser.add_option("--oneshot", "--one-shot", dest="cyclesToDo", default=0, action="store_const", const=1, help="Run one cycle only") parser.add_option("--cycles", dest="cyclesToDo", action="store", type="int", metavar="CYCLES", help="Run CYCLES times, then exit [default infinite]") parser.add_option("--sleep", dest="sleepTime", default=120, action="store", type="int", metavar="TIME", help="Sleep TIME seconds between cycles [default %default]") parser.add_option("--conf", dest="confFiles", default="factory.conf", action="store", metavar="FILE1[,FILE2,FILE3]", help="Load configuration from FILEs (comma separated list)") parser.add_option("--log", dest="logfile", default="syslog", metavar="LOGFILE", action="store", help="Send logging output to LOGFILE or SYSLOG or stdout [default <syslog>]") (options, args) = parser.parse_args() options.confFiles = options.confFiles.split(',') # Setup logging factoryLogger = logging.getLogger('main') if options.logfile == "stdout": logStream = logging.StreamHandler() elif options.logfile == 'syslog': logStream = logging.handlers.SysLogHandler('/dev/log') else: logStream = logging.handlers.RotatingFileHandler(filename=options.logfile, maxBytes=10000000, backupCount=5) formatter = logging.Formatter('%(asctime)s - %(name)s: %(levelname)s %(message)s') logStream.setFormatter(formatter) factoryLogger.addHandler(logStream) factoryLogger.setLevel(options.logLevel) factoryLogger.debug('logging initialised') # Main loop try: f = factory(factoryLogger, options.dryRun, options.confFiles) cyclesDone = 0 while True: factoryLogger.info('\nStarting factory cycle %d at %s', cyclesDone, time.asctime(time.localtime())) f.factorySubmitCycle(cyclesDone) factoryLogger.info('Factory cycle %d done' % cyclesDone) cyclesDone += 1 if cyclesDone == options.cyclesToDo: break factoryLogger.info('Sleeping %ds' % options.sleepTime) time.sleep(options.sleepTime) f.updateConfig(cyclesDone) except KeyboardInterrupt: factoryLogger.info('Caught keyboard interrupt - exiting') except FactoryConfigurationFailure, errMsg: factoryLogger.error('Factory configuration failure: %s', errMsg) except ImportError, errorMsg: factoryLogger.error('Failed to import necessary python module: %s' % errorMsg) except: # TODO - make this a logger.exception() call factoryLogger.error('''Unexpected exception! There was an exception raised which the factory was not expecting and did not know how to handle. You may have discovered a new bug or an unforseen error condition. Please report this exception to Graeme <[email protected]>. The factory will now re-raise this exception so that the python stack trace is printed, which will allow it to be debugged - please send output from this message onwards. Exploding in 5...4...3...2...1... Have a nice day!''') # The following line prints the exception to the logging module factoryLogger.error(traceback.format_exc(None)) raise if __name__ == "__main__": main()
gpl-3.0
gandalfcode/gandalf
tests/paper_tests/binaryorbit.py
1
3711
#============================================================================== # freefalltest.py # Run the freefall collapse test using initial conditions specified in the # file 'freefall.dat'. #============================================================================== from gandalf.analysis.facade import * from gandalf.analysis.data_fetcher import * from gandalf.analysis.compute import particle_data from gandalf.analysis.SimBuffer import SimBuffer, BufferException import time import matplotlib.pyplot as plt import numpy as np import math from matplotlib import rc from mpl_toolkits.axes_grid1 import AxesGrid #-------------------------------------------------------------------------------------------------- rc('font', **{'family': 'normal', 'weight' : 'bold', 'size' : 16}) rc('text', usetex=True) # Binary parameters m1 = 0.5 m2 = 0.5 abin = 1.0 ebin = 0.5 etot0 = -0.5*m1*m2/abin period = 2.0*math.pi*math.sqrt(abin*abin*abin/(m1 + m2)) xmin = -0.6 xmax = 2.1 ymin = -0.85 ymax = 0.85 xsize = xmax - xmin ysize = ymax - ymin CreateTimeData('x',particle_data,quantity='x') CreateTimeData('y',particle_data,quantity='y') # Leapfrog KDK kdksim = newsim('binaryorbit.dat') kdksim.SetParam('nbody','lfkdk') setupsim() run() x_kdk = get_time_data("t","x") y_kdk = get_time_data("t","y") # Leapfrog DKD dkdsim = newsim('binaryorbit.dat') dkdsim.SetParam('nbody','lfdkd') setupsim() run() x_dkd = get_time_data("t","x") y_dkd = get_time_data("t","y") # 4th-order Hermite hermite4sim = newsim('binaryorbit.dat') hermite4sim.SetParam('nbody','hermite4') setupsim() run() x_hermite4 = get_time_data("t","x") y_hermite4 = get_time_data("t","y") # 4th-order Hermite TS hermite4tssim = newsim('binaryorbit.dat') hermite4tssim.SetParam('nbody','hermite4ts') hermite4tssim.SetParam('Npec',5) setupsim() run() x_4ts = get_time_data("t","x") y_4ts = get_time_data("t","y") # 6th-order Hermite #hermite6tssim = newsim('binaryorbit.dat') #hermite6tssim.SetParam('nbody','hermite6ts') #hermite6tssim.SetParam('Npec',5) #setupsim() #run() #x_6ts = get_time_data("t","x") #y_6ts = get_time_data("t","y") # Create matplotlib figure object with shared x-axis #-------------------------------------------------------------------------------------------------- #fig, axarr = plt.subplots(2, 1, sharex='col', sharey='row', figsize=(10,4)) fig, axarr = plt.subplots(4, 1, figsize=(6,11), sharex='col', sharey='row') fig.subplots_adjust(hspace=0.001, wspace=0.001) fig.subplots_adjust(bottom=0.06, top=0.98, left=0.14, right=0.98) axarr[0].set_ylabel(r"$y$") axarr[0].set_ylim([ymin, ymax]) axarr[0].set_xlim([xmin, xmax]) axarr[0].plot(x_kdk.y_data, y_kdk.y_data, color="black", linestyle='-', label='Leapfrog KDK', lw=1.0) axarr[0].text(xmin + 0.02*xsize, ymax - 0.1*ysize, "(a) Leapfrog-KDK", fontsize=12) axarr[1].set_ylabel(r"$y$") axarr[1].set_ylim([ymin, ymax]) axarr[1].plot(x_dkd.y_data, y_dkd.y_data, color="black", linestyle='-', label='Leapfrog DKD', lw=1.0) axarr[1].text(xmin + 0.02*xsize, ymax - 0.1*ysize, "(b) Leapfrog-DKD", fontsize=12) axarr[2].set_ylabel(r"$y$") axarr[2].set_ylim([ymin, ymax]) axarr[2].plot(x_hermite4.y_data, y_hermite4.y_data, color="black", linestyle='-', label='4H', lw=1.0) axarr[2].text(xmin + 0.02*xsize, ymax - 0.1*ysize, "(c) 4th-order Hermite", fontsize=12) axarr[3].set_xlabel(r"$x$") axarr[3].set_ylabel(r"$y$") axarr[3].set_ylim([ymin, ymax]) axarr[3].plot(x_4ts.y_data, y_4ts.y_data, color="black", linestyle='-', label='4TS', lw=1.0) axarr[3].text(xmin + 0.02*xsize, ymax - 0.1*ysize, "(d) 4th-order Hermite TS", fontsize=12) plt.show() fig.savefig('binaryorbit.pdf', dpi=50) # Prevent program from closing before showing plot window block()
gpl-2.0
IssamLaradji/scikit-learn
sklearn/linear_model/ransac.py
16
13870
# coding: utf-8 # Author: Johannes Schönberger # # License: BSD 3 clause import numpy as np from ..base import BaseEstimator, MetaEstimatorMixin, RegressorMixin, clone from ..utils import check_random_state, check_array, check_consistent_length from ..utils.random import sample_without_replacement from .base import LinearRegression _EPSILON = np.spacing(1) def _dynamic_max_trials(n_inliers, n_samples, min_samples, probability): """Determine number trials such that at least one outlier-free subset is sampled for the given inlier/outlier ratio. Parameters ---------- n_inliers : int Number of inliers in the data. n_samples : int Total number of samples in the data. min_samples : int Minimum number of samples chosen randomly from original data. probability : float Probability (confidence) that one outlier-free sample is generated. Returns ------- trials : int Number of trials. """ inlier_ratio = n_inliers / float(n_samples) nom = max(_EPSILON, 1 - probability) denom = max(_EPSILON, 1 - inlier_ratio ** min_samples) if nom == 1: return 0 if denom == 1: return float('inf') return abs(float(np.ceil(np.log(nom) / np.log(denom)))) class RANSACRegressor(BaseEstimator, MetaEstimatorMixin, RegressorMixin): """RANSAC (RANdom SAmple Consensus) algorithm. RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set. More information can be found in the general documentation of linear models. A detailed description of the algorithm can be found in the documentation of the ``linear_model`` sub-package. Parameters ---------- base_estimator : object, optional Base estimator object which implements the following methods: * `fit(X, y)`: Fit model to given training data and target values. * `score(X, y)`: Returns the mean accuracy on the given test data, which is used for the stop criterion defined by `stop_score`. Additionally, the score is used to decide which of two equally large consensus sets is chosen as the better one. If `base_estimator` is None, then ``base_estimator=sklearn.linear_model.LinearRegression()`` is used for target values of dtype float. Note that the current implementation only supports regression estimators. min_samples : int (>= 1) or float ([0, 1]), optional Minimum number of samples chosen randomly from original data. Treated as an absolute number of samples for `min_samples >= 1`, treated as a relative number `ceil(min_samples * X.shape[0]`) for `min_samples < 1`. This is typically chosen as the minimal number of samples necessary to estimate the given `base_estimator`. By default a ``sklearn.linear_model.LinearRegression()`` estimator is assumed and `min_samples` is chosen as ``X.shape[1] + 1``. residual_threshold : float, optional Maximum residual for a data sample to be classified as an inlier. By default the threshold is chosen as the MAD (median absolute deviation) of the target values `y`. is_data_valid : callable, optional This function is called with the randomly selected data before the model is fitted to it: `is_data_valid(X, y)`. If its return value is False the current randomly chosen sub-sample is skipped. is_model_valid : callable, optional This function is called with the estimated model and the randomly selected data: `is_model_valid(model, X, y)`. If its return value is False the current randomly chosen sub-sample is skipped. Rejecting samples with this function is computationally costlier than with `is_data_valid`. `is_model_valid` should therefore only be used if the estimated model is needed for making the rejection decision. max_trials : int, optional Maximum number of iterations for random sample selection. stop_n_inliers : int, optional Stop iteration if at least this number of inliers are found. stop_score : float, optional Stop iteration if score is greater equal than this threshold. stop_probability : float in range [0, 1], optional RANSAC iteration stops if at least one outlier-free set of the training data is sampled in RANSAC. This requires to generate at least N samples (iterations):: N >= log(1 - probability) / log(1 - e**m) where the probability (confidence) is typically set to high value such as 0.99 (the default) and e is the current fraction of inliers w.r.t. the total number of samples. residual_metric : callable, optional Metric to reduce the dimensionality of the residuals to 1 for multi-dimensional target values ``y.shape[1] > 1``. By default the sum of absolute differences is used:: lambda dy: np.sum(np.abs(dy), axis=1) random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- estimator_ : object Best fitted model (copy of the `base_estimator` object). n_trials_ : int Number of random selection trials until one of the stop criteria is met. It is always ``<= max_trials``. inlier_mask_ : bool array of shape [n_samples] Boolean mask of inliers classified as ``True``. References ---------- .. [1] http://en.wikipedia.org/wiki/RANSAC .. [2] http://www.cs.columbia.edu/~belhumeur/courses/compPhoto/ransac.pdf .. [3] http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf """ def __init__(self, base_estimator=None, min_samples=None, residual_threshold=None, is_data_valid=None, is_model_valid=None, max_trials=100, stop_n_inliers=np.inf, stop_score=np.inf, stop_probability=0.99, residual_metric=None, random_state=None): self.base_estimator = base_estimator self.min_samples = min_samples self.residual_threshold = residual_threshold self.is_data_valid = is_data_valid self.is_model_valid = is_model_valid self.max_trials = max_trials self.stop_n_inliers = stop_n_inliers self.stop_score = stop_score self.stop_probability = stop_probability self.residual_metric = residual_metric self.random_state = random_state def fit(self, X, y): """Fit estimator using RANSAC algorithm. Parameters ---------- X : array-like or sparse matrix, shape [n_samples, n_features] Training data. y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values. Raises ------ ValueError If no valid consensus set could be found. This occurs if `is_data_valid` and `is_model_valid` return False for all `max_trials` randomly chosen sub-samples. """ X = check_array(X, accept_sparse='csr') y = check_array(y, ensure_2d=False) if y.ndim == 1: y = y.reshape(-1, 1) check_consistent_length(X, y) if self.base_estimator is not None: base_estimator = clone(self.base_estimator) else: base_estimator = LinearRegression() if self.min_samples is None: # assume linear model by default min_samples = X.shape[1] + 1 elif 0 < self.min_samples < 1: min_samples = np.ceil(self.min_samples * X.shape[0]) elif self.min_samples >= 1: if self.min_samples % 1 != 0: raise ValueError("Absolute number of samples must be an " "integer value.") min_samples = self.min_samples else: raise ValueError("Value for `min_samples` must be scalar and " "positive.") if min_samples > X.shape[0]: raise ValueError("`min_samples` may not be larger than number " "of samples ``X.shape[0]``.") if self.stop_probability < 0 or self.stop_probability > 1: raise ValueError("`stop_probability` must be in range [0, 1].") if self.residual_threshold is None: # MAD (median absolute deviation) residual_threshold = np.median(np.abs(y - np.median(y))) else: residual_threshold = self.residual_threshold if self.residual_metric is None: residual_metric = lambda dy: np.sum(np.abs(dy), axis=1) else: residual_metric = self.residual_metric random_state = check_random_state(self.random_state) try: # Not all estimator accept a random_state base_estimator.set_params(random_state=random_state) except ValueError: pass n_inliers_best = 0 score_best = np.inf inlier_mask_best = None X_inlier_best = None y_inlier_best = None # number of data samples n_samples = X.shape[0] sample_idxs = np.arange(n_samples) n_samples, _ = X.shape for self.n_trials_ in range(1, self.max_trials + 1): # choose random sample set subset_idxs = sample_without_replacement(n_samples, min_samples, random_state=random_state) X_subset = X[subset_idxs] y_subset = y[subset_idxs] # check if random sample set is valid if (self.is_data_valid is not None and not self.is_data_valid(X_subset, y_subset)): continue # fit model for current random sample set base_estimator.fit(X_subset, y_subset) # check if estimated model is valid if (self.is_model_valid is not None and not self.is_model_valid(base_estimator, X_subset, y_subset)): continue # residuals of all data for current random sample model y_pred = base_estimator.predict(X) if y_pred.ndim == 1: y_pred = y_pred[:, None] residuals_subset = residual_metric(y_pred - y) # classify data into inliers and outliers inlier_mask_subset = residuals_subset < residual_threshold n_inliers_subset = np.sum(inlier_mask_subset) # less inliers -> skip current random sample if n_inliers_subset < n_inliers_best: continue # extract inlier data set inlier_idxs_subset = sample_idxs[inlier_mask_subset] X_inlier_subset = X[inlier_idxs_subset] y_inlier_subset = y[inlier_idxs_subset] # score of inlier data set score_subset = base_estimator.score(X_inlier_subset, y_inlier_subset) # same number of inliers but worse score -> skip current random # sample if (n_inliers_subset == n_inliers_best and score_subset < score_best): continue # save current random sample as best sample n_inliers_best = n_inliers_subset score_best = score_subset inlier_mask_best = inlier_mask_subset X_inlier_best = X_inlier_subset y_inlier_best = y_inlier_subset # break if sufficient number of inliers or score is reached if (n_inliers_best >= self.stop_n_inliers or score_best >= self.stop_score or self.n_trials_ >= _dynamic_max_trials(n_inliers_best, n_samples, min_samples, self.stop_probability)): break # if none of the iterations met the required criteria if inlier_mask_best is None: raise ValueError( "RANSAC could not find valid consensus set, because" " either the `residual_threshold` rejected all the samples or" " `is_data_valid` and `is_model_valid` returned False for all" " `max_trials` randomly ""chosen sub-samples. Consider " "relaxing the ""constraints.") # estimate final model using all inliers base_estimator.fit(X_inlier_best, y_inlier_best) self.estimator_ = base_estimator self.inlier_mask_ = inlier_mask_best return self def predict(self, X): """Predict using the estimated model. This is a wrapper for `estimator_.predict(X)`. Parameters ---------- X : numpy array of shape [n_samples, n_features] Returns ------- y : array, shape = [n_samples] or [n_samples, n_targets] Returns predicted values. """ return self.estimator_.predict(X) def score(self, X, y): """Returns the score of the prediction. This is a wrapper for `estimator_.score(X, y)`. Parameters ---------- X : numpy array or sparse matrix of shape [n_samples, n_features] Training data. y : array, shape = [n_samples] or [n_samples, n_targets] Target values. Returns ------- z : float Score of the prediction. """ return self.estimator_.score(X, y)
bsd-3-clause
hilaskis/UAV_MissionPlanner
Lib/site-packages/numpy/linalg/linalg.py
53
61098
"""Lite version of scipy.linalg. Notes ----- This module is a lite version of the linalg.py module in SciPy which contains high-level Python interface to the LAPACK library. The lite version only accesses the following LAPACK functions: dgesv, zgesv, dgeev, zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf, zgetrf, dpotrf, zpotrf, dgeqrf, zgeqrf, zungqr, dorgqr. """ __all__ = ['matrix_power', 'solve', 'tensorsolve', 'tensorinv', 'inv', 'cholesky', 'eigvals', 'eigvalsh', 'pinv', 'slogdet', 'det', 'svd', 'eig', 'eigh','lstsq', 'norm', 'qr', 'cond', 'matrix_rank', 'LinAlgError'] import sys from numpy.core import array, asarray, zeros, empty, transpose, \ intc, single, double, csingle, cdouble, inexact, complexfloating, \ newaxis, ravel, all, Inf, dot, add, multiply, identity, sqrt, \ maximum, flatnonzero, diagonal, arange, fastCopyAndTranspose, sum, \ isfinite, size, finfo, absolute, log, exp from numpy.lib import triu from numpy.linalg import lapack_lite from numpy.matrixlib.defmatrix import matrix_power from numpy.compat import asbytes # For Python2/3 compatibility _N = asbytes('N') _V = asbytes('V') _A = asbytes('A') _S = asbytes('S') _L = asbytes('L') fortran_int = intc # Error object class LinAlgError(Exception): """ Generic Python-exception-derived object raised by linalg functions. General purpose exception class, derived from Python's exception.Exception class, programmatically raised in linalg functions when a Linear Algebra-related condition would prevent further correct execution of the function. Parameters ---------- None Examples -------- >>> from numpy import linalg as LA >>> LA.inv(np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "...linalg.py", line 350, in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype))) File "...linalg.py", line 249, in solve raise LinAlgError, 'Singular matrix' numpy.linalg.linalg.LinAlgError: Singular matrix """ pass def _makearray(a): new = asarray(a) wrap = getattr(a, "__array_prepare__", new.__array_wrap__) return new, wrap def isComplexType(t): return issubclass(t, complexfloating) _real_types_map = {single : single, double : double, csingle : single, cdouble : double} _complex_types_map = {single : csingle, double : cdouble, csingle : csingle, cdouble : cdouble} def _realType(t, default=double): return _real_types_map.get(t, default) def _complexType(t, default=cdouble): return _complex_types_map.get(t, default) def _linalgRealType(t): """Cast the type t to either double or cdouble.""" return double _complex_types_map = {single : csingle, double : cdouble, csingle : csingle, cdouble : cdouble} def _commonType(*arrays): # in lite version, use higher precision (always double or cdouble) result_type = single is_complex = False for a in arrays: if issubclass(a.dtype.type, inexact): if isComplexType(a.dtype.type): is_complex = True rt = _realType(a.dtype.type, default=None) if rt is None: # unsupported inexact scalar raise TypeError("array type %s is unsupported in linalg" % (a.dtype.name,)) else: rt = double if rt is double: result_type = double if is_complex: t = cdouble result_type = _complex_types_map[result_type] else: t = double return t, result_type # _fastCopyAndTranpose assumes the input is 2D (as all the calls in here are). _fastCT = fastCopyAndTranspose def _to_native_byte_order(*arrays): ret = [] for arr in arrays: if arr.dtype.byteorder not in ('=', '|'): ret.append(asarray(arr, dtype=arr.dtype.newbyteorder('='))) else: ret.append(arr) if len(ret) == 1: return ret[0] else: return ret def _fastCopyAndTranspose(type, *arrays): cast_arrays = () for a in arrays: if a.dtype.type is type: cast_arrays = cast_arrays + (_fastCT(a),) else: cast_arrays = cast_arrays + (_fastCT(a.astype(type)),) if len(cast_arrays) == 1: return cast_arrays[0] else: return cast_arrays def _assertRank2(*arrays): for a in arrays: if len(a.shape) != 2: raise LinAlgError, '%d-dimensional array given. Array must be \ two-dimensional' % len(a.shape) def _assertSquareness(*arrays): for a in arrays: if max(a.shape) != min(a.shape): raise LinAlgError, 'Array must be square' def _assertFinite(*arrays): for a in arrays: if not (isfinite(a).all()): raise LinAlgError, "Array must not contain infs or NaNs" def _assertNonEmpty(*arrays): for a in arrays: if size(a) == 0: raise LinAlgError("Arrays cannot be empty") # Linear equations def tensorsolve(a, b, axes=None): """ Solve the tensor equation ``a x = b`` for x. It is assumed that all indices of `x` are summed over in the product, together with the rightmost indices of `a`, as is done in, for example, ``tensordot(a, x, axes=len(b.shape))``. Parameters ---------- a : array_like Coefficient tensor, of shape ``b.shape + Q``. `Q`, a tuple, equals the shape of that sub-tensor of `a` consisting of the appropriate number of its rightmost indices, and must be such that ``prod(Q) == prod(b.shape)`` (in which sense `a` is said to be 'square'). b : array_like Right-hand tensor, which can be of any shape. axes : tuple of ints, optional Axes in `a` to reorder to the right, before inversion. If None (default), no reordering is done. Returns ------- x : ndarray, shape Q Raises ------ LinAlgError If `a` is singular or not 'square' (in the above sense). See Also -------- tensordot, tensorinv Examples -------- >>> a = np.eye(2*3*4) >>> a.shape = (2*3, 4, 2, 3, 4) >>> b = np.random.randn(2*3, 4) >>> x = np.linalg.tensorsolve(a, b) >>> x.shape (2, 3, 4) >>> np.allclose(np.tensordot(a, x, axes=3), b) True """ a,wrap = _makearray(a) b = asarray(b) an = a.ndim if axes is not None: allaxes = range(0, an) for k in axes: allaxes.remove(k) allaxes.insert(an, k) a = a.transpose(allaxes) oldshape = a.shape[-(an-b.ndim):] prod = 1 for k in oldshape: prod *= k a = a.reshape(-1, prod) b = b.ravel() res = wrap(solve(a, b)) res.shape = oldshape return res def solve(a, b): """ Solve a linear matrix equation, or system of linear scalar equations. Computes the "exact" solution, `x`, of the well-determined, i.e., full rank, linear matrix equation `ax = b`. Parameters ---------- a : array_like, shape (M, M) Coefficient matrix. b : array_like, shape (M,) or (M, N) Ordinate or "dependent variable" values. Returns ------- x : ndarray, shape (M,) or (M, N) depending on b Solution to the system a x = b Raises ------ LinAlgError If `a` is singular or not square. Notes ----- `solve` is a wrapper for the LAPACK routines `dgesv`_ and `zgesv`_, the former being used if `a` is real-valued, the latter if it is complex-valued. The solution to the system of linear equations is computed using an LU decomposition [1]_ with partial pivoting and row interchanges. .. _dgesv: http://www.netlib.org/lapack/double/dgesv.f .. _zgesv: http://www.netlib.org/lapack/complex16/zgesv.f `a` must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either is not true, use `lstsq` for the least-squares best "solution" of the system/equation. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 22. Examples -------- Solve the system of equations ``3 * x0 + x1 = 9`` and ``x0 + 2 * x1 = 8``: >>> a = np.array([[3,1], [1,2]]) >>> b = np.array([9,8]) >>> x = np.linalg.solve(a, b) >>> x array([ 2., 3.]) Check that the solution is correct: >>> (np.dot(a, x) == b).all() True """ a, _ = _makearray(a) b, wrap = _makearray(b) one_eq = len(b.shape) == 1 if one_eq: b = b[:, newaxis] _assertRank2(a, b) _assertSquareness(a) n_eq = a.shape[0] n_rhs = b.shape[1] if n_eq != b.shape[0]: raise LinAlgError, 'Incompatible dimensions' t, result_t = _commonType(a, b) # lapack_routine = _findLapackRoutine('gesv', t) if isComplexType(t): lapack_routine = lapack_lite.zgesv else: lapack_routine = lapack_lite.dgesv a, b = _fastCopyAndTranspose(t, a, b) a, b = _to_native_byte_order(a, b) pivots = zeros(n_eq, fortran_int) results = lapack_routine(n_eq, n_rhs, a, n_eq, pivots, b, n_eq, 0) if results['info'] > 0: raise LinAlgError, 'Singular matrix' if one_eq: return wrap(b.ravel().astype(result_t)) else: return wrap(b.transpose().astype(result_t)) def tensorinv(a, ind=2): """ Compute the 'inverse' of an N-dimensional array. The result is an inverse for `a` relative to the tensordot operation ``tensordot(a, b, ind)``, i. e., up to floating-point accuracy, ``tensordot(tensorinv(a), a, ind)`` is the "identity" tensor for the tensordot operation. Parameters ---------- a : array_like Tensor to 'invert'. Its shape must be 'square', i. e., ``prod(a.shape[:ind]) == prod(a.shape[ind:])``. ind : int, optional Number of first indices that are involved in the inverse sum. Must be a positive integer, default is 2. Returns ------- b : ndarray `a`'s tensordot inverse, shape ``a.shape[:ind] + a.shape[ind:]``. Raises ------ LinAlgError If `a` is singular or not 'square' (in the above sense). See Also -------- tensordot, tensorsolve Examples -------- >>> a = np.eye(4*6) >>> a.shape = (4, 6, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=2) >>> ainv.shape (8, 3, 4, 6) >>> b = np.random.randn(4, 6) >>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b)) True >>> a = np.eye(4*6) >>> a.shape = (24, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=1) >>> ainv.shape (8, 3, 24) >>> b = np.random.randn(24) >>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b)) True """ a = asarray(a) oldshape = a.shape prod = 1 if ind > 0: invshape = oldshape[ind:] + oldshape[:ind] for k in oldshape[ind:]: prod *= k else: raise ValueError, "Invalid ind argument." a = a.reshape(prod, -1) ia = inv(a) return ia.reshape(*invshape) # Matrix inversion def inv(a): """ Compute the (multiplicative) inverse of a matrix. Given a square matrix `a`, return the matrix `ainv` satisfying ``dot(a, ainv) = dot(ainv, a) = eye(a.shape[0])``. Parameters ---------- a : array_like, shape (M, M) Matrix to be inverted. Returns ------- ainv : ndarray or matrix, shape (M, M) (Multiplicative) inverse of the matrix `a`. Raises ------ LinAlgError If `a` is singular or not square. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1., 2.], [3., 4.]]) >>> ainv = LA.inv(a) >>> np.allclose(np.dot(a, ainv), np.eye(2)) True >>> np.allclose(np.dot(ainv, a), np.eye(2)) True If a is a matrix object, then the return value is a matrix as well: >>> ainv = LA.inv(np.matrix(a)) >>> ainv matrix([[-2. , 1. ], [ 1.5, -0.5]]) """ a, wrap = _makearray(a) return wrap(solve(a, identity(a.shape[0], dtype=a.dtype))) # Cholesky decomposition def cholesky(a): """ Cholesky decomposition. Return the Cholesky decomposition, `L * L.H`, of the square matrix `a`, where `L` is lower-triangular and .H is the conjugate transpose operator (which is the ordinary transpose if `a` is real-valued). `a` must be Hermitian (symmetric if real-valued) and positive-definite. Only `L` is actually returned. Parameters ---------- a : array_like, shape (M, M) Hermitian (symmetric if all elements are real), positive-definite input matrix. Returns ------- L : ndarray, or matrix object if `a` is, shape (M, M) Lower-triangular Cholesky factor of a. Raises ------ LinAlgError If the decomposition fails, for example, if `a` is not positive-definite. Notes ----- The Cholesky decomposition is often used as a fast way of solving .. math:: A \\mathbf{x} = \\mathbf{b} (when `A` is both Hermitian/symmetric and positive-definite). First, we solve for :math:`\\mathbf{y}` in .. math:: L \\mathbf{y} = \\mathbf{b}, and then for :math:`\\mathbf{x}` in .. math:: L.H \\mathbf{x} = \\mathbf{y}. Examples -------- >>> A = np.array([[1,-2j],[2j,5]]) >>> A array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> L = np.linalg.cholesky(A) >>> L array([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) >>> np.dot(L, L.T.conj()) # verify that L * L.H = A array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like? >>> np.linalg.cholesky(A) # an ndarray object is returned array([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) >>> # But a matrix object is returned if A is a matrix object >>> LA.cholesky(np.matrix(A)) matrix([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) """ a, wrap = _makearray(a) _assertRank2(a) _assertSquareness(a) t, result_t = _commonType(a) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) m = a.shape[0] n = a.shape[1] if isComplexType(t): lapack_routine = lapack_lite.zpotrf else: lapack_routine = lapack_lite.dpotrf results = lapack_routine(_L, n, a, m, 0) if results['info'] > 0: raise LinAlgError, 'Matrix is not positive definite - \ Cholesky decomposition cannot be computed' s = triu(a, k=0).transpose() if (s.dtype != result_t): s = s.astype(result_t) return wrap(s) # QR decompostion def qr(a, mode='full'): """ Compute the qr factorization of a matrix. Factor the matrix `a` as *qr*, where `q` is orthonormal and `r` is upper-triangular. Parameters ---------- a : array_like Matrix to be factored, of shape (M, N). mode : {'full', 'r', 'economic'}, optional Specifies the values to be returned. 'full' is the default. Economic mode is slightly faster then 'r' mode if only `r` is needed. Returns ------- q : ndarray of float or complex, optional The orthonormal matrix, of shape (M, K). Only returned if ``mode='full'``. r : ndarray of float or complex, optional The upper-triangular matrix, of shape (K, N) with K = min(M, N). Only returned when ``mode='full'`` or ``mode='r'``. a2 : ndarray of float or complex, optional Array of shape (M, N), only returned when ``mode='economic``'. The diagonal and the upper triangle of `a2` contains `r`, while the rest of the matrix is undefined. Raises ------ LinAlgError If factoring fails. Notes ----- This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, and zungqr. For more information on the qr factorization, see for example: http://en.wikipedia.org/wiki/QR_factorization Subclasses of `ndarray` are preserved, so if `a` is of type `matrix`, all the return values will be matrices too. Examples -------- >>> a = np.random.randn(9, 6) >>> q, r = np.linalg.qr(a) >>> np.allclose(a, np.dot(q, r)) # a does equal qr True >>> r2 = np.linalg.qr(a, mode='r') >>> r3 = np.linalg.qr(a, mode='economic') >>> np.allclose(r, r2) # mode='r' returns the same r as mode='full' True >>> # But only triu parts are guaranteed equal when mode='economic' >>> np.allclose(r, np.triu(r3[:6,:6], k=0)) True Example illustrating a common use of `qr`: solving of least squares problems What are the least-squares-best `m` and `y0` in ``y = y0 + mx`` for the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points and you'll see that it should be y0 = 0, m = 1.) The answer is provided by solving the over-determined matrix equation ``Ax = b``, where:: A = array([[0, 1], [1, 1], [1, 1], [2, 1]]) x = array([[y0], [m]]) b = array([[1], [0], [2], [1]]) If A = qr such that q is orthonormal (which is always possible via Gram-Schmidt), then ``x = inv(r) * (q.T) * b``. (In numpy practice, however, we simply use `lstsq`.) >>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]]) >>> A array([[0, 1], [1, 1], [1, 1], [2, 1]]) >>> b = np.array([1, 0, 2, 1]) >>> q, r = LA.qr(A) >>> p = np.dot(q.T, b) >>> np.dot(LA.inv(r), p) array([ 1.1e-16, 1.0e+00]) """ a, wrap = _makearray(a) _assertRank2(a) m, n = a.shape t, result_t = _commonType(a) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) mn = min(m, n) tau = zeros((mn,), t) if isComplexType(t): lapack_routine = lapack_lite.zgeqrf routine_name = 'zgeqrf' else: lapack_routine = lapack_lite.dgeqrf routine_name = 'dgeqrf' # calculate optimal size of work data 'work' lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, n, a, m, tau, work, -1, 0) if results['info'] != 0: raise LinAlgError, '%s returns %d' % (routine_name, results['info']) # do qr decomposition lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(m, n, a, m, tau, work, lwork, 0) if results['info'] != 0: raise LinAlgError, '%s returns %d' % (routine_name, results['info']) # economic mode. Isn't actually economic. if mode[0] == 'e': if t != result_t : a = a.astype(result_t) return a.T # generate r r = _fastCopyAndTranspose(result_t, a[:,:mn]) for i in range(mn): r[i,:i].fill(0.0) # 'r'-mode, that is, calculate only r if mode[0] == 'r': return r # from here on: build orthonormal matrix q from a if isComplexType(t): lapack_routine = lapack_lite.zungqr routine_name = 'zungqr' else: lapack_routine = lapack_lite.dorgqr routine_name = 'dorgqr' # determine optimal lwork lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, mn, mn, a, m, tau, work, -1, 0) if results['info'] != 0: raise LinAlgError, '%s returns %d' % (routine_name, results['info']) # compute q lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(m, mn, mn, a, m, tau, work, lwork, 0) if results['info'] != 0: raise LinAlgError, '%s returns %d' % (routine_name, results['info']) q = _fastCopyAndTranspose(result_t, a[:mn,:]) return wrap(q), wrap(r) # Eigenvalues def eigvals(a): """ Compute the eigenvalues of a general matrix. Main difference between `eigvals` and `eig`: the eigenvectors aren't returned. Parameters ---------- a : array_like, shape (M, M) A complex- or real-valued matrix whose eigenvalues will be computed. Returns ------- w : ndarray, shape (M,) The eigenvalues, each repeated according to its multiplicity. They are not necessarily ordered, nor are they necessarily real for real matrices. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eig : eigenvalues and right eigenvectors of general arrays eigvalsh : eigenvalues of symmetric or Hermitian arrays. eigh : eigenvalues and eigenvectors of symmetric/Hermitian arrays. Notes ----- This is a simple interface to the LAPACK routines dgeev and zgeev that sets those routines' flags to return only the eigenvalues of general real and complex arrays, respectively. Examples -------- Illustration, using the fact that the eigenvalues of a diagonal matrix are its diagonal elements, that multiplying a matrix on the left by an orthogonal matrix, `Q`, and on the right by `Q.T` (the transpose of `Q`), preserves the eigenvalues of the "middle" matrix. In other words, if `Q` is orthogonal, then ``Q * A * Q.T`` has the same eigenvalues as ``A``: >>> from numpy import linalg as LA >>> x = np.random.random() >>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]]) >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :]) (1.0, 1.0, 0.0) Now multiply a diagonal matrix by Q on one side and by Q.T on the other: >>> D = np.diag((-1,1)) >>> LA.eigvals(D) array([-1., 1.]) >>> A = np.dot(Q, D) >>> A = np.dot(A, Q.T) >>> LA.eigvals(A) array([ 1., -1.]) """ a, wrap = _makearray(a) _assertRank2(a) _assertSquareness(a) _assertFinite(a) t, result_t = _commonType(a) real_t = _linalgRealType(t) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) n = a.shape[0] dummy = zeros((1,), t) if isComplexType(t): lapack_routine = lapack_lite.zgeev w = zeros((n,), t) rwork = zeros((n,), real_t) lwork = 1 work = zeros((lwork,), t) results = lapack_routine(_N, _N, n, a, n, w, dummy, 1, dummy, 1, work, -1, rwork, 0) lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(_N, _N, n, a, n, w, dummy, 1, dummy, 1, work, lwork, rwork, 0) else: lapack_routine = lapack_lite.dgeev wr = zeros((n,), t) wi = zeros((n,), t) lwork = 1 work = zeros((lwork,), t) results = lapack_routine(_N, _N, n, a, n, wr, wi, dummy, 1, dummy, 1, work, -1, 0) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine(_N, _N, n, a, n, wr, wi, dummy, 1, dummy, 1, work, lwork, 0) if all(wi == 0.): w = wr result_t = _realType(result_t) else: w = wr+1j*wi result_t = _complexType(result_t) if results['info'] > 0: raise LinAlgError, 'Eigenvalues did not converge' return w.astype(result_t) def eigvalsh(a, UPLO='L'): """ Compute the eigenvalues of a Hermitian or real symmetric matrix. Main difference from eigh: the eigenvectors are not computed. Parameters ---------- a : array_like, shape (M, M) A complex- or real-valued matrix whose eigenvalues are to be computed. UPLO : {'L', 'U'}, optional Specifies whether the calculation is done with the lower triangular part of `a` ('L', default) or the upper triangular part ('U'). Returns ------- w : ndarray, shape (M,) The eigenvalues, not necessarily ordered, each repeated according to its multiplicity. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigh : eigenvalues and eigenvectors of symmetric/Hermitian arrays. eigvals : eigenvalues of general real or complex arrays. eig : eigenvalues and right eigenvectors of general real or complex arrays. Notes ----- This is a simple interface to the LAPACK routines dsyevd and zheevd that sets those routines' flags to return only the eigenvalues of real symmetric and complex Hermitian arrays, respectively. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> LA.eigvalsh(a) array([ 0.17157288+0.j, 5.82842712+0.j]) """ UPLO = asbytes(UPLO) a, wrap = _makearray(a) _assertRank2(a) _assertSquareness(a) t, result_t = _commonType(a) real_t = _linalgRealType(t) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) n = a.shape[0] liwork = 5*n+3 iwork = zeros((liwork,), fortran_int) if isComplexType(t): lapack_routine = lapack_lite.zheevd w = zeros((n,), real_t) lwork = 1 work = zeros((lwork,), t) lrwork = 1 rwork = zeros((lrwork,), real_t) results = lapack_routine(_N, UPLO, n, a, n, w, work, -1, rwork, -1, iwork, liwork, 0) lwork = int(abs(work[0])) work = zeros((lwork,), t) lrwork = int(rwork[0]) rwork = zeros((lrwork,), real_t) results = lapack_routine(_N, UPLO, n, a, n, w, work, lwork, rwork, lrwork, iwork, liwork, 0) else: lapack_routine = lapack_lite.dsyevd w = zeros((n,), t) lwork = 1 work = zeros((lwork,), t) results = lapack_routine(_N, UPLO, n, a, n, w, work, -1, iwork, liwork, 0) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine(_N, UPLO, n, a, n, w, work, lwork, iwork, liwork, 0) if results['info'] > 0: raise LinAlgError, 'Eigenvalues did not converge' return w.astype(result_t) def _convertarray(a): t, result_t = _commonType(a) a = _fastCT(a.astype(t)) return a, t, result_t # Eigenvectors def eig(a): """ Compute the eigenvalues and right eigenvectors of a square array. Parameters ---------- a : array_like, shape (M, M) A square array of real or complex elements. Returns ------- w : ndarray, shape (M,) The eigenvalues, each repeated according to its multiplicity. The eigenvalues are not necessarily ordered, nor are they necessarily real for real arrays (though for real arrays complex-valued eigenvalues should occur in conjugate pairs). v : ndarray, shape (M, M) The normalized (unit "length") eigenvectors, such that the column ``v[:,i]`` is the eigenvector corresponding to the eigenvalue ``w[i]``. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigvalsh : eigenvalues of a symmetric or Hermitian (conjugate symmetric) array. eigvals : eigenvalues of a non-symmetric array. Notes ----- This is a simple interface to the LAPACK routines dgeev and zgeev which compute the eigenvalues and eigenvectors of, respectively, general real- and complex-valued square arrays. The number `w` is an eigenvalue of `a` if there exists a vector `v` such that ``dot(a,v) = w * v``. Thus, the arrays `a`, `w`, and `v` satisfy the equations ``dot(a[i,:], v[i]) = w[i] * v[:,i]`` for :math:`i \\in \\{0,...,M-1\\}`. The array `v` of eigenvectors may not be of maximum rank, that is, some of the columns may be linearly dependent, although round-off error may obscure that fact. If the eigenvalues are all different, then theoretically the eigenvectors are linearly independent. Likewise, the (complex-valued) matrix of eigenvectors `v` is unitary if the matrix `a` is normal, i.e., if ``dot(a, a.H) = dot(a.H, a)``, where `a.H` denotes the conjugate transpose of `a`. Finally, it is emphasized that `v` consists of the *right* (as in right-hand side) eigenvectors of `a`. A vector `y` satisfying ``dot(y.T, a) = z * y.T`` for some number `z` is called a *left* eigenvector of `a`, and, in general, the left and right eigenvectors of a matrix are not necessarily the (perhaps conjugate) transposes of each other. References ---------- G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, Various pp. Examples -------- >>> from numpy import linalg as LA (Almost) trivial example with real e-values and e-vectors. >>> w, v = LA.eig(np.diag((1, 2, 3))) >>> w; v array([ 1., 2., 3.]) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) Real matrix possessing complex e-values and e-vectors; note that the e-values are complex conjugates of each other. >>> w, v = LA.eig(np.array([[1, -1], [1, 1]])) >>> w; v array([ 1. + 1.j, 1. - 1.j]) array([[ 0.70710678+0.j , 0.70710678+0.j ], [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]]) Complex-valued matrix with real e-values (but complex-valued e-vectors); note that a.conj().T = a, i.e., a is Hermitian. >>> a = np.array([[1, 1j], [-1j, 1]]) >>> w, v = LA.eig(a) >>> w; v array([ 2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0} array([[ 0.00000000+0.70710678j, 0.70710678+0.j ], [ 0.70710678+0.j , 0.00000000+0.70710678j]]) Be careful about round-off error! >>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]]) >>> # Theor. e-values are 1 +/- 1e-9 >>> w, v = LA.eig(a) >>> w; v array([ 1., 1.]) array([[ 1., 0.], [ 0., 1.]]) """ a, wrap = _makearray(a) _assertRank2(a) _assertSquareness(a) _assertFinite(a) a, t, result_t = _convertarray(a) # convert to double or cdouble type a = _to_native_byte_order(a) real_t = _linalgRealType(t) n = a.shape[0] dummy = zeros((1,), t) if isComplexType(t): # Complex routines take different arguments lapack_routine = lapack_lite.zgeev w = zeros((n,), t) v = zeros((n, n), t) lwork = 1 work = zeros((lwork,), t) rwork = zeros((2*n,), real_t) results = lapack_routine(_N, _V, n, a, n, w, dummy, 1, v, n, work, -1, rwork, 0) lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(_N, _V, n, a, n, w, dummy, 1, v, n, work, lwork, rwork, 0) else: lapack_routine = lapack_lite.dgeev wr = zeros((n,), t) wi = zeros((n,), t) vr = zeros((n, n), t) lwork = 1 work = zeros((lwork,), t) results = lapack_routine(_N, _V, n, a, n, wr, wi, dummy, 1, vr, n, work, -1, 0) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine(_N, _V, n, a, n, wr, wi, dummy, 1, vr, n, work, lwork, 0) if all(wi == 0.0): w = wr v = vr result_t = _realType(result_t) else: w = wr+1j*wi v = array(vr, w.dtype) ind = flatnonzero(wi != 0.0) # indices of complex e-vals for i in range(len(ind)//2): v[ind[2*i]] = vr[ind[2*i]] + 1j*vr[ind[2*i+1]] v[ind[2*i+1]] = vr[ind[2*i]] - 1j*vr[ind[2*i+1]] result_t = _complexType(result_t) if results['info'] > 0: raise LinAlgError, 'Eigenvalues did not converge' vt = v.transpose().astype(result_t) return w.astype(result_t), wrap(vt) def eigh(a, UPLO='L'): """ Return the eigenvalues and eigenvectors of a Hermitian or symmetric matrix. Returns two objects, a 1-D array containing the eigenvalues of `a`, and a 2-D square array or matrix (depending on the input type) of the corresponding eigenvectors (in columns). Parameters ---------- a : array_like, shape (M, M) A complex Hermitian or real symmetric matrix. UPLO : {'L', 'U'}, optional Specifies whether the calculation is done with the lower triangular part of `a` ('L', default) or the upper triangular part ('U'). Returns ------- w : ndarray, shape (M,) The eigenvalues, not necessarily ordered. v : ndarray, or matrix object if `a` is, shape (M, M) The column ``v[:, i]`` is the normalized eigenvector corresponding to the eigenvalue ``w[i]``. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigvalsh : eigenvalues of symmetric or Hermitian arrays. eig : eigenvalues and right eigenvectors for non-symmetric arrays. eigvals : eigenvalues of non-symmetric arrays. Notes ----- This is a simple interface to the LAPACK routines dsyevd and zheevd, which compute the eigenvalues and eigenvectors of real symmetric and complex Hermitian arrays, respectively. The eigenvalues of real symmetric or complex Hermitian matrices are always real. [1]_ The array `v` of (column) eigenvectors is unitary and `a`, `w`, and `v` satisfy the equations ``dot(a, v[:, i]) = w[i] * v[:, i]``. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 222. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> a array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(a) >>> w; v array([ 0.17157288, 5.82842712]) array([[-0.92387953+0.j , -0.38268343+0.j ], [ 0.00000000+0.38268343j, 0.00000000-0.92387953j]]) >>> np.dot(a, v[:, 0]) - w[0] * v[:, 0] # verify 1st e-val/vec pair array([2.77555756e-17 + 0.j, 0. + 1.38777878e-16j]) >>> np.dot(a, v[:, 1]) - w[1] * v[:, 1] # verify 2nd e-val/vec pair array([ 0.+0.j, 0.+0.j]) >>> A = np.matrix(a) # what happens if input is a matrix object >>> A matrix([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(A) >>> w; v array([ 0.17157288, 5.82842712]) matrix([[-0.92387953+0.j , -0.38268343+0.j ], [ 0.00000000+0.38268343j, 0.00000000-0.92387953j]]) """ UPLO = asbytes(UPLO) a, wrap = _makearray(a) _assertRank2(a) _assertSquareness(a) t, result_t = _commonType(a) real_t = _linalgRealType(t) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) n = a.shape[0] liwork = 5*n+3 iwork = zeros((liwork,), fortran_int) if isComplexType(t): lapack_routine = lapack_lite.zheevd w = zeros((n,), real_t) lwork = 1 work = zeros((lwork,), t) lrwork = 1 rwork = zeros((lrwork,), real_t) results = lapack_routine(_V, UPLO, n, a, n, w, work, -1, rwork, -1, iwork, liwork, 0) lwork = int(abs(work[0])) work = zeros((lwork,), t) lrwork = int(rwork[0]) rwork = zeros((lrwork,), real_t) results = lapack_routine(_V, UPLO, n, a, n, w, work, lwork, rwork, lrwork, iwork, liwork, 0) else: lapack_routine = lapack_lite.dsyevd w = zeros((n,), t) lwork = 1 work = zeros((lwork,), t) results = lapack_routine(_V, UPLO, n, a, n, w, work, -1, iwork, liwork, 0) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine(_V, UPLO, n, a, n, w, work, lwork, iwork, liwork, 0) if results['info'] > 0: raise LinAlgError, 'Eigenvalues did not converge' at = a.transpose().astype(result_t) return w.astype(_realType(result_t)), wrap(at) # Singular value decomposition def svd(a, full_matrices=1, compute_uv=1): """ Singular Value Decomposition. Factors the matrix `a` as ``u * np.diag(s) * v``, where `u` and `v` are unitary and `s` is a 1-d array of `a`'s singular values. Parameters ---------- a : array_like A real or complex matrix of shape (`M`, `N`) . full_matrices : bool, optional If True (default), `u` and `v` have the shapes (`M`, `M`) and (`N`, `N`), respectively. Otherwise, the shapes are (`M`, `K`) and (`K`, `N`), respectively, where `K` = min(`M`, `N`). compute_uv : bool, optional Whether or not to compute `u` and `v` in addition to `s`. True by default. Returns ------- u : ndarray Unitary matrix. The shape of `u` is (`M`, `M`) or (`M`, `K`) depending on value of ``full_matrices``. s : ndarray The singular values, sorted so that ``s[i] >= s[i+1]``. `s` is a 1-d array of length min(`M`, `N`). v : ndarray Unitary matrix of shape (`N`, `N`) or (`K`, `N`), depending on ``full_matrices``. Raises ------ LinAlgError If SVD computation does not converge. Notes ----- The SVD is commonly written as ``a = U S V.H``. The `v` returned by this function is ``V.H`` and ``u = U``. If ``U`` is a unitary matrix, it means that it satisfies ``U.H = inv(U)``. The rows of `v` are the eigenvectors of ``a.H a``. The columns of `u` are the eigenvectors of ``a a.H``. For row ``i`` in `v` and column ``i`` in `u`, the corresponding eigenvalue is ``s[i]**2``. If `a` is a `matrix` object (as opposed to an `ndarray`), then so are all the return values. Examples -------- >>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6) Reconstruction based on full SVD: >>> U, s, V = np.linalg.svd(a, full_matrices=True) >>> U.shape, V.shape, s.shape ((9, 6), (6, 6), (6,)) >>> S = np.zeros((9, 6), dtype=complex) >>> S[:6, :6] = np.diag(s) >>> np.allclose(a, np.dot(U, np.dot(S, V))) True Reconstruction based on reduced SVD: >>> U, s, V = np.linalg.svd(a, full_matrices=False) >>> U.shape, V.shape, s.shape ((9, 6), (6, 6), (6,)) >>> S = np.diag(s) >>> np.allclose(a, np.dot(U, np.dot(S, V))) True """ a, wrap = _makearray(a) _assertRank2(a) _assertNonEmpty(a) m, n = a.shape t, result_t = _commonType(a) real_t = _linalgRealType(t) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) s = zeros((min(n, m),), real_t) if compute_uv: if full_matrices: nu = m nvt = n option = _A else: nu = min(n, m) nvt = min(n, m) option = _S u = zeros((nu, m), t) vt = zeros((n, nvt), t) else: option = _N nu = 1 nvt = 1 u = empty((1, 1), t) vt = empty((1, 1), t) iwork = zeros((8*min(m, n),), fortran_int) if isComplexType(t): lapack_routine = lapack_lite.zgesdd rwork = zeros((5*min(m, n)*min(m, n) + 5*min(m, n),), real_t) lwork = 1 work = zeros((lwork,), t) results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt, work, -1, rwork, iwork, 0) lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt, work, lwork, rwork, iwork, 0) else: lapack_routine = lapack_lite.dgesdd lwork = 1 work = zeros((lwork,), t) results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt, work, -1, iwork, 0) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt, work, lwork, iwork, 0) if results['info'] > 0: raise LinAlgError, 'SVD did not converge' s = s.astype(_realType(result_t)) if compute_uv: u = u.transpose().astype(result_t) vt = vt.transpose().astype(result_t) return wrap(u), s, wrap(vt) else: return s def cond(x, p=None): """ Compute the condition number of a matrix. This function is capable of returning the condition number using one of seven different norms, depending on the value of `p` (see Parameters below). Parameters ---------- x : array_like, shape (M, N) The matrix whose condition number is sought. p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}, optional Order of the norm: ===== ============================ p norm for matrices ===== ============================ None 2-norm, computed directly using the ``SVD`` 'fro' Frobenius norm inf max(sum(abs(x), axis=1)) -inf min(sum(abs(x), axis=1)) 1 max(sum(abs(x), axis=0)) -1 min(sum(abs(x), axis=0)) 2 2-norm (largest sing. value) -2 smallest singular value ===== ============================ inf means the numpy.inf object, and the Frobenius norm is the root-of-sum-of-squares norm. Returns ------- c : {float, inf} The condition number of the matrix. May be infinite. See Also -------- numpy.linalg.linalg.norm Notes ----- The condition number of `x` is defined as the norm of `x` times the norm of the inverse of `x` [1]_; the norm can be the usual L2-norm (root-of-sum-of-squares) or one of a number of other matrix norms. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, Orlando, FL, Academic Press, Inc., 1980, pg. 285. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]]) >>> a array([[ 1, 0, -1], [ 0, 1, 0], [ 1, 0, 1]]) >>> LA.cond(a) 1.4142135623730951 >>> LA.cond(a, 'fro') 3.1622776601683795 >>> LA.cond(a, np.inf) 2.0 >>> LA.cond(a, -np.inf) 1.0 >>> LA.cond(a, 1) 2.0 >>> LA.cond(a, -1) 1.0 >>> LA.cond(a, 2) 1.4142135623730951 >>> LA.cond(a, -2) 0.70710678118654746 >>> min(LA.svd(a, compute_uv=0))*min(LA.svd(LA.inv(a), compute_uv=0)) 0.70710678118654746 """ x = asarray(x) # in case we have a matrix if p is None: s = svd(x,compute_uv=False) return s[0]/s[-1] else: return norm(x,p)*norm(inv(x),p) def matrix_rank(M, tol=None): """ Return matrix rank of array using SVD method Rank of the array is the number of SVD singular values of the array that are greater than `tol`. Parameters ---------- M : array_like array of <=2 dimensions tol : {None, float} threshold below which SVD values are considered zero. If `tol` is None, and ``S`` is an array with singular values for `M`, and ``eps`` is the epsilon value for datatype of ``S``, then `tol` is set to ``S.max() * eps``. Notes ----- Golub and van Loan [1]_ define "numerical rank deficiency" as using tol=eps*S[0] (where S[0] is the maximum singular value and thus the 2-norm of the matrix). This is one definition of rank deficiency, and the one we use here. When floating point roundoff is the main concern, then "numerical rank deficiency" is a reasonable choice. In some cases you may prefer other definitions. The most useful measure of the tolerance depends on the operations you intend to use on your matrix. For example, if your data come from uncertain measurements with uncertainties greater than floating point epsilon, choosing a tolerance near that uncertainty may be preferable. The tolerance may be absolute if the uncertainties are absolute rather than relative. References ---------- .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*. Baltimore: Johns Hopkins University Press, 1996. Examples -------- >>> matrix_rank(np.eye(4)) # Full rank matrix 4 >>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix >>> matrix_rank(I) 3 >>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0 1 >>> matrix_rank(np.zeros((4,))) 0 """ M = asarray(M) if M.ndim > 2: raise TypeError('array should have 2 or fewer dimensions') if M.ndim < 2: return int(not all(M==0)) S = svd(M, compute_uv=False) if tol is None: tol = S.max() * finfo(S.dtype).eps return sum(S > tol) # Generalized inverse def pinv(a, rcond=1e-15 ): """ Compute the (Moore-Penrose) pseudo-inverse of a matrix. Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all *large* singular values. Parameters ---------- a : array_like, shape (M, N) Matrix to be pseudo-inverted. rcond : float Cutoff for small singular values. Singular values smaller (in modulus) than `rcond` * largest_singular_value (again, in modulus) are set to zero. Returns ------- B : ndarray, shape (N, M) The pseudo-inverse of `a`. If `a` is a `matrix` instance, then so is `B`. Raises ------ LinAlgError If the SVD computation does not converge. Notes ----- The pseudo-inverse of a matrix A, denoted :math:`A^+`, is defined as: "the matrix that 'solves' [the least-squares problem] :math:`Ax = b`," i.e., if :math:`\\bar{x}` is said solution, then :math:`A^+` is that matrix such that :math:`\\bar{x} = A^+b`. It can be shown that if :math:`Q_1 \\Sigma Q_2^T = A` is the singular value decomposition of A, then :math:`A^+ = Q_2 \\Sigma^+ Q_1^T`, where :math:`Q_{1,2}` are orthogonal matrices, :math:`\\Sigma` is a diagonal matrix consisting of A's so-called singular values, (followed, typically, by zeros), and then :math:`\\Sigma^+` is simply the diagonal matrix consisting of the reciprocals of A's singular values (again, followed by zeros). [1]_ References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pp. 139-142. Examples -------- The following example checks that ``a * a+ * a == a`` and ``a+ * a * a+ == a+``: >>> a = np.random.randn(9, 6) >>> B = np.linalg.pinv(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True """ a, wrap = _makearray(a) _assertNonEmpty(a) a = a.conjugate() u, s, vt = svd(a, 0) m = u.shape[0] n = vt.shape[1] cutoff = rcond*maximum.reduce(s) for i in range(min(n, m)): if s[i] > cutoff: s[i] = 1./s[i] else: s[i] = 0.; res = dot(transpose(vt), multiply(s[:, newaxis],transpose(u))) return wrap(res) # Determinant def slogdet(a): """ Compute the sign and (natural) logarithm of the determinant of an array. If an array has a very small or very large determinant, than a call to `det` may overflow or underflow. This routine is more robust against such issues, because it computes the logarithm of the determinant rather than the determinant itself. Parameters ---------- a : array_like, shape (M, M) Input array. Returns ------- sign : float or complex A number representing the sign of the determinant. For a real matrix, this is 1, 0, or -1. For a complex matrix, this is a complex number with absolute value 1 (i.e., it is on the unit circle), or else 0. logdet : float The natural log of the absolute value of the determinant. If the determinant is zero, then `sign` will be 0 and `logdet` will be -Inf. In all cases, the determinant is equal to `sign * np.exp(logdet)`. Notes ----- The determinant is computed via LU factorization using the LAPACK routine z/dgetrf. .. versionadded:: 2.0.0. Examples -------- The determinant of a 2-D array [[a, b], [c, d]] is ad - bc: >>> a = np.array([[1, 2], [3, 4]]) >>> (sign, logdet) = np.linalg.slogdet(a) >>> (sign, logdet) (-1, 0.69314718055994529) >>> sign * np.exp(logdet) -2.0 This routine succeeds where ordinary `det` does not: >>> np.linalg.det(np.eye(500) * 0.1) 0.0 >>> np.linalg.slogdet(np.eye(500) * 0.1) (1, -1151.2925464970228) See Also -------- det """ a = asarray(a) _assertRank2(a) _assertSquareness(a) t, result_t = _commonType(a) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) n = a.shape[0] if isComplexType(t): lapack_routine = lapack_lite.zgetrf else: lapack_routine = lapack_lite.dgetrf pivots = zeros((n,), fortran_int) results = lapack_routine(n, n, a, n, pivots, 0) info = results['info'] if (info < 0): raise TypeError, "Illegal input to Fortran routine" elif (info > 0): return (t(0.0), _realType(t)(-Inf)) sign = 1. - 2. * (add.reduce(pivots != arange(1, n + 1)) % 2) d = diagonal(a) absd = absolute(d) sign *= multiply.reduce(d / absd) log(absd, absd) logdet = add.reduce(absd, axis=-1) return sign, logdet def det(a): """ Compute the determinant of an array. Parameters ---------- a : array_like, shape (M, M) Input array. Returns ------- det : ndarray Determinant of `a`. Notes ----- The determinant is computed via LU factorization using the LAPACK routine z/dgetrf. Examples -------- The determinant of a 2-D array [[a, b], [c, d]] is ad - bc: >>> a = np.array([[1, 2], [3, 4]]) >>> np.linalg.det(a) -2.0 See Also -------- slogdet : Another way to representing the determinant, more suitable for large matrices where underflow/overflow may occur. """ sign, logdet = slogdet(a) return sign * exp(logdet) # Linear Least Squares def lstsq(a, b, rcond=-1): """ Return the least-squares solution to a linear matrix equation. Solves the equation `a x = b` by computing a vector `x` that minimizes the Euclidean 2-norm `|| b - a x ||^2`. The equation may be under-, well-, or over- determined (i.e., the number of linearly independent rows of `a` can be less than, equal to, or greater than its number of linearly independent columns). If `a` is square and of full rank, then `x` (but for round-off error) is the "exact" solution of the equation. Parameters ---------- a : array_like, shape (M, N) "Coefficient" matrix. b : array_like, shape (M,) or (M, K) Ordinate or "dependent variable" values. If `b` is two-dimensional, the least-squares solution is calculated for each of the `K` columns of `b`. rcond : float, optional Cut-off ratio for small singular values of `a`. Singular values are set to zero if they are smaller than `rcond` times the largest singular value of `a`. Returns ------- x : ndarray, shape (N,) or (N, K) Least-squares solution. The shape of `x` depends on the shape of `b`. residues : ndarray, shape (), (1,), or (K,) Sums of residues; squared Euclidean 2-norm for each column in ``b - a*x``. If the rank of `a` is < N or > M, this is an empty array. If `b` is 1-dimensional, this is a (1,) shape array. Otherwise the shape is (K,). rank : int Rank of matrix `a`. s : ndarray, shape (min(M,N),) Singular values of `a`. Raises ------ LinAlgError If computation does not converge. Notes ----- If `b` is a matrix, then all array results are returned as matrices. Examples -------- Fit a line, ``y = mx + c``, through some noisy data-points: >>> x = np.array([0, 1, 2, 3]) >>> y = np.array([-1, 0.2, 0.9, 2.1]) By examining the coefficients, we see that the line should have a gradient of roughly 1 and cut the y-axis at, more or less, -1. We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]`` and ``p = [[m], [c]]``. Now use `lstsq` to solve for `p`: >>> A = np.vstack([x, np.ones(len(x))]).T >>> A array([[ 0., 1.], [ 1., 1.], [ 2., 1.], [ 3., 1.]]) >>> m, c = np.linalg.lstsq(A, y)[0] >>> print m, c 1.0 -0.95 Plot the data along with the fitted line: >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'o', label='Original data', markersize=10) >>> plt.plot(x, m*x + c, 'r', label='Fitted line') >>> plt.legend() >>> plt.show() """ import math a, _ = _makearray(a) b, wrap = _makearray(b) is_1d = len(b.shape) == 1 if is_1d: b = b[:, newaxis] _assertRank2(a, b) m = a.shape[0] n = a.shape[1] n_rhs = b.shape[1] ldb = max(n, m) if m != b.shape[0]: raise LinAlgError, 'Incompatible dimensions' t, result_t = _commonType(a, b) result_real_t = _realType(result_t) real_t = _linalgRealType(t) bstar = zeros((ldb, n_rhs), t) bstar[:b.shape[0],:n_rhs] = b.copy() a, bstar = _fastCopyAndTranspose(t, a, bstar) a, bstar = _to_native_byte_order(a, bstar) s = zeros((min(m, n),), real_t) nlvl = max( 0, int( math.log( float(min(m, n))/2. ) ) + 1 ) iwork = zeros((3*min(m, n)*nlvl+11*min(m, n),), fortran_int) if isComplexType(t): lapack_routine = lapack_lite.zgelsd lwork = 1 rwork = zeros((lwork,), real_t) work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, -1, rwork, iwork, 0) lwork = int(abs(work[0])) rwork = zeros((lwork,), real_t) a_real = zeros((m, n), real_t) bstar_real = zeros((ldb, n_rhs,), real_t) results = lapack_lite.dgelsd(m, n, n_rhs, a_real, m, bstar_real, ldb, s, rcond, 0, rwork, -1, iwork, 0) lrwork = int(rwork[0]) work = zeros((lwork,), t) rwork = zeros((lrwork,), real_t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, lwork, rwork, iwork, 0) else: lapack_routine = lapack_lite.dgelsd lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, -1, iwork, 0) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, lwork, iwork, 0) if results['info'] > 0: raise LinAlgError, 'SVD did not converge in Linear Least Squares' resids = array([], result_real_t) if is_1d: x = array(ravel(bstar)[:n], dtype=result_t, copy=True) if results['rank'] == n and m > n: if isComplexType(t): resids = array([sum(abs(ravel(bstar)[n:])**2)], dtype=result_real_t) else: resids = array([sum((ravel(bstar)[n:])**2)], dtype=result_real_t) else: x = array(transpose(bstar)[:n,:], dtype=result_t, copy=True) if results['rank'] == n and m > n: if isComplexType(t): resids = sum(abs(transpose(bstar)[n:,:])**2, axis=0).astype( result_real_t) else: resids = sum((transpose(bstar)[n:,:])**2, axis=0).astype( result_real_t) st = s[:min(n, m)].copy().astype(result_real_t) return wrap(x), wrap(resids), results['rank'], st def norm(x, ord=None): """ Matrix or vector norm. This function is able to return one of seven different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the ``ord`` parameter. Parameters ---------- x : array_like, shape (M,) or (M, N) Input array. ord : {non-zero int, inf, -inf, 'fro'}, optional Order of the norm (see table under ``Notes``). inf means numpy's `inf` object. Returns ------- n : float Norm of the matrix or vector. Notes ----- For values of ``ord <= 0``, the result is, strictly speaking, not a mathematical 'norm', but it may still be useful for various numerical purposes. The following norms can be calculated: ===== ============================ ========================== ord norm for matrices norm for vectors ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm -- inf max(sum(abs(x), axis=1)) max(abs(x)) -inf min(sum(abs(x), axis=1)) min(abs(x)) 0 -- sum(x != 0) 1 max(sum(abs(x), axis=0)) as below -1 min(sum(abs(x), axis=0)) as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other -- sum(abs(x)**ord)**(1./ord) ===== ============================ ========================== The Frobenius norm is given by [1]_: :math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}` References ---------- .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*, Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15 Examples -------- >>> from numpy import linalg as LA >>> a = np.arange(9) - 4 >>> a array([-4, -3, -2, -1, 0, 1, 2, 3, 4]) >>> b = a.reshape((3, 3)) >>> b array([[-4, -3, -2], [-1, 0, 1], [ 2, 3, 4]]) >>> LA.norm(a) 7.745966692414834 >>> LA.norm(b) 7.745966692414834 >>> LA.norm(b, 'fro') 7.745966692414834 >>> LA.norm(a, np.inf) 4 >>> LA.norm(b, np.inf) 9 >>> LA.norm(a, -np.inf) 0 >>> LA.norm(b, -np.inf) 2 >>> LA.norm(a, 1) 20 >>> LA.norm(b, 1) 7 >>> LA.norm(a, -1) -4.6566128774142013e-010 >>> LA.norm(b, -1) 6 >>> LA.norm(a, 2) 7.745966692414834 >>> LA.norm(b, 2) 7.3484692283495345 >>> LA.norm(a, -2) nan >>> LA.norm(b, -2) 1.8570331885190563e-016 >>> LA.norm(a, 3) 5.8480354764257312 >>> LA.norm(a, -3) nan """ x = asarray(x) if ord is None: # check the default case first and handle it immediately return sqrt(add.reduce((x.conj() * x).ravel().real)) nd = x.ndim if nd == 1: if ord == Inf: return abs(x).max() elif ord == -Inf: return abs(x).min() elif ord == 0: return (x != 0).sum() # Zero norm elif ord == 1: return abs(x).sum() # special case for speedup elif ord == 2: return sqrt(((x.conj()*x).real).sum()) # special case for speedup else: try: ord + 1 except TypeError: raise ValueError, "Invalid norm order for vectors." return ((abs(x)**ord).sum())**(1.0/ord) elif nd == 2: if ord == 2: return svd(x, compute_uv=0).max() elif ord == -2: return svd(x, compute_uv=0).min() elif ord == 1: return abs(x).sum(axis=0).max() elif ord == Inf: return abs(x).sum(axis=1).max() elif ord == -1: return abs(x).sum(axis=0).min() elif ord == -Inf: return abs(x).sum(axis=1).min() elif ord in ['fro','f']: return sqrt(add.reduce((x.conj() * x).real.ravel())) else: raise ValueError, "Invalid norm order for matrices." else: raise ValueError, "Improper number of dimensions to norm."
gpl-2.0
ishanic/scikit-learn
sklearn/preprocessing/data.py
113
56747
# Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Andreas Mueller <[email protected]> # Eric Martin <[email protected]> # License: BSD 3 clause from itertools import chain, combinations import numbers import warnings import numpy as np from scipy import sparse from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..utils import check_array from ..utils.extmath import row_norms from ..utils.fixes import combinations_with_replacement as combinations_w_r from ..utils.sparsefuncs_fast import (inplace_csr_row_normalize_l1, inplace_csr_row_normalize_l2) from ..utils.sparsefuncs import (inplace_column_scale, mean_variance_axis, min_max_axis, inplace_row_scale) from ..utils.validation import check_is_fitted, FLOAT_DTYPES zip = six.moves.zip map = six.moves.map range = six.moves.range __all__ = [ 'Binarizer', 'KernelCenterer', 'MinMaxScaler', 'MaxAbsScaler', 'Normalizer', 'OneHotEncoder', 'RobustScaler', 'StandardScaler', 'add_dummy_feature', 'binarize', 'normalize', 'scale', 'robust_scale', 'maxabs_scale', 'minmax_scale', ] def _mean_and_std(X, axis=0, with_mean=True, with_std=True): """Compute mean and std deviation for centering, scaling. Zero valued std components are reset to 1.0 to avoid NaNs when scaling. """ X = np.asarray(X) Xr = np.rollaxis(X, axis) if with_mean: mean_ = Xr.mean(axis=0) else: mean_ = None if with_std: std_ = Xr.std(axis=0) std_ = _handle_zeros_in_scale(std_) else: std_ = None return mean_, std_ def _handle_zeros_in_scale(scale): ''' Makes sure that whenever scale is zero, we handle it correctly. This happens in most scalers when we have constant features.''' # if we are fitting on 1D arrays, scale might be a scalar if np.isscalar(scale): if scale == 0: scale = 1. elif isinstance(scale, np.ndarray): scale[scale == 0.0] = 1.0 scale[~np.isfinite(scale)] = 1.0 return scale def scale(X, axis=0, with_mean=True, with_std=True, copy=True): """Standardize a dataset along any axis Center to the mean and component wise scale to unit variance. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : array-like or CSR matrix. The data to center and scale. axis : int (0 by default) axis used to compute the means and standard deviations along. If 0, independently standardize each feature, otherwise (if 1) standardize each sample. with_mean : boolean, True by default If True, center the data before scaling. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_mean=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. See also -------- :class:`sklearn.preprocessing.StandardScaler` to perform centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ X = check_array(X, accept_sparse='csr', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator='the scale function', dtype=FLOAT_DTYPES) if sparse.issparse(X): if with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` instead" " See docstring for motivation and alternatives.") if axis != 0: raise ValueError("Can only scale sparse matrix on axis=0, " " got axis=%d" % axis) if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() _, var = mean_variance_axis(X, axis=0) var = _handle_zeros_in_scale(var) inplace_column_scale(X, 1 / np.sqrt(var)) else: X = np.asarray(X) mean_, std_ = _mean_and_std( X, axis, with_mean=with_mean, with_std=with_std) if copy: X = X.copy() # Xr is a view on the original array that enables easy use of # broadcasting on the axis in which we are interested in Xr = np.rollaxis(X, axis) if with_mean: Xr -= mean_ mean_1 = Xr.mean(axis=0) # Verify that mean_1 is 'close to zero'. If X contains very # large values, mean_1 can also be very large, due to a lack of # precision of mean_. In this case, a pre-scaling of the # concerned feature is efficient, for instance by its mean or # maximum. if not np.allclose(mean_1, 0): warnings.warn("Numerical issues were encountered " "when centering the data " "and might not be solved. Dataset may " "contain too large values. You may need " "to prescale your features.") Xr -= mean_1 if with_std: Xr /= std_ if with_mean: mean_2 = Xr.mean(axis=0) # If mean_2 is not 'close to zero', it comes from the fact that # std_ is very small so that mean_2 = mean_1/std_ > 0, even if # mean_1 was close to zero. The problem is thus essentially due # to the lack of precision of mean_. A solution is then to # substract the mean again: if not np.allclose(mean_2, 0): warnings.warn("Numerical issues were encountered " "when scaling the data " "and might not be solved. The standard " "deviation of the data is probably " "very close to 0. ") Xr -= mean_2 return X class MinMaxScaler(BaseEstimator, TransformerMixin): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. copy : boolean, optional, default True Set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array). Attributes ---------- min_ : ndarray, shape (n_features,) Per feature adjustment for minimum. scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. """ def __init__(self, feature_range=(0, 1), copy=True): self.feature_range = feature_range self.copy = copy def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ X = check_array(X, copy=self.copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) feature_range = self.feature_range if feature_range[0] >= feature_range[1]: raise ValueError("Minimum of desired feature range must be smaller" " than maximum. Got %s." % str(feature_range)) data_min = np.min(X, axis=0) data_range = np.max(X, axis=0) - data_min data_range = _handle_zeros_in_scale(data_range) self.scale_ = (feature_range[1] - feature_range[0]) / data_range self.min_ = feature_range[0] - data_min * self.scale_ self.data_range = data_range self.data_min = data_min return self def transform(self, X): """Scaling features of X according to feature_range. Parameters ---------- X : array-like with shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, ensure_2d=False) X *= self.scale_ X += self.min_ return X def inverse_transform(self, X): """Undo the scaling of X according to feature_range. Parameters ---------- X : array-like with shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, ensure_2d=False) X -= self.min_ X /= self.scale_ return X def minmax_scale(X, feature_range=(0, 1), axis=0, copy=True): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). """ s = MinMaxScaler(feature_range=feature_range, copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class StandardScaler(BaseEstimator, TransformerMixin): """Standardize features by removing the mean and scaling to unit variance Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Mean and standard deviation are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual feature do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance). For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger that others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_mean : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- mean_ : array of floats with shape [n_features] The mean value for each feature in the training set. std_ : array of floats with shape [n_features] The standard deviation for each feature in the training set. Set to one if the standard deviation is zero for a given feature. See also -------- :func:`sklearn.preprocessing.scale` to perform centering and scaling without using the ``Transformer`` object oriented API :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True` to further remove the linear correlation across features. """ def __init__(self, copy=True, with_mean=True, with_std=True): self.with_mean = with_mean self.with_std = with_std self.copy = copy def fit(self, X, y=None): """Compute the mean and std to be used for later scaling. Parameters ---------- X : array-like or CSR matrix with shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. """ X = check_array(X, accept_sparse='csr', copy=self.copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") self.mean_ = None if self.with_std: var = mean_variance_axis(X, axis=0)[1] self.std_ = np.sqrt(var) self.std_ = _handle_zeros_in_scale(self.std_) else: self.std_ = None return self else: self.mean_, self.std_ = _mean_and_std( X, axis=0, with_mean=self.with_mean, with_std=self.with_std) return self def transform(self, X, y=None, copy=None): """Perform standardization by centering and scaling Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'std_') copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") if self.std_ is not None: inplace_column_scale(X, 1 / self.std_) else: if self.with_mean: X -= self.mean_ if self.with_std: X /= self.std_ return X def inverse_transform(self, X, copy=None): """Scale back the data to the original representation Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'std_') copy = copy if copy is not None else self.copy if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot uncenter sparse matrices: pass `with_mean=False` " "instead See docstring for motivation and alternatives.") if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() if self.std_ is not None: inplace_column_scale(X, self.std_) else: X = np.asarray(X) if copy: X = X.copy() if self.with_std: X *= self.std_ if self.with_mean: X += self.mean_ return X class MaxAbsScaler(BaseEstimator, TransformerMixin): """Scale each feature by its maximum absolute value. This estimator scales and translates each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity. This scaler can also be applied to sparse CSR or CSC matrices. Parameters ---------- copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). Attributes ---------- scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. """ def __init__(self, copy=True): self.copy = copy def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): mins, maxs = min_max_axis(X, axis=0) scales = np.maximum(np.abs(mins), np.abs(maxs)) else: scales = np.abs(X).max(axis=0) scales = np.array(scales) scales = scales.reshape(-1) self.scale_ = _handle_zeros_in_scale(scales) return self def transform(self, X, y=None): """Scale the data Parameters ---------- X : array-like or CSR matrix. The data that should be scaled. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if X.shape[0] == 1: inplace_row_scale(X, 1.0 / self.scale_) else: inplace_column_scale(X, 1.0 / self.scale_) else: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : array-like or CSR matrix. The data that should be transformed back. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if X.shape[0] == 1: inplace_row_scale(X, self.scale_) else: inplace_column_scale(X, self.scale_) else: X *= self.scale_ return X def maxabs_scale(X, axis=0, copy=True): """Scale each feature to the [-1, 1] range without breaking the sparsity. This estimator scales each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. This scaler can also be applied to sparse CSR or CSC matrices. Parameters ---------- axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). """ s = MaxAbsScaler(copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class RobustScaler(BaseEstimator, TransformerMixin): """Scale features using statistics that are robust to outliers. This Scaler removes the median and scales the data according to the Interquartile Range (IQR). The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile). Centering and scaling happen independently on each feature (or each sample, depending on the `axis` argument) by computing the relevant statistics on the samples in the training set. Median and interquartile range are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators. Typically this is done by removing the mean and scaling to unit variance. However, outliers can often influence the sample mean / variance in a negative way. In such cases, the median and the interquartile range often give better results. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_centering : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_scaling : boolean, True by default If True, scale the data to interquartile range. copy : boolean, optional, default is True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- center_ : array of floats The median value for each feature in the training set. scale_ : array of floats The (scaled) interquartile range for each feature in the training set. See also -------- :class:`sklearn.preprocessing.StandardScaler` to perform centering and scaling using mean and variance. :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True` to further remove the linear correlation across features. Notes ----- See examples/preprocessing/plot_robust_scaling.py for an example. http://en.wikipedia.org/wiki/Median_(statistics) http://en.wikipedia.org/wiki/Interquartile_range """ def __init__(self, with_centering=True, with_scaling=True, copy=True): self.with_centering = with_centering self.with_scaling = with_scaling self.copy = copy def _check_array(self, X, copy): """Makes sure centering is not enabled for sparse matrices.""" X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_centering: raise ValueError( "Cannot center sparse matrices: use `with_centering=False`" " instead. See docstring for motivation and alternatives.") return X def fit(self, X, y=None): """Compute the median and quantiles to be used for scaling. Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to compute the median and quantiles used for later scaling along the features axis. """ if sparse.issparse(X): raise TypeError("RobustScaler cannot be fitted on sparse inputs") X = self._check_array(X, self.copy) if self.with_centering: self.center_ = np.median(X, axis=0) if self.with_scaling: q = np.percentile(X, (25, 75), axis=0) self.scale_ = (q[1] - q[0]) self.scale_ = _handle_zeros_in_scale(self.scale_) return self def transform(self, X, y=None): """Center and scale the data Parameters ---------- X : array-like or CSR matrix. The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: if X.shape[0] == 1: inplace_row_scale(X, 1.0 / self.scale_) elif self.axis == 0: inplace_column_scale(X, 1.0 / self.scale_) else: if self.with_centering: X -= self.center_ if self.with_scaling: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : array-like or CSR matrix. The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: if X.shape[0] == 1: inplace_row_scale(X, self.scale_) else: inplace_column_scale(X, self.scale_) else: if self.with_scaling: X *= self.scale_ if self.with_centering: X += self.center_ return X def robust_scale(X, axis=0, with_centering=True, with_scaling=True, copy=True): """Standardize a dataset along any axis Center to the median and component wise scale according to the interquartile range. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : array-like. The data to center and scale. axis : int (0 by default) axis used to compute the medians and IQR along. If 0, independently scale each feature, otherwise (if 1) scale each sample. with_centering : boolean, True by default If True, center the data before scaling. with_scaling : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default is True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_centering=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. See also -------- :class:`sklearn.preprocessing.RobustScaler` to perform centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ s = RobustScaler(with_centering=with_centering, with_scaling=with_scaling, copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class PolynomialFeatures(BaseEstimator, TransformerMixin): """Generate polynomial and interaction features. Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, if an input sample is two dimensional and of the form [a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2]. Parameters ---------- degree : integer The degree of the polynomial features. Default = 2. interaction_only : boolean, default = False If true, only interaction features are produced: features that are products of at most ``degree`` *distinct* input features (so not ``x[1] ** 2``, ``x[0] * x[2] ** 3``, etc.). include_bias : boolean If True (default), then include a bias column, the feature in which all polynomial powers are zero (i.e. a column of ones - acts as an intercept term in a linear model). Examples -------- >>> X = np.arange(6).reshape(3, 2) >>> X array([[0, 1], [2, 3], [4, 5]]) >>> poly = PolynomialFeatures(2) >>> poly.fit_transform(X) array([[ 1, 0, 1, 0, 0, 1], [ 1, 2, 3, 4, 6, 9], [ 1, 4, 5, 16, 20, 25]]) >>> poly = PolynomialFeatures(interaction_only=True) >>> poly.fit_transform(X) array([[ 1, 0, 1, 0], [ 1, 2, 3, 6], [ 1, 4, 5, 20]]) Attributes ---------- powers_ : array, shape (n_input_features, n_output_features) powers_[i, j] is the exponent of the jth input in the ith output. n_input_features_ : int The total number of input features. n_output_features_ : int The total number of polynomial output features. The number of output features is computed by iterating over all suitably sized combinations of input features. Notes ----- Be aware that the number of features in the output array scales polynomially in the number of features of the input array, and exponentially in the degree. High degrees can cause overfitting. See :ref:`examples/linear_model/plot_polynomial_interpolation.py <example_linear_model_plot_polynomial_interpolation.py>` """ def __init__(self, degree=2, interaction_only=False, include_bias=True): self.degree = degree self.interaction_only = interaction_only self.include_bias = include_bias @staticmethod def _combinations(n_features, degree, interaction_only, include_bias): comb = (combinations if interaction_only else combinations_w_r) start = int(not include_bias) return chain.from_iterable(comb(range(n_features), i) for i in range(start, degree + 1)) @property def powers_(self): check_is_fitted(self, 'n_input_features_') combinations = self._combinations(self.n_input_features_, self.degree, self.interaction_only, self.include_bias) return np.vstack(np.bincount(c, minlength=self.n_input_features_) for c in combinations) def fit(self, X, y=None): """ Compute number of output features. """ n_samples, n_features = check_array(X).shape combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) self.n_input_features_ = n_features self.n_output_features_ = sum(1 for _ in combinations) return self def transform(self, X, y=None): """Transform data to polynomial features Parameters ---------- X : array with shape [n_samples, n_features] The data to transform, row by row. Returns ------- XP : np.ndarray shape [n_samples, NP] The matrix of features, where NP is the number of polynomial features generated from the combination of inputs. """ check_is_fitted(self, ['n_input_features_', 'n_output_features_']) X = check_array(X) n_samples, n_features = X.shape if n_features != self.n_input_features_: raise ValueError("X shape does not match training shape") # allocate output data XP = np.empty((n_samples, self.n_output_features_), dtype=X.dtype) combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) for i, c in enumerate(combinations): XP[:, i] = X[:, c].prod(1) return XP def normalize(X, norm='l2', axis=1, copy=True): """Scale input vectors individually to unit norm (vector length). Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to normalize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample (or each non-zero feature if axis is 0). axis : 0 or 1, optional (1 by default) axis used to normalize the data along. If 1, independently normalize each sample, otherwise (if 0) normalize each feature. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). See also -------- :class:`sklearn.preprocessing.Normalizer` to perform normalization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ if norm not in ('l1', 'l2', 'max'): raise ValueError("'%s' is not a supported norm" % norm) if axis == 0: sparse_format = 'csc' elif axis == 1: sparse_format = 'csr' else: raise ValueError("'%d' is not a supported axis" % axis) X = check_array(X, sparse_format, copy=copy, warn_on_dtype=True, estimator='the normalize function', dtype=FLOAT_DTYPES) if axis == 0: X = X.T if sparse.issparse(X): if norm == 'l1': inplace_csr_row_normalize_l1(X) elif norm == 'l2': inplace_csr_row_normalize_l2(X) elif norm == 'max': _, norms = min_max_axis(X, 1) norms = norms.repeat(np.diff(X.indptr)) mask = norms != 0 X.data[mask] /= norms[mask] else: if norm == 'l1': norms = np.abs(X).sum(axis=1) elif norm == 'l2': norms = row_norms(X) elif norm == 'max': norms = np.max(X, axis=1) norms = _handle_zeros_in_scale(norms) X /= norms[:, np.newaxis] if axis == 0: X = X.T return X class Normalizer(BaseEstimator, TransformerMixin): """Normalize samples individually to unit norm. Each sample (i.e. each row of the data matrix) with at least one non zero component is rescaled independently of other samples so that its norm (l1 or l2) equals one. This transformer is able to work both with dense numpy arrays and scipy.sparse matrix (use CSR format if you want to avoid the burden of a copy / conversion). Scaling inputs to unit norms is a common operation for text classification or clustering for instance. For instance the dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and is the base similarity metric for the Vector Space Model commonly used by the Information Retrieval community. Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. See also -------- :func:`sklearn.preprocessing.normalize` equivalent function without the object oriented API """ def __init__(self, norm='l2', copy=True): self.norm = norm self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ X = check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Scale each non zero row of X to unit norm Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to normalize, row by row. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr') return normalize(X, norm=self.norm, axis=1, copy=copy) def binarize(X, threshold=0.0, copy=True): """Boolean thresholding of array-like or scipy.sparse matrix Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR or CSC format to avoid an un-necessary copy. threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR / CSC matrix and if axis is 1). See also -------- :class:`sklearn.preprocessing.Binarizer` to perform binarization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ X = check_array(X, accept_sparse=['csr', 'csc'], copy=copy) if sparse.issparse(X): if threshold < 0: raise ValueError('Cannot binarize a sparse matrix with threshold ' '< 0') cond = X.data > threshold not_cond = np.logical_not(cond) X.data[cond] = 1 X.data[not_cond] = 0 X.eliminate_zeros() else: cond = X > threshold not_cond = np.logical_not(cond) X[cond] = 1 X[not_cond] = 0 return X class Binarizer(BaseEstimator, TransformerMixin): """Binarize data (set feature values to 0 or 1) according to a threshold Values greater than the threshold map to 1, while values less than or equal to the threshold map to 0. With the default threshold of 0, only positive values map to 1. Binarization is a common operation on text count data where the analyst can decide to only consider the presence or absence of a feature rather than a quantified number of occurrences for instance. It can also be used as a pre-processing step for estimators that consider boolean random variables (e.g. modelled using the Bernoulli distribution in a Bayesian setting). Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- If the input is a sparse matrix, only the non-zero values are subject to update by the Binarizer class. This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. """ def __init__(self, threshold=0.0, copy=True): self.threshold = threshold self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Binarize each element of X Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy return binarize(X, threshold=self.threshold, copy=copy) class KernelCenterer(BaseEstimator, TransformerMixin): """Center a kernel matrix Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False). Read more in the :ref:`User Guide <kernel_centering>`. """ def fit(self, K, y=None): """Fit KernelCenterer Parameters ---------- K : numpy array of shape [n_samples, n_samples] Kernel matrix. Returns ------- self : returns an instance of self. """ K = check_array(K) n_samples = K.shape[0] self.K_fit_rows_ = np.sum(K, axis=0) / n_samples self.K_fit_all_ = self.K_fit_rows_.sum() / n_samples return self def transform(self, K, y=None, copy=True): """Center kernel matrix. Parameters ---------- K : numpy array of shape [n_samples1, n_samples2] Kernel matrix. copy : boolean, optional, default True Set to False to perform inplace computation. Returns ------- K_new : numpy array of shape [n_samples1, n_samples2] """ check_is_fitted(self, 'K_fit_all_') K = check_array(K) if copy: K = K.copy() K_pred_cols = (np.sum(K, axis=1) / self.K_fit_rows_.shape[0])[:, np.newaxis] K -= self.K_fit_rows_ K -= K_pred_cols K += self.K_fit_all_ return K def add_dummy_feature(X, value=1.0): """Augment dataset with an additional dummy feature. This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] Data. value : float Value to use for the dummy feature. Returns ------- X : array or scipy.sparse matrix with shape [n_samples, n_features + 1] Same data with dummy feature added as first column. Examples -------- >>> from sklearn.preprocessing import add_dummy_feature >>> add_dummy_feature([[0, 1], [1, 0]]) array([[ 1., 0., 1.], [ 1., 1., 0.]]) """ X = check_array(X, accept_sparse=['csc', 'csr', 'coo']) n_samples, n_features = X.shape shape = (n_samples, n_features + 1) if sparse.issparse(X): if sparse.isspmatrix_coo(X): # Shift columns to the right. col = X.col + 1 # Column indices of dummy feature are 0 everywhere. col = np.concatenate((np.zeros(n_samples), col)) # Row indices of dummy feature are 0, ..., n_samples-1. row = np.concatenate((np.arange(n_samples), X.row)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.coo_matrix((data, (row, col)), shape) elif sparse.isspmatrix_csc(X): # Shift index pointers since we need to add n_samples elements. indptr = X.indptr + n_samples # indptr[0] must be 0. indptr = np.concatenate((np.array([0]), indptr)) # Row indices of dummy feature are 0, ..., n_samples-1. indices = np.concatenate((np.arange(n_samples), X.indices)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.csc_matrix((data, indices, indptr), shape) else: klass = X.__class__ return klass(add_dummy_feature(X.tocoo(), value)) else: return np.hstack((np.ones((n_samples, 1)) * value, X)) def _transform_selected(X, transform, selected="all", copy=True): """Apply a transform function to portion of selected features Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Dense array or sparse matrix. transform : callable A callable transform(X) -> X_transformed copy : boolean, optional Copy X even if it could be avoided. selected: "all" or array of indices or mask Specify which features to apply the transform to. Returns ------- X : array or sparse matrix, shape=(n_samples, n_features_new) """ if selected == "all": return transform(X) X = check_array(X, accept_sparse='csc', copy=copy) if len(selected) == 0: return X n_features = X.shape[1] ind = np.arange(n_features) sel = np.zeros(n_features, dtype=bool) sel[np.asarray(selected)] = True not_sel = np.logical_not(sel) n_selected = np.sum(sel) if n_selected == 0: # No features selected. return X elif n_selected == n_features: # All features selected. return transform(X) else: X_sel = transform(X[:, ind[sel]]) X_not_sel = X[:, ind[not_sel]] if sparse.issparse(X_sel) or sparse.issparse(X_not_sel): return sparse.hstack((X_sel, X_not_sel)) else: return np.hstack((X_sel, X_not_sel)) class OneHotEncoder(BaseEstimator, TransformerMixin): """Encode categorical integer features using a one-hot aka one-of-K scheme. The input to this transformer should be a matrix of integers, denoting the values taken on by categorical (discrete) features. The output will be a sparse matrix where each column corresponds to one possible value of one feature. It is assumed that input features take on values in the range [0, n_values). This encoding is needed for feeding categorical data to many scikit-learn estimators, notably linear models and SVMs with the standard kernels. Read more in the :ref:`User Guide <preprocessing_categorical_features>`. Parameters ---------- n_values : 'auto', int or array of ints Number of values per feature. - 'auto' : determine value range from training data. - int : maximum value for all features. - array : maximum value per feature. categorical_features: "all" or array of indices or mask Specify what features are treated as categorical. - 'all' (default): All features are treated as categorical. - array of indices: Array of categorical feature indices. - mask: Array of length n_features and with dtype=bool. Non-categorical features are always stacked to the right of the matrix. dtype : number type, default=np.float Desired dtype of output. sparse : boolean, default=True Will return sparse matrix if set True else will return an array. handle_unknown : str, 'error' or 'ignore' Whether to raise an error or ignore if a unknown categorical feature is present during transform. Attributes ---------- active_features_ : array Indices for active features, meaning values that actually occur in the training set. Only available when n_values is ``'auto'``. feature_indices_ : array of shape (n_features,) Indices to feature ranges. Feature ``i`` in the original data is mapped to features from ``feature_indices_[i]`` to ``feature_indices_[i+1]`` (and then potentially masked by `active_features_` afterwards) n_values_ : array of shape (n_features,) Maximum number of values per feature. Examples -------- Given a dataset with three features and two samples, we let the encoder find the maximum value per feature and transform the data to a binary one-hot encoding. >>> from sklearn.preprocessing import OneHotEncoder >>> enc = OneHotEncoder() >>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], \ [1, 0, 2]]) # doctest: +ELLIPSIS OneHotEncoder(categorical_features='all', dtype=<... 'float'>, handle_unknown='error', n_values='auto', sparse=True) >>> enc.n_values_ array([2, 3, 4]) >>> enc.feature_indices_ array([0, 2, 5, 9]) >>> enc.transform([[0, 1, 1]]).toarray() array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]]) See also -------- sklearn.feature_extraction.DictVectorizer : performs a one-hot encoding of dictionary items (also handles string-valued features). sklearn.feature_extraction.FeatureHasher : performs an approximate one-hot encoding of dictionary items or strings. """ def __init__(self, n_values="auto", categorical_features="all", dtype=np.float, sparse=True, handle_unknown='error'): self.n_values = n_values self.categorical_features = categorical_features self.dtype = dtype self.sparse = sparse self.handle_unknown = handle_unknown def fit(self, X, y=None): """Fit OneHotEncoder to X. Parameters ---------- X : array-like, shape=(n_samples, n_feature) Input array of type int. Returns ------- self """ self.fit_transform(X) return self def _fit_transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape if self.n_values == 'auto': n_values = np.max(X, axis=0) + 1 elif isinstance(self.n_values, numbers.Integral): if (np.max(X, axis=0) >= self.n_values).any(): raise ValueError("Feature out of bounds for n_values=%d" % self.n_values) n_values = np.empty(n_features, dtype=np.int) n_values.fill(self.n_values) else: try: n_values = np.asarray(self.n_values, dtype=int) except (ValueError, TypeError): raise TypeError("Wrong type for parameter `n_values`. Expected" " 'auto', int or array of ints, got %r" % type(X)) if n_values.ndim < 1 or n_values.shape[0] != X.shape[1]: raise ValueError("Shape mismatch: if n_values is an array," " it has to be of shape (n_features,).") self.n_values_ = n_values n_values = np.hstack([[0], n_values]) indices = np.cumsum(n_values) self.feature_indices_ = indices column_indices = (X + indices[:-1]).ravel() row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features) data = np.ones(n_samples * n_features) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if self.n_values == 'auto': mask = np.array(out.sum(axis=0)).ravel() != 0 active_features = np.where(mask)[0] out = out[:, active_features] self.active_features_ = active_features return out if self.sparse else out.toarray() def fit_transform(self, X, y=None): """Fit OneHotEncoder to X, then transform X. Equivalent to self.fit(X).transform(X), but more convenient and more efficient. See fit for the parameters, transform for the return value. """ return _transform_selected(X, self._fit_transform, self.categorical_features, copy=True) def _transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape indices = self.feature_indices_ if n_features != indices.shape[0] - 1: raise ValueError("X has different shape than during fitting." " Expected %d, got %d." % (indices.shape[0] - 1, n_features)) # We use only those catgorical features of X that are known using fit. # i.e lesser than n_values_ using mask. # This means, if self.handle_unknown is "ignore", the row_indices and # col_indices corresponding to the unknown categorical feature are # ignored. mask = (X < self.n_values_).ravel() if np.any(~mask): if self.handle_unknown not in ['error', 'ignore']: raise ValueError("handle_unknown should be either error or " "unknown got %s" % self.handle_unknown) if self.handle_unknown == 'error': raise ValueError("unknown categorical feature present %s " "during transform." % X[~mask]) column_indices = (X + indices[:-1]).ravel()[mask] row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features)[mask] data = np.ones(np.sum(mask)) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if self.n_values == 'auto': out = out[:, self.active_features_] return out if self.sparse else out.toarray() def transform(self, X): """Transform X using one-hot encoding. Parameters ---------- X : array-like, shape=(n_samples, n_features) Input array of type int. Returns ------- X_out : sparse matrix if sparse=True else a 2-d array, dtype=int Transformed input. """ return _transform_selected(X, self._transform, self.categorical_features, copy=True)
bsd-3-clause
mueller-lab/PyFRAP
pyfrp/modules/pyfrp_optimization_module.py
2
6867
#===================================================================================================================================== #Copyright #===================================================================================================================================== #Copyright (C) 2014 Alexander Blaessle, Patrick Mueller and the Friedrich Miescher Laboratory of the Max Planck Society #This software is distributed under the terms of the GNU General Public License. #This file is part of PyFRAP. #PyFRAP is free software: you can redistribute it and/or modify #it under the terms of the GNU General Public License as published by #the Free Software Foundation, either version 3 of the License, or #(at your option) any later version. #This program is distributed in the hope that it will be useful, #but WITHOUT ANY WARRANTY; without even the implied warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #GNU General Public License for more details. #You should have received a copy of the GNU General Public License #along with this program. If not, see <http://www.gnu.org/licenses/>. #=========================================================================================================================================================================== #Module Description #=========================================================================================================================================================================== """Optimization module for PyFRAP toolbox. Currently contains all functions necessary to transform a constrained FRAP optimization problem into a unconstrained one, making it suitable to Nelder-Mead optimization algorithm. """ #=========================================================================================================================================================================== #Importing necessary modules #=========================================================================================================================================================================== #Numpy/Scipy import numpy as np #PyFRAP import pyfrp_fit_module from pyfrp_term_module import * #=========================================================================================================================================================================== #Module Functions #=========================================================================================================================================================================== def constrObjFunc(x,fit,debug,ax,returnFit): """Objective function when using Constrained Nelder-Mead. Calls :py:func:`pyfrp.modules.pyfrp_optimization_module.xTransform` to transform x into constrained version, then uses :py:func:`pyfrp.modules.pyfrp_fit_module.FRAPObjFunc` to find SSD. Args: x (list): Input vector, consiting of [D,(prod),(degr)]. fit (pyfrp.subclasses.pyfrp_fit): Fit object. debug (bool): Display debugging output and plots. ax (matplotlib.axes): Axes to display plots in. returnFit (bool): Return fit instead of SSD. Returns: float: SSD of fit. Except ``returnFit==True``, then will return fit itself. """ LBs, UBs = buildBoundLists(fit) x=xTransform(x,LBs,UBs) ssd=pyfrp_fit_module.FRAPObjFunc(x,fit,debug,ax,returnFit) return ssd def xTransform(x,LB,UB): """Transforms ``x`` into constrained form, obeying upper bounds ``UB`` and lower bounds ``LB``. .. note:: Will add tiny offset to LB(D), to avoid singularities. Idea taken from http://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd--fminsearchcon Args: x (list): Input vector, consiting of [D,(prod),(degr)]. LB (list): List of lower bounds for ``D,prod,degr``. UB (list): List of upper bounds for ``D,prod,degr``. Returns: list: Transformed x-values. """ #Make sure everything is float x=np.asarray(x,dtype=np.float64) LB=np.asarray(LB,dtype=np.float64) UB=np.asarray(UB,dtype=np.float64) #Check if LB_D==0, then add a little noise to it so we do not end up with xtrans[D]==0 and later have singularities when scaling tvec if LB[0]==0: LB[0]=1E-10 #Determine number of parameters to be fitted nparams=len(x) #Make empty vector xtrans = np.zeros(np.shape(x)) # k allows some variables to be fixed, thus dropped from the # optimization. k=0 for i in range(nparams): #Upper bound only if UB[i]!=None and LB[i]==None: xtrans[i]=UB[i]-x[k]**2 k=k+1 #Lower bound only elif UB[i]==None and LB[i]!=None: xtrans[i]=LB[i]+x[k]**2 k=k+1 #Both bounds elif UB[i]!=None and LB[i]!=None: xtrans[i] = (np.sin(x[k])+1.)/2.*(UB[i] - LB[i]) + LB[i] xtrans[i] = max([LB[i],min([UB[i],xtrans[i]])]) k=k+1 #No bounds elif UB[i]==None and LB[i]==None: xtrans[i] = x[k] k=k+1 #Note: The original file has here another case for fixed variable, but since we made the decision earlier which when we call frap_fitting, we don't need this here. return xtrans def transformX0(x0,LB,UB): """Transforms ``x0`` into constrained form, obeying upper bounds ``UB`` and lower bounds ``LB``. Idea taken from http://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd--fminsearchcon Args: x0 (list): Input initial vector, consiting of [D,(prod),(degr)]. LB (list): List of lower bounds for ``D,prod,degr``. UB (list): List of upper bounds for ``D,prod,degr``. Returns: list: Transformed x-values. """ x0u = list(x0) nparams=len(x0) k=0 for i in range(nparams): #Upper bound only if UB[i]!=None and LB[i]==None: if UB[i]<=x0[i]: x0u[k]=0 else: x0u[k]=sqrt(UB[i]-x0[i]) k=k+1 #Lower bound only elif UB[i]==None and LB[i]!=None: if LB[i]>=x0[i]: x0u[k]=0 else: x0u[k]=np.sqrt(x0[i]-LB[i]) k=k+1 #Both bounds elif UB[i]!=None and LB[i]!=None: if UB[i]<=x0[i]: x0u[k]=np.pi/2 elif LB[i]>=x0[i]: x0u[k]=-np.pi/2 else: x0u[k] = 2*(x0[i] - LB[i])/(UB[i]-LB[i]) - 1; #shift by 2*pi to avoid problems at zero in fminsearch otherwise, the initial simplex is vanishingly small x0u[k] = 2*np.pi+np.arcsin(max([-1,min(1,x0u[k])])); k=k+1 #No bounds elif UB[i]==None and LB[i]==None: x0u[k] = x[i] k=k+1 return x0u def buildBoundLists(fit): """Builds list of lower bounds and upper bounds. Args: fit (pyfrp.subclasses.pyfrp_fit): Fit object. Returns: tuple: Tuple containing: * LBs (list): List of lower bounds. * UBs (list): List of upper bounds. """ LBs=[fit.LBD]+int(fit.fitProd)*[fit.LBProd]+int(fit.fitDegr)*[fit.LBDegr]+len(fit.ROIsFitted)*[fit.LBEqu] UBs=[fit.UBD]+int(fit.fitProd)*[fit.UBProd]+int(fit.fitDegr)*[fit.UBDegr]+len(fit.ROIsFitted)*[fit.UBEqu] return LBs,UBs
gpl-3.0
ryanraaum/african-mtdna
popdata_sources/coelho2009/process.py
1
2502
from oldowan.mtconvert import seq2sites, sites2seq, str2sites from string import translate import pandas as pd import sys sys.path.append('../../scripts') from utils import * ## load metadata metadata = pd.read_csv('metadata.csv', index_col=0) regionparts = metadata.ix[0,'SeqRange'].split(';') region1 = range2region(regionparts[0]) region2 = range2region(regionparts[1]) with open('coelho2009_haplotypes.csv', 'rU') as f: f.readline() # skip past header data = f.readlines() hids = [] hvr1sites = [] hvr2sites = [] for l in data: parts = l.strip().split(',') if int(parts[3]) == 377 and int(parts[7]) == 268: hids.append(parts[0]) hvr1sites.append(parts[4]) hvr2sites.append(parts[8]) ## need to preprocess sites data for some nonstandard notation in hvr2 hvr1 = [] hvr2 = [] for i in range(len(hids)): s1 = str2sites(hvr1sites[i], add16k=True) hvr1.append(s1) s2 = hvr2sites[i].split() s2new = [] for j in range(len(s2)): if s2[j].endswith('.2C'): parts = s2[j].split('.') s2new.append('%s.1C' % parts[0]) s2new.append('%s.2C' % parts[0]) else: s2new.append(s2[j]) s2 = str2sites(' '.join(s2new)) hvr2.append(s2) newsites = [] for i in range(len(hvr1)): newsites.append(hvr1[i] + hvr2[i]) ## Validate passed_validation = True for i in range(len(newsites)): curr_sites = newsites[i] seq1 = translate(sites2seq(curr_sites, region1), None, '-') seq2 = translate(sites2seq(curr_sites, region2), None, '-') mysites = seq2sites(seq1) + seq2sites(seq1) if not mysites == curr_sites: myseq1 = translate(sites2seq(mysites, region1), None, '-') myseq2 = translate(sites2seq(mysites, region2), None, '-') if not seq1 == myseq1 and seq2 == myseq2: passed_validation = False print i, hids[i] if passed_validation: counts = pd.read_csv('coelho2009_counts.csv', index_col=0) counts = counts.fillna(0) counter = [0] * 5 with open('processed.csv', 'w') as f: for i in range(len(newsites)): hid = hids[i] curr_sites = newsites[i] seq1 = translate(sites2seq(curr_sites, region1), None, '-') seq2 = translate(sites2seq(curr_sites, region2), None, '-') mysites = seq2sites(seq1) + seq2sites(seq2) mysites = ' '.join([str(x) for x in mysites]) for j in range(len(metadata.index)): prefix = metadata.ix[metadata.index[j],'NewPrefix'] for k in range(int(counts.ix[hid, metadata.index[j]])): counter[j] += 1 num = str(counter[j]).zfill(3) newid = prefix + num f.write('%s,%s,%s\n' % (newid, hid, mysites))
cc0-1.0
koobonil/Boss2D
Boss2D/addon/_old/webrtc-qt5.11.2_for_boss/tools_webrtc/cpu/cpu_mon.py
6
2057
#!/usr/bin/env python # # Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. # # Use of this source code is governed by a BSD-style license # that can be found in the LICENSE file in the root of the source # tree. An additional intellectual property rights grant can be found # in the file PATENTS. All contributing project authors may # be found in the AUTHORS file in the root of the source tree. import psutil import sys import numpy from matplotlib import pyplot class CpuSnapshot(object): def __init__(self, label): self.label = label self.samples = [] def Capture(self, sample_count): print ('Capturing %d CPU samples for %s...' % ((sample_count - len(self.samples)), self.label)) while len(self.samples) < sample_count: self.samples.append(psutil.cpu_percent(1.0, False)) def Text(self): return ('%s: avg=%s, median=%s, min=%s, max=%s' % (self.label, numpy.average(self.samples), numpy.median(self.samples), numpy.min(self.samples), numpy.max(self.samples))) def Max(self): return numpy.max(self.samples) def GrabCpuSamples(sample_count): print 'Label for snapshot (enter to quit): ' label = raw_input().strip() if len(label) == 0: return None snapshot = CpuSnapshot(label) snapshot.Capture(sample_count) return snapshot def main(): print 'How many seconds to capture per snapshot (enter for 60)?' sample_count = raw_input().strip() if len(sample_count) > 0 and int(sample_count) > 0: sample_count = int(sample_count) else: print 'Defaulting to 60 samples.' sample_count = 60 snapshots = [] while True: snapshot = GrabCpuSamples(sample_count) if snapshot == None: break snapshots.append(snapshot) if len(snapshots) == 0: print 'no samples captured' return -1 pyplot.title('CPU usage') for s in snapshots: pyplot.plot(s.samples, label=s.Text(), linewidth=2) pyplot.legend() pyplot.show() return 0 if __name__ == '__main__': sys.exit(main())
mit
aemerick/galaxy_analysis
method_paper_plots/star_abundances.py
1
26128
from galaxy_analysis.plot.plot_styles import * import matplotlib.pyplot as plt import glob import deepdish as dd import yt from galaxy_analysis.utilities import utilities import numpy as np from matplotlib.ticker import NullFormatter from galaxy_analysis.particle_analysis.abundances import single_MDF # from galaxy_analysis.analysis import Galaxy from mpl_toolkits.axes_grid1 import make_axes_locatable import h5py # grab the most recent file workdir = '/mnt/ceph/users/emerick/enzo_runs/pleiades/starIC/run11_30km/final_sndriving/' #workdir = '/home/emerick/work/enzo_runs/pleiades/starIC/run11_30km/final_sndriving/' data_files = np.sort(glob.glob(workdir + 'DD????')) name = data_files[-1].split('final_sndriving/')[1] gal = Galaxy(name, wdir = workdir) # # # def plot_alpha_vs_fe(): fig,ax = plt.subplots() fig.set_size_inches(8,7) ptype = gal.df['particle_type'] fe_over_h = gal.df[('io','particle_Fe_over_H')] alpha = gal.df[('io','particle_alpha_over_Fe')] age = (gal.ds.current_time - gal.df[('io','creation_time')]).convert_to_units('Myr') age = age - np.min(age) p = ax.scatter(fe_over_h[ptype==11], alpha[ptype==11], s = point_size, lw = 2, c = age[ptype==11], cmap = 'plasma_r', alpha = 0.75) p.set_clim([0.0, np.max(age)]) cb = fig.colorbar(p) cb.set_label(r'Stellar Age (Myr)') ax.set_xlim(-9,-1) ax.set_ylim(-1.75,1.75) ax.set_xlabel(r'[Fe/H]') ax.set_ylabel(r'[$\rm \alpha$/Fe]') plt.minorticks_on() plt.tight_layout() fig.savefig('alpha_over_fe.png') plt.close() return def plot_alpha_vs_fe_movie(): times = np.arange(0, 245, 1) for i, t in enumerate(times): plot_alpha_vs_fe_with_histograms(t_f = t, image_num = i) def plot_alpha_vs_fe_with_histograms(t_f = None, image_num = 0): sep = 0.02 left, width = 0.125, 0.65 bottom, height = 0.1, 0.65 left_h = left + width + sep bottom_h = bottom + height + sep rect_scatter = [left,bottom,width,height] # rect_colorbar = # rect_histx = [left, bottom_h, width, 0.95 - bottom_h - (left-bottom)] # rect_histy = [left_h, bottom, 0.95 - left_h, height] # fig,ax = plt.subplots() fig = plt.figure(1, figsize=(8,8)) # fig.set_size_inches(8,8) ax_scatter = plt.axes(rect_scatter) # ax_hist_x = plt.axes(rect_histx) # ax_hist_y = plt.axes(rect_histy) # ax_color = plt.axes(rect_colorbar) ptype = gal.df['particle_type'] fe_over_h = gal.df[('io','particle_Fe_over_H')] alpha = gal.df[('io','particle_alpha_over_Fe')] creation_time = gal.df[('io','creation_time')].convert_to_units('Myr') age = (gal.ds.current_time - creation_time) if t_f is None: # plot normally all MS stars age = age - np.min(age) # scatter plot p = ax_scatter.scatter(fe_over_h[ptype==11], alpha[ptype==11], s = point_size, lw = 2, c = age[ptype==11], cmap = 'plasma_r', alpha = 0.75) p.set_clim([0.0, np.max(age)]) else: min_clim = 0.0 max_clim = np.max( age - np.min(age)) particle_lifetimes = gal.df[('io','particle_model_lifetime')].convert_to_units('Myr') selection = (t_f >= creation_time) * ( t_f < creation_time + particle_lifetimes) age = t_f - creation_time if np.size(fe_over_h[selection]) < 1: plot_fe_over_h = np.ones(np.size(fe_over_h))*(-10000) # make dummy values so plot still diplays, but is empty plot_alpha = np.ones(np.size(alpha))*(-10000) plot_age = np.ones(np.size(age))*(-10000) else: plot_fe_over_h = fe_over_h[selection] plot_alpha = alpha[selection] plot_age = age[selection] p = ax_scatter.scatter(plot_fe_over_h, plot_alpha, s = point_size, lw = 2, c = plot_age, cmap = 'plasma_r', alpha = 0.75) p.set_clim([min_clim,max_clim]) cb = fig.colorbar(p, ax = ax_scatter, orientation = 'horizontal', pad = 0.125, fraction = 0.046, aspect = 40) cb.set_label(r'Stellar Age (Myr)') # # ax_scatter.set_xlim(-9,-1) ax_scatter.set_ylim(-1.75,1.75) ax_scatter.tick_params(axis='x',which='minor',bottom='on') ax_scatter.tick_params(axis='y',which='minor',bottom='on') ax_scatter.set_xlabel(r'[Fe/H]') ax_scatter.set_ylabel(r'[$\rm \alpha$/Fe]') plt.minorticks_on() ax_scatter.plot( ax_scatter.get_xlim(), [0.0,0.0], lw = line_width, color = 'black', ls = '--') # # find main plot and construct histograms # divider = make_axes_locatable(ax_scatter) left, bottom, width, height = divider.get_position() # width, height = divider.get_horizontal(), divider.get_vertical() sep = 0.01 thickness = np.min( np.array([0.95 - left - width - sep, 0.95 - bottom - height - sep])) rect_histx = [left, bottom + height + sep, width, thickness] rect_histy = [left + width + sep, bottom, thickness, height] ax_hist_x = plt.axes(rect_histx) ax_hist_y = plt.axes(rect_histy) nbins = 100 hist,bins = np.histogram(fe_over_h, bins = nbins) weights = np.ones(np.size(fe_over_h)) * (1.0 / (1.0*np.max(hist))) ax_hist_x.hist(fe_over_h, color = 'C0', bins = nbins, weights = weights) if not (t_f is None): if np.max(plot_fe_over_h) > -1000: hist,bins = np.histogram(plot_fe_over_h, bins = nbins) weights = np.ones(np.size(plot_fe_over_h)) * (1.0 / (1.0*np.max(hist))) ax_hist_x.hist(plot_fe_over_h, color = 'black', bins = nbins, weights = weights, histtype = 'step', lw = 2.0) # plot_histogram(ax_hist_x, bins, hist / (1.0*np.max(hist)), color = 'black') plt.minorticks_on() # hist,bins = np.histogram(alpha, bins = 24) # plot_histogram(ax_hist_y, bins, hist / (1.0*np.max(hist)), color = 'black', orientation = 'horizontal') nbins = 50 hist,bins = np.histogram(alpha, bins = nbins) weights = np.ones(np.size(fe_over_h)) * (1.0 / (1.0*np.max(hist))) ax_hist_y.hist(alpha, orientation='horizontal', color = 'C0', bins = nbins, weights = weights) if not (t_f is None): if np.max(plot_alpha) > -1000: hist,bins = np.histogram(plot_alpha, bins = nbins) weights = np.ones(np.size(plot_alpha)) * (1.0 / (1.0*np.max(hist))) ax_hist_y.hist(plot_alpha, orientation = 'horizontal', color = 'black', bins = nbins, weights = weights, histtype='step', lw = 2.0) ax_hist_x.xaxis.set_major_formatter(NullFormatter()) ax_hist_y.yaxis.set_major_formatter(NullFormatter()) ax_hist_x.set_xlim(ax_scatter.get_xlim()) ax_hist_y.set_ylim(ax_scatter.get_ylim()) ticks = [0.0,0.25,0.5,0.75,1.0] ax_hist_x.set_yticks(ticks) ax_hist_y.set_xticks(ticks) ax_hist_y.set_xticklabels(ticks, rotation = 270) plt.minorticks_on() # plt.tight_layout() if t_f is None: fig.savefig('alpha_over_fe_hist.png') else: fig.savefig('alpha_movie/alpha_over_fe_hist_%0004i.png'%(image_num)) plt.close() return def plot_panel(A = 'Fe', B = 'Fe', C = 'H', color = True): """ Make panel plots of X/A vs. B/C where "X" is a loop through all elements available, and A, B, C are fixed for all plots, chosen by user. Defualt will plot [X/Fe] vs. [Fe/H]. Default behavior is to color points by age. """ filename = workdir + '/abundances/abundances/abundances.h5' hdf5_data = h5py.File(filename, 'r') dfiles = hdf5_data.keys() dfile = dfiles[-1] # do this with most recent data file data = dd.io.load(filename, '/' + str(dfile)) elements = utilities.sort_by_anum([x for x in data['abundances'].keys() if (not 'alpha' in x)]) elements = elements + ['alpha'] age = data['Time'] - data['creation_time'] # age of all particles in this data set for base in ['H','Fe']: fig, ax = plt.subplots(4,4, sharex = True, sharey = True) fig.set_size_inches(4*4,4*4) fig.subplots_adjust(hspace=0.0, wspace = 0.0) if base == 'Fe': bins = np.arange(-3,3.1,0.1) else: bins = np.arange(-9,0,0.1) i,j = 0,0 for e in elements: if (A == e): # skip continue index = (i,j) y = np.array(data['abundances'][e][A]) x = np.array(data['abundances'][B][C]) p = ax[index].scatter(x, y, s = point_size*0.5, lw = 2, c = age, cmap = 'plasma_r', alpha = 0.75) p.set_clim([0.0, np.max(age)]) xy = (0.8,0.8) ax[index].annotate(e, xy=xy, xytext=xy, xycoords = 'axes fraction', textcoords = 'axes fraction') # cb = fig.colorbar(p) # cb.set_label(r'Stellar Age (Myr)') j = j + 1 if j >= 4: j = 0 i = i + 1 for i in np.arange(4): ax[(3,i)].set_xlabel(r'log([' + B + '/' + C + '])') ax[(i,0)].set_ylabel(r'log([X/' + A + '])') if C == 'H': ax[(i,0)].set_xlim(-10.25, 0.125) else: ax[(i,0)].set_xlim(-3.25, 3.25) if A == 'H': ax[(0,i)].set_ylim(-10.25, 0.125) else: ax[(0,i)].set_ylim(-3.25, 3.25) for j in np.arange(4): ax[(j,i)].plot([-10,10], [0.0,0.0], lw = 0.5 * line_width, ls = ':', color = 'black') plt.minorticks_on() fig.savefig('X_over_' + A +'_vs_' + B + '_over_' + C + '_panel.png') plt.close() return def plot_spatial_profiles(field = 'metallicity', abundance = False, bins = None, spatial_type = 'cylindrical_radius'): filename = workdir + '/abundances/abundances/abundances.h5' hdf5_data = h5py.File(filename, 'r') dfiles = hdf5_data.keys() dfile = dfiles[-1] # do this with most recent data file data = dd.io.load(filename, '/' + str(dfile)) elements = utilities.sort_by_anum([x for x in data['abundances'].keys() if (not 'alpha' in x)]) elements = elements + ['alpha'] if spatial_type == 'cylindrical_radius': bin_field = np.sqrt(data['kinematics']['x']**2 + data['kinematics']['y']**2) xlabel = r'Radius (pc)' elif spatial_type == 'z': bin_field = np.abs( data['kinematics']['z'] ) xlabel = r'Z (pc)' if bins is None: bins = np.linspace(np.floor(np.min(bin_field)), np.ceil(np.max(bin_field)), 100) centers = 0.5 * (bins[1:] + bins[:-1]) nbins = np.size(bins) hist_index = np.digitize(bin_field, bins = bins) median, q1, q3 = np.zeros(nbins-1), np.zeros(nbins-1), np.zeros(nbins-1) if field == 'metallicity': # make a single plot # bin the data for i in np.arange(nbins-1): x = data['metallicity'][hist_index == i + 1] median[i] = np.median(x) if np.size(x) > 1: q1[i] = np.percentile(x, 25.0) q3[i] = np.percentile(x, 75.0) elif np.size(x) == 1: q1[i] = median[i] q3[i] = median[i] # now plot fig, ax = plt.subplots() fig.set_size_inches(8,8) plot_histogram(ax, bins, median, lw = line_width, color = 'black', ls = '-') ax.fill_between(centers, q1, q3, lw = 1.5, color = 'grey') ax.set_ylabel(r'Metallicity Fraction') ax.set_xlabel(xlabel) ax.set_xlim( np.min(bins), np.max(bins)) plt.tight_layout() plt.minorticks_on() fig.savefig('metallicity_' + spatial_type + '_profile.png') plt.close() elif abundance: fig, ax = plt.subplots(4,4, sharex = True, sharey = True) fig.set_size_inches(16,16) fig.subplots_adjust(hspace = 0.0, wspace = 0.0) axi, axj = 0,0 for e in elements: if field == e: continue index = (axi,axj) for i in np.arange(nbins-1): x = np.array(data['abundances'][e][field]) x = x[ hist_index == (i + 1)] if np.size(x) > 0: median[i] = np.median(x) q1[i] = np.percentile(x, 25) q3[i] = np.percentile(x, 75) else: median[i] = None; q1[i] = None; q3[i] = None ax[index].annotate(e, xy=(0.8,0.8),xytext=(0.8,0.8), xycoords='axes fraction',textcoords = 'axes fraction') plot_histogram(ax[index], bins, median, lw = line_width, color = 'black', ls = '-') ax[index].fill_between(centers,q1,q3,lw=1.5,color='grey') axj = axj+1 if axj>=4: axj = 0 axi = axi + 1 for i in np.arange(4): ax[(3,i)].set_xlabel(xlabel) ax[(i,0)].set_ylabel(r'log[X/' + field +'])') if field == 'H': ax[(0,i)].set_ylim(-10.25,0.125) else: ax[(0,i)].set_ylim(-3.25,3.25) for j in np.arange(4): ax[(j,i)].plot([bins[0],bins[-1]], [0.0,0.0], lw = 0.5 * line_width, ls = '--',color ='black') ax[(i,0)].set_xlim(np.min(bins), np.max(bins)) plt.minorticks_on() fig.savefig(field + '_' + spatial_type + '_profile_panel.png') plt.close() return def plot_MDF(plot_base = ['H','Fe']): """ Make a panel plot of the time evolution of all elemental abundance ratios with respect to both H and Fe (as separate plots) """ if (not (type(plot_base) is list)): plot_base = [plot_base] filename = workdir + '/abundances/abundances/abundances.h5' hdf5_data = h5py.File(filename, 'r') dfiles = hdf5_data.keys() dfile = dfiles[-1] # do this with most recent data file data = dd.io.load(filename, '/' + str(dfile)) elements = utilities.sort_by_anum([x for x in data['abundances'].keys() if (not 'alpha' in x)]) elements = elements + ['alpha'] for base in plot_base: fig, ax = plt.subplots(4,4, sharex = True, sharey = True) fig.set_size_inches(4*4,4*4) fig.subplots_adjust(hspace=0.0, wspace = 0.0) if base == 'Fe': bins = np.arange(-3,3.1,0.1) else: bins = np.arange(-9,0,0.1) i,j = 0,0 for e in elements: if (base == e): continue index = (i,j) points = np.array(data['abundances'][e][base]) single_MDF(points, bins = bins, norm = 'peak', ax = ax[index], label = False, lw = line_width) x = np.max(bins) - (0.25/6.0 * (bins[-1] - bins[0])) y = 0.9 ax[index].annotate(e, xy = (x,y), xytext =(x,y)) ax[index].plot([0,0], [0.0,1.0], ls = ':', lw = 0.5 * line_width, color = 'black') j = j + 1 if j >= 4: j = 0 i = i + 1 for i in np.arange(4): ax[(3,i)].set_xlabel(r'log([X/' + base + '])') ax[(i,0)].set_ylabel(r'N/N$_{\rm peak}$') if base == 'H': ax[(i,0)].set_xlim(-10.25, 0.125) elif base == 'Fe': ax[(i,0)].set_xlim(-3.25, 3.25) plt.minorticks_on() fig.savefig(base + '_MDF.png') plt.close() return def plot_time_evolution(): """ Make a panel plot of the time evolution of all elemental abundance ratios with respect to both H and Fe (as separate plots) """ filename = workdir + '/abundances/abundances/abundances.h5' hdf5_data = h5py.File(filename, 'r') dfiles = hdf5_data.keys() dfile = dfiles[-1] # do this with most recent data file data = dd.io.load(filename, '/' + str(dfile)) elements = utilities.sort_by_anum([x for x in data['abundances'].keys() if (not 'alpha' in x)]) elements = elements + ['alpha'] for time_type in ['cumulative','10Myr']: for base in ['H','Fe']: fig, ax = plt.subplots(4,4, sharex = True, sharey = True) fig.set_size_inches(4*4,4*4) fig.subplots_adjust(hspace=0.0, wspace = 0.0) i,j = 0,0 for e in elements: if (base == e): continue print("plotting " + e + "/" + base + " time evolution") index = (i,j) t = data['statistics'][time_type]['bins'] y = data['statistics'][time_type][e][base]['median'] Q1 = data['statistics'][time_type][e][base]['Q1'] Q3 = data['statistics'][time_type][e][base]['Q3'] select = (y*0 == 0) # remove nan values t = t[select] t = t - t[0] ax[index].plot( t, y[select], lw = line_width, ls = '-', color = 'black', label = r' ' + e +' ') ax[index].fill_between(t, Q1[select], Q3[select], color = 'black', alpha = 0.5, lw = 0.5 * line_width) ax[index].set_xlim(0.0, np.max(t)) ax[index].plot( [0.0,1000.0], [0.0,0.0], ls = ':', color = 'black', lw = line_width) ax[index].legend(loc = 'upper right') j = j + 1 if j >= 4: j = 0 i = i + 1 for i in np.arange(4): ax[(3,i)].set_xlabel(r'Time (Myr)') ax[(i,0)].set_ylabel(r'[X/' + base +']') if base == 'H': ax[(i,0)].set_ylim(-12.25, 0.125) elif base == 'Fe': ax[(i,0)].set_ylim(-3.25, 3.25) # for j in np.arange(3): # ax[(j,i)].set_xticklabels([]) # ax[(i,j+1)].set_yticklabels([]) # ax[(3,i)].set_xticklabels(np.arange(0,np.max(t)+20,20)) # if base == 'Fe': # ax[(i,0)].set_yticklabels([-3,-2,-1,0,1,2,3,]) # else: # ax[(i,0)].set_yticklabels([-12, -10, -8, -6, -4, -2, 0]) plt.minorticks_on() fig.savefig('stellar_x_over_' + base + '_' + time_type +'_evolution.png') plt.close() return def plot_mass_fraction_time_evolution(): """ Make a panel plot of the time evolution of all elemental abundance ratios with respect to both H and Fe (as separate plots) """ filename = workdir + '/abundances/abundances/abundances.h5' hdf5_data = h5py.File(filename, 'r') dfiles = hdf5_data.keys() dfile = dfiles[-1] # do this with most recent data file data = dd.io.load(filename, '/' + str(dfile)) elements = utilities.sort_by_anum([x for x in data['abundances'].keys() if (not 'alpha' in x)]) # elements = elements + ['alpha'] for time_type in ['cumulative','10Myr']: fig, ax = plt.subplots(4,4, sharex = True, sharey = True) fig.set_size_inches(4*4,4*4) fig.subplots_adjust(hspace=0.0, wspace = 0.0) i,j = 0,0 for e in elements: print("plotting " + e + "mass fraction time evolution") index = (i,j) t = data['mass_fraction_statistics'][time_type]['bins'] y = data['mass_fraction_statistics'][time_type][e]['median'] Q1 = data['mass_fraction_statistics'][time_type][e]['Q1'] Q3 = data['mass_fraction_statistics'][time_type][e]['Q3'] select = (y*0 == 0) # remove nan values t = t[select] t = t - t[0] ax[index].plot( t, y[select], lw = line_width, ls = '-', color = 'black', label = r' ' + e +' ') ax[index].fill_between(t, Q1[select], Q3[select], color = 'black', alpha = 0.5, lw = 0.5 * line_width) ax[index].set_xlim(0.0, np.max(t)) ax[index].plot( [0.0,1000.0], [0.0,0.0], ls = ':', color = 'black', lw = line_width) ax[index].legend(loc = 'upper right') j = j + 1 if j >= 4: j = 0 i = i + 1 for i in np.arange(4): ax[(3,i)].set_xlabel(r'Time (Myr)') ax[(i,0)].set_ylabel(r'log(X Mass Fraction)') ax[(i,0)].set_ylim(1.0E-10, 1.0E-4) ax[(i,0)].semilogy() # for j in np.arange(3): # ax[(j,i)].set_xticklabels([]) # ax[(i,j+1)].set_yticklabels([]) # ax[(3,i)].set_xticklabels(np.arange(0,np.max(t)+20,20)) # if base == 'Fe': # ax[(i,0)].set_yticklabels([-3,-2,-1,0,1,2,3,]) # else: # ax[(i,0)].set_yticklabels([-12, -10, -8, -6, -4, -2, 0]) plt.minorticks_on() fig.savefig('stellar_mass_fraction_' + time_type +'_evolution.png') plt.close() return def plot_ratios_with_histograms(X='alpha',A='Fe',B='Fe',C='H'): filename = workdir + '/abundances/abundances/abundances.h5' hdf5_data = h5py.File(filename, 'r') dfiles = hdf5_data.keys() dfile = dfiles[-1] # do this with most recent data file data = dd.io.load(filename, '/' + str(dfile)) elements = utilities.sort_by_anum([x for x in data['abundances'].keys() if (not 'alpha' in x)]) elements = elements + ['alpha'] + ['H'] age = data['Time'] - data['creation_time'] # age of all particles in this data set # -------------------- check_elements = [x for x in [X,A,B,C] if (not (x in elements))] if len(check_elements) > 0: print(check_elements, " not in elements list") print("available: ", elements) raise ValueError sep = 0.02 left, width = 0.125, 0.65 bottom, height = 0.1, 0.65 left_h = left + width + sep bottom_h = bottom + height + sep rect_scatter = [left,bottom,width,height] # rect_colorbar = # rect_histx = [left, bottom_h, width, 0.95 - bottom_h - (left-bottom)] # rect_histy = [left_h, bottom, 0.95 - left_h, height] # fig,ax = plt.subplots() fig = plt.figure(1, figsize=(8,8)) # fig.set_size_inches(8,8) ax_scatter = plt.axes(rect_scatter) # ax_hist_x = plt.axes(rect_histx) # ax_hist_y = plt.axes(rect_histy) # ax_color = plt.axes(rect_colorbar) x_values = data['abundances'][B][C] y_values = data['abundances'][X][A] age = age - np.min(age) # normalize # scatter plot p = ax_scatter.scatter(x_values, y_values, s = point_size, lw = 2, c = age, cmap = 'plasma_r', alpha = 0.75) p.set_clim([0.0, np.max(age)]) cb = fig.colorbar(p, ax = ax_scatter, orientation = 'horizontal', pad = 0.125, fraction = 0.046, aspect = 40) cb.set_label(r'Stellar Age (Myr)') # # # ax_scatter.set_xlim(-9,-1) ax_scatter.set_ylim(-1.75,1.75) ax_scatter.tick_params(axis='x',which='minor',bottom='on') ax_scatter.tick_params(axis='y',which='minor',bottom='on') ax_scatter.set_xlabel(r'log([' + B + '/' + C + '])') ax_scatter.set_ylabel(r'log([' + X + '/' + A + '])') plt.minorticks_on() # # find main plot and construct histograms # divider = make_axes_locatable(ax_scatter) left, bottom, width, height = divider.get_position() # width, height = divider.get_horizontal(), divider.get_vertical() sep = 0.01 thickness = np.min( np.array([0.95 - left - width - sep, 0.95 - bottom - height - sep])) rect_histx = [left, bottom + height + sep, width, thickness] rect_histy = [left + width + sep, bottom, thickness, height] ax_hist_x = plt.axes(rect_histx) ax_hist_y = plt.axes(rect_histy) # construct the histogram for the horizontal axis (goes up top) nbins = 100 hist,bins = np.histogram(x_values, bins = nbins) weights = np.ones(np.size(x_values)) * (1.0 / (1.0*np.max(hist))) ax_hist_x.hist(x_values, color = 'C0', bins = nbins, weights = weights) # plot_histogram(ax_hist_x, bins, hist / (1.0*np.max(hist)), color = 'black') plt.minorticks_on() # hist,bins = np.histogram(alpha, bins = 24) # plot_histogram(ax_hist_y, bins, hist / (1.0*np.max(hist)), color = 'black', orientation = 'horizontal') # now do the same for the vertical axis histogram nbins = 50 hist,bins = np.histogram(y_values, bins = nbins) weights = np.ones(np.size(y_values)) * (1.0 / (1.0*np.max(hist))) ax_hist_y.hist(y_values, orientation='horizontal', color = 'C0', bins = nbins, weights = weights) ax_hist_x.xaxis.set_major_formatter(NullFormatter()) ax_hist_y.yaxis.set_major_formatter(NullFormatter()) ax_hist_x.set_xlim(ax_scatter.get_xlim()) ax_hist_y.set_ylim(ax_scatter.get_ylim()) ticks = [0.0,0.25,0.5,0.75,1.0] ax_hist_x.set_yticks(ticks) ax_hist_y.set_xticks(ticks) ax_hist_y.set_xticklabels(ticks, rotation = 270) plt.minorticks_on() # plt.tight_layout() fig.savefig(X + '_over_' + A + '_vs_' + B + '_over_' + C + '_hist.png') plt.close() return if __name__ == '__main__': plot_mass_fraction_time_evolution() # # plot_ratios_with_histograms('C','O','Fe','H') # C/O vs Fe/H # plot_ratios_with_histograms('alpha','Mg','Mg','H') # plot_ratios_with_histograms('alpha','Fe','Fe','H') # plot_panel() # default [X/Fe] vs [Fe/H] # plot_panel(A = 'Mg', B = 'Fe', C = 'H') # plot_panel(A = 'Mg', B = 'Mg', C = 'Fe') # plot_panel(A = 'O', B = 'Fe', C = 'H') # plot_panel(A = 'O', B = 'O', C = 'Fe') # plot_panel(A = 'Ba', B = 'Ba', C = 'Fe') # plot_MDF(plot_base = ['H','Fe','O','Ba']) # plot_time_evolution() # plot_alpha_vs_fe_with_histograms() # plot_alpha_vs_fe() # plot_alpha_vs_fe_movie() # plot_spatial_profiles(bins=np.arange(0,505,10)) # plot_spatial_profiles(field = 'Fe',abundance=True, bins = np.arange(0,505,10)) # plot_spatial_profiles(field = 'H', abundance=True, bins = np.arange(0,505,10))
mit
sernst/cauldron
cauldron/session/display/__init__.py
1
23013
import json as _json_io import textwrap import typing from datetime import timedelta import cauldron as _cd from cauldron import environ from cauldron import render from cauldron.render import plots as render_plots from cauldron.render import texts as render_texts from cauldron.session import report def _get_report() -> 'report.Report': """Fetches the report associated with the currently running step.""" return _cd.project.get_internal_project().current_step.report def inspect(source: dict): """ Inspects the data and structure of the source dictionary object and adds the results to the display for viewing. :param source: A dictionary object to be inspected. :return: """ r = _get_report() r.append_body(render.inspect(source)) def header(header_text: str, level: int = 1, expand_full: bool = False): """ Adds a text header to the display with the specified level. :param header_text: The text to display in the header. :param level: The level of the header, which corresponds to the html header levels, such as <h1>, <h2>, ... :param expand_full: Whether or not the header will expand to fill the width of the entire notebook page, or be constrained by automatic maximum page width. The default value of False lines the header up with text displays. """ r = _get_report() r.append_body(render.header( header_text, level=level, expand_full=expand_full )) def text(value: str, preformatted: bool = False): """ Adds text to the display. If the text is not preformatted, it will be displayed in paragraph format. Preformatted text will be displayed inside a pre tag with a monospace font. :param value: The text to display. :param preformatted: Whether or not to preserve the whitespace display of the text. """ if preformatted: result = render_texts.preformatted_text(value) else: result = render_texts.text(value) r = _get_report() r.append_body(result) r.stdout_interceptor.write_source( '{}\n'.format(textwrap.dedent(value)) ) def markdown( source: str = None, source_path: str = None, preserve_lines: bool = False, font_size: float = None, **kwargs ): """ Renders the specified source string or source file using markdown and adds the resulting HTML to the notebook display. :param source: A markdown formatted string. :param source_path: A file containing markdown text. :param preserve_lines: If True, all line breaks will be treated as hard breaks. Use this for pre-formatted markdown text where newlines should be retained during rendering. :param font_size: Specifies a relative font size adjustment. The default value is 1.0, which preserves the inherited font size values. Set it to a value below 1.0 for smaller font-size rendering and greater than 1.0 for larger font size rendering. :param kwargs: Any variable replacements to make within the string using Jinja2 templating syntax. """ r = _get_report() result = render_texts.markdown( source=source, source_path=source_path, preserve_lines=preserve_lines, font_size=font_size, **kwargs ) r.library_includes += result['library_includes'] r.append_body(result['body']) r.stdout_interceptor.write_source( '{}\n'.format(textwrap.dedent(result['rendered'])) ) def json(**kwargs): """ Adds the specified data to the the output display window with the specified key. This allows the user to make available arbitrary JSON-compatible data to the display for runtime use. :param kwargs: Each keyword argument is added to the CD.data object with the specified key and value. """ r = _get_report() r.append_body(render.json(**kwargs)) r.stdout_interceptor.write_source( '{}\n'.format(_json_io.dumps(kwargs, indent=2)) ) def plotly( data: typing.Union[dict, list, typing.Any] = None, layout: typing.Union[dict, typing.Any] = None, scale: float = 0.5, figure: typing.Union[dict, typing.Any] = None, static: bool = False ): """ Creates a Plotly plot in the display with the specified data and layout. :param data: The Plotly trace data to be plotted. :param layout: The layout data used for the plot. :param scale: The display scale with units of fractional screen height. A value of 0.5 constrains the output to a maximum height equal to half the height of browser window when viewed. Values below 1.0 are usually recommended so the entire output can be viewed without scrolling. :param figure: In cases where you need to create a figure instead of separate data and layout information, you can pass the figure here and leave the data and layout values as None. :param static: If true, the plot will be created without interactivity. This is useful if you have a lot of plots in your notebook. """ r = _get_report() if not figure and not isinstance(data, (list, tuple)): data = [data] if 'plotly' not in r.library_includes: r.library_includes.append('plotly') r.append_body(render.plotly( data=data, layout=layout, scale=scale, figure=figure, static=static )) r.stdout_interceptor.write_source('[ADDED] Plotly plot\n') def table( data_frame, scale: float = 0.7, include_index: bool = False, max_rows: int = 500, sample_rows: typing.Optional[int] = None, formats: typing.Union[ str, typing.Callable[[typing.Any], str], typing.Dict[ str, typing.Union[str, typing.Callable[[typing.Any], str]] ] ] = None ): """ Adds the specified data frame to the display in a nicely formatted scrolling table. :param data_frame: The pandas data frame to be rendered to a table. :param scale: The display scale with units of fractional screen height. A value of 0.5 constrains the output to a maximum height equal to half the height of browser window when viewed. Values below 1.0 are usually recommended so the entire output can be viewed without scrolling. :param include_index: Whether or not the index column should be included in the displayed output. The index column is not included by default because it is often unnecessary extra information in the display of the data. :param max_rows: This argument exists to prevent accidentally writing very large data frames to a table, which can cause the notebook display to become sluggish or unresponsive. If you want to display large tables, you need only increase the value of this argument. :param sample_rows: When set to a positive integer value, the DataFrame will be randomly sampled to the specified number of rows when displayed in the table. If the value here is larger than the number of rows in the DataFrame, the sampling will have no effect and the entire DataFrame will be displayed instead. :param formats: An optional dictionary that, when specified, should contain a mapping between column names and formatting strings to apply to that column for display purposes. For example, ``{'foo': '{:,.2f}%'}`` would transform a column ``foo = [12.2121, 34.987123, 42.72839]`` to display as ``foo = [12.21%, 34.99%, 42.73%]``. The formatters should follow the standard Python string formatting guidelines the same as the ``str.format()`` command having the value of the column as the only positional argument in the format arguments. A string value can also be specified for uniform formatting of all columns (or if displaying a series with only a single value). """ r = _get_report() r.append_body(render.table( data_frame=data_frame, scale=scale, include_index=include_index, max_rows=max_rows, sample_rows=sample_rows, formats=formats )) r.stdout_interceptor.write_source('[ADDED] Table\n') def svg(svg_dom: str, filename: str = None): """ Adds the specified SVG string to the display. If a filename is included, the SVG data will also be saved to that filename within the project results folder. :param svg_dom: The SVG string data to add to the display. :param filename: An optional filename where the SVG data should be saved within the project results folder. """ r = _get_report() r.append_body(render.svg(svg_dom)) r.stdout_interceptor.write_source('[ADDED] SVG\n') if not filename: return if not filename.endswith('.svg'): filename += '.svg' r.files[filename] = svg_dom def jinja(path: str, **kwargs): """ Renders the specified Jinja2 template to HTML and adds the output to the display. :param path: The fully-qualified path to the template to be rendered. :param kwargs: Any keyword arguments that will be use as variable replacements within the template. """ r = _get_report() r.append_body(render.jinja(path, **kwargs)) r.stdout_interceptor.write_source('[ADDED] Jinja2 rendered HTML\n') def whitespace(lines: float = 1.0): """ Adds the specified number of lines of whitespace. :param lines: The number of lines of whitespace to show. """ r = _get_report() r.append_body(render.whitespace(lines)) r.stdout_interceptor.write_source('\n') def image( filename: str, width: int = None, height: int = None, justify: str = 'left' ): """ Adds an image to the display. The image must be located within the assets directory of the Cauldron notebook's folder. :param filename: Name of the file within the assets directory, :param width: Optional width in pixels for the image. :param height: Optional height in pixels for the image. :param justify: One of 'left', 'center' or 'right', which specifies how the image is horizontally justified within the notebook display. """ r = _get_report() path = '/'.join(['reports', r.project.uuid, 'latest', 'assets', filename]) r.append_body(render.image(path, width, height, justify)) r.stdout_interceptor.write_source('[ADDED] Image\n') def html(dom: str): """ A string containing a valid HTML snippet. :param dom: The HTML string to add to the display. """ r = _get_report() r.append_body(render.html(dom)) r.stdout_interceptor.write_source('[ADDED] HTML\n') def workspace(show_values: bool = True, show_types: bool = True): """ Adds a list of the shared variables currently stored in the project workspace. :param show_values: When true the values for each variable will be shown in addition to their name. :param show_types: When true the data types for each shared variable will be shown in addition to their name. """ r = _get_report() data = {} for key, value in r.project.shared.fetch(None).items(): if key.startswith('__cauldron_'): continue data[key] = value r.append_body(render.status(data, values=show_values, types=show_types)) def pyplot( figure=None, scale: float = 0.8, clear: bool = True, aspect_ratio: typing.Union[list, tuple] = None ): """ Creates a matplotlib plot in the display for the specified figure. The size of the plot is determined automatically to best fit the notebook. :param figure: The matplotlib figure to plot. If omitted, the currently active figure will be used. :param scale: The display scale with units of fractional screen height. A value of 0.5 constrains the output to a maximum height equal to half the height of browser window when viewed. Values below 1.0 are usually recommended so the entire output can be viewed without scrolling. :param clear: Clears the figure after it has been rendered. This is useful to prevent persisting old plot data between repeated runs of the project files. This can be disabled if the plot is going to be used later in the project files. :param aspect_ratio: The aspect ratio for the displayed plot as a two-element list or tuple. The first element is the width and the second element the height. The units are "inches," which is an important consideration for the display of text within the figure. If no aspect ratio is specified, the currently assigned values to the plot will be used instead. """ r = _get_report() r.append_body(render_plots.pyplot( figure, scale=scale, clear=clear, aspect_ratio=aspect_ratio )) r.stdout_interceptor.write_source('[ADDED] PyPlot plot\n') def bokeh(model, scale: float = 0.7, responsive: bool = True): """ Adds a Bokeh plot object to the notebook display. :param model: The plot object to be added to the notebook display. :param scale: How tall the plot should be in the notebook as a fraction of screen height. A number between 0.1 and 1.0. The default value is 0.7. :param responsive: Whether or not the plot should responsively scale to fill the width of the notebook. The default is True. """ r = _get_report() if 'bokeh' not in r.library_includes: r.library_includes.append('bokeh') r.append_body(render_plots.bokeh_plot( model=model, scale=scale, responsive=responsive )) r.stdout_interceptor.write_source('[ADDED] Bokeh plot\n') def listing( source: list, ordered: bool = False, expand_full: bool = False ): """ An unordered or ordered list of the specified *source* iterable where each element is converted to a string representation for display. :param source: The iterable to display as a list. :param ordered: Whether or not the list should be ordered. If False, which is the default, an unordered bulleted list is created. :param expand_full: Whether or not the list should expand to fill the screen horizontally. When defaulted to False, the list is constrained to the center view area of the screen along with other text. This can be useful to keep lists aligned with the text flow. """ r = _get_report() r.append_body(render.listing( source=source, ordered=ordered, expand_full=expand_full )) r.stdout_interceptor.write_source('[ADDED] Listing\n') def list_grid( source: list, expand_full: bool = False, column_count: int = 2, row_spacing: float = 1.0 ): """ An multi-column list of the specified *source* iterable where each element is converted to a string representation for display. :param source: The iterable to display as a list. :param expand_full: Whether or not the list should expand to fill the screen horizontally. When defaulted to False, the list is constrained to the center view area of the screen along with other text. This can be useful to keep lists aligned with the text flow. :param column_count: The number of columns to display. The specified count is applicable to high-definition screens. For Lower definition screens the actual count displayed may be fewer as the layout responds to less available horizontal screen space. :param row_spacing: The number of lines of whitespace to include between each row in the grid. Set this to 0 for tightly displayed lists. """ r = _get_report() r.append_body(render.list_grid( source=source, expand_full=expand_full, column_count=column_count, row_spacing=row_spacing )) r.stdout_interceptor.write_source('[ADDED] List grid\n') def latex(source: str): """ Add a mathematical equation in latex math-mode syntax to the display. Instead of the traditional backslash escape character, the @ character is used instead to prevent backslash conflicts with Python strings. For example, \\delta would be @delta. :param source: The string representing the latex equation to be rendered. """ r = _get_report() if 'katex' not in r.library_includes: r.library_includes.append('katex') r.append_body(render_texts.latex(source.replace('@', '\\'))) r.stdout_interceptor.write_source('[ADDED] Latex equation\n') def head(source, count: int = 5): """ Displays a specified number of elements in a source object of many different possible types. :param source: DataFrames will show *count* rows of that DataFrame. A list, tuple or other iterable, will show the first *count* rows. Dictionaries will show *count* keys from the dictionary, which will be randomly selected unless you are using an OrderedDict. Strings will show the first *count* characters. :param count: The number of elements to show from the source. """ r = _get_report() r.append_body(render_texts.head(source, count=count)) r.stdout_interceptor.write_source('[ADDED] Head\n') def tail(source, count: int = 5): """ The opposite of the head function. Displays the last *count* elements of the *source* object. :param source: DataFrames will show the last *count* rows of that DataFrame. A list, tuple or other iterable, will show the last *count* rows. Dictionaries will show *count* keys from the dictionary, which will be randomly selected unless you are using an OrderedDict. Strings will show the last *count* characters. :param count: The number of elements to show from the source. """ r = _get_report() r.append_body(render_texts.tail(source, count=count)) r.stdout_interceptor.write_source('[ADDED] Tail\n') def status( message: str = None, progress: float = None, section_message: str = None, section_progress: float = None, ): """ Updates the status display, which is only visible while a step is running. This is useful for providing feedback and information during long-running steps. A section progress is also available for cases where long running tasks consist of multiple tasks and you want to display sub-progress messages within the context of the larger status. Note: this is only supported when running in the Cauldron desktop application. :param message: The status message you want to display. If left blank the previously set status message will be retained. Should you desire to remove an existing message, specify a blank string for this argument. :param progress: A number between zero and one that indicates the overall progress for the current status. If no value is specified, the previously assigned progress will be retained. :param section_message: The status message you want to display for a particular task within a long-running step. If left blank the previously set section message will be retained. Should you desire to remove an existing message, specify a blank string for this argument. :param section_progress: A number between zero and one that indicates the progress for the current section status. If no value is specified, the previously assigned section progress value will be retained. """ environ.abort_thread() r = _get_report() step = _cd.project.get_internal_project().current_step changes = 0 has_changed = step.progress_message != message if message is not None and has_changed: changes += 1 step.progress_message = message has_changed = step.progress_message != max(0, min(1, progress or 0)) if progress is not None and has_changed: changes += 1 step.progress = max(0.0, min(1.0, progress)) has_changed = step.sub_progress_message != section_message if section_message is not None and has_changed: changes += 1 step.sub_progress_message = section_message has_changed = step.sub_progress != max(0, min(1, section_progress or 0)) if section_progress is not None and has_changed: changes += 1 step.sub_progress = section_progress if changes > 0: # update the timestamp to inform rendering that a status # has changed and should be re-rendered into the step. r.update_last_modified() def code_block( code: str = None, path: str = None, language_id: str = None, title: str = None, caption: str = None ): """ Adds a block of syntax highlighted code to the display from either the supplied code argument, or from the code file specified by the path argument. :param code: A string containing the code to be added to the display :param path: A path to a file containing code to be added to the display :param language_id: The language identifier that indicates what language should be used by the syntax highlighter. Valid values are any of the languages supported by the Pygments highlighter. :param title: If specified, the code block will include a title bar with the value of this argument :param caption: If specified, the code block will include a caption box below the code that contains the value of this argument """ environ.abort_thread() r = _get_report() r.append_body(render.code_block( block=code, path=path, language=language_id, title=title, caption=caption )) r.stdout_interceptor.write_source('{}\n'.format(code)) def elapsed(): """ Displays the elapsed time since the step started running. """ environ.abort_thread() step = _cd.project.get_internal_project().current_step r = _get_report() r.append_body(render.elapsed_time(step.elapsed_time)) result = '[ELAPSED]: {}\n'.format(timedelta(seconds=step.elapsed_time)) r.stdout_interceptor.write_source(result)
mit
rwgdrummer/maskgen
maskgen/analytics/dctAnalytic.py
1
17525
# ============================================================================= # Authors: PAR Government # Organization: DARPA # # Copyright (c) 2016 PAR Government # All rights reserved. # # # adapted from https://github.com/enmasse/jpeg_read #============================================================================== import sys from math import * from Tkinter import * import matplotlib.pyplot as plt import numpy as np import logging from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg def memoize (function): # http://programmingzen.com/2009/05/18/memoization-in-ruby-and-python/ cache = {} def decorated_function (*args): try: return cache[args] except KeyError: val = function (*args) cache[args] = val return val return decorated_function @memoize def decodeBits (len, val): """ Calculate the value from the "additional" bits in the huffman data. """ return val if (val & (1 << len - 1)) else val - ((1 << len) - 1) def extractCoeffs (data): dclum = [] dcchr1 = [] dcchr2 = [] aclum = [] acchr1 = [] acchr2 = [] for MCU in data: lum = MCU[0] chr1 = MCU[1] chr2 = MCU[2] for MCU_component in lum: if len (MCU_component): dclum.append (MCU_component[0]) aclum.extend (MCU_component[1:]) for MCU_component in chr1: if len (MCU_component): dcchr1.append (MCU_component[0]) acchr1.extend (MCU_component[1:]) for MCU_component in chr2: if len (MCU_component): dcchr2.append (MCU_component[0]) acchr2.extend (MCU_component[1:]) return (dclum, dcchr1, dcchr2, aclum, acchr1, acchr2) def generateHuffmanCodes (huffsize): """ Calculate the huffman code of each length. """ huffcode = [] k = 0 code = 0 # Magic for i in range (len (huffsize)): si = huffsize[i] for k in range (si): huffcode.append ((i + 1, code)) code += 1 code <<= 1 return huffcode def getBits (num, gen): """ Get "num" bits from gen. """ out = 0 for i in range (num): out <<= 1 val = gen.next () if val != []: out += val & 0x01 else: return [] return out def mapHuffmanCodes (codes, values): """ Map the huffman code to the right value. """ out = {} for i in range (len (codes)): out[codes[i]] = values[i] return out def readAPP (type, file): """ Read APP marker. """ Lp = readWord (file) Lp -= 2 # If APP0 try to read the JFIF header # Not really necessary if type == 0: identifier = file.read (5) Lp -= 5 version = file.read (2) Lp -= 2 units = ord (file.read (1)) Lp -= 1 Xdensity = ord (file.read (1)) << 8 Xdensity |= ord (file.read (1)) Lp -= 2 Ydensity = ord (file.read (1)) << 8 Ydensity |= ord (file.read (1)) Lp -= 2 file.seek (Lp, 1) def readByte (file): """ Read a byte from file. """ return ord (file.read (1)) def readWord (file): """ Read a 16 bit word from file. """ return ord (file.read (1)) << 8 | ord (file.read (1)) def restoreDC (data): """ Restore the DC values. They are coded as the difference from the previous DC value of the same component. """ out = [] dc_prev = [0 for x in range (len (data[0]))] # For each MCU for mcu in data: # For each component for comp_num in range (len (mcu)): # For each DU for du in range (len (mcu[comp_num])): if mcu[comp_num][du]: mcu[comp_num][du][0] += dc_prev[comp_num] dc_prev[comp_num] = mcu[comp_num][du][0] out.append (mcu) return out class JPEG_Reader: """ Class for reading DCT coefficients from JPEG files. """ def __init__ (self): self.huffman_ac_tables = [{}, {}, {}, {}] self.huffman_dc_tables = [{}, {}, {}, {}] self.q_table = [[], [], [], []] self.XYP = 0, 0, 0 self.component = {} self.num_components = 0 self.mcus_read = 0 self.dc = [] self.inline_dc = 0 self.bit_stream = [] self.EOI = False def readDCT_Coeffs (self, filename): """ Reads and returns DCT coefficients from the supplied JPEG file. """ self.__init__ () data = [] with open (filename, "rb") as inputFile: in_char = inputFile.read (1) while in_char: if in_char == chr (0xff): in_char = inputFile.read (1) in_num = ord (in_char) if 0xe0 <= in_num <= 0xef: readAPP (in_num - 0xe0, inputFile) elif in_num == 0xdb: self.__readDQT (inputFile) elif in_num == 0xdc: self.__readDNL (inputFile) elif in_num == 0xc4: self.__readDHT (inputFile) elif in_num == 0xc8: print "JPG" elif 0xc0 <= in_num <= 0xcf: self.__readSOF (in_num - 0xc0, inputFile) elif in_num == 0xda: self.__readSOS (inputFile) self.bit_stream = self.__readBit (inputFile) while not self.EOI: data.append (self.__readMCU ()) in_char = inputFile.read (1) return extractCoeffs (data if self.inline_dc else restoreDC (data)) def __readBit (self, file): """ A generator that reads one bit from file and handles markers and byte stuffing. """ input = file.read (1) while input and not self.EOI: if input == chr (0xFF): cmd = file.read (1) if cmd: # Byte stuffing if cmd == chr (0x00): input = chr (0xFF) # End of image marker elif cmd == chr (0xD9): self.EOI = True # Restart markers elif 0xD0 <= ord (cmd) <= 0xD7 and self.inline_dc: # Reset dc value self.dc = [0 for i in range (self.num_components + 1)] input = file.read (1) else: input = file.read (1) #print "CMD: %x" % ord(cmd) if not self.EOI: for i in range (7, -1, -1): # Output next bit yield (ord (input) >> i) & 0x01 input = file.read (1) while True: yield [] def __readDHT (self, file): """ Read and compute the huffman tables. """ # Read the marker length Lh = readWord (file) Lh -= 2 while Lh > 0: huffsize = [] huffval = [] T = readByte (file) Th = T & 0x0F Tc = (T >> 4) & 0x0F #print "Lh: %d Th: %d Tc: %d" % (Lh, Th, Tc) Lh -= 1 # Read how many symbols of each length # up to 16 bits for i in range (16): huffsize.append (readByte (file)) Lh -= 1 # Generate the huffman codes huffcode = generateHuffmanCodes (huffsize) #print "Huffcode", huffcode # Read the values that should be mapped to huffman codes for i in huffcode: #print i try: huffval.append (readByte (file)) Lh -= 1 except TypeError: continue # Generate lookup tables if Tc == 0: self.huffman_dc_tables[Th] = mapHuffmanCodes (huffcode, huffval) else: self.huffman_ac_tables[Th] = mapHuffmanCodes (huffcode, huffval) def __readDNL (self, file): """ Read the DNL marker. Changes the number of lines. """ Ld = readWord (file) Ld -= 2 NL = readWord (file) Ld -= 2 X, Y, P = self.XYP if Y == 0: self.XYP = X, NL, P def __readDQT (self, file): """ Read the quantization table. The table is in zigzag order. """ Lq = readWord (file) Lq -= 2 while Lq > 0: table = [] Tq = readByte (file) Pq = Tq >> 4 Tq &= 0xF Lq -= 1 if Pq == 0: for i in range (64): table.append (readByte (file)) Lq -= 1 else: for i in range (64): val = readWord (file) table.append (val) Lq -= 2 self.q_table[Tq] = table def __readDU (self, comp_num): """ Read one data unit with component index comp_num. """ data = [] comp = self.component[comp_num] huff_tbl = self.huffman_dc_tables[comp['Td']] # Fill data with 64 coefficients while len (data) < 64: key = 0 for bits in range (1, 17): key_len = [] key <<= 1 # Get one bit from bit_stream val = getBits (1, self.bit_stream) if val == []: break key |= val # If huffman code exists if huff_tbl.has_key ((bits, key)): key_len = huff_tbl[(bits, key)] break # After getting the DC value switch to the AC table huff_tbl = self.huffman_ac_tables[comp['Ta']] if key_len == []: #print (bits, key, bin(key)), "key not found" break # If ZRL fill with 16 zero coefficients elif key_len == 0xF0: for i in range (16): data.append (0) continue # If not DC coefficient if len (data) != 0: # If End of block if key_len == 0x00: # Fill the rest of the DU with zeros while len (data) < 64: data.append (0) break # The first part of the AC key_len is the number of leading # zeros for i in range (key_len >> 4): if len (data) < 64: data.append (0) key_len &= 0x0F if len (data) >= 64: break if key_len != 0: # The rest of key_len is the number of "additional" bits val = getBits (key_len, self.bit_stream) if val == []: break # Decode the additional bits num = decodeBits (key_len, val) # Experimental, doesn't work right if len (data) == 0 and self.inline_dc: # The DC coefficient value is added to the DC value from # the corresponding DU in the previous MCU num += self.dc[comp_num] self.dc[comp_num] = num data.append (num) else: data.append (0) #if len(data) != 64: #print "Wrong size", len(data) return data def __readMCU (self): """ Read an MCU. """ comp_num = mcu = range (self.num_components) # For each component for i in comp_num: comp = self.component[i + 1] mcu[i] = [] # For each DU for j in range (comp['H'] * comp['V']): if not self.EOI: mcu[i].append (self.__readDU (i + 1)) self.mcus_read += 1 return mcu def __readSOF (self, type, file): """ Read the start of frame marker. """ Lf = readWord (file) # Read the marker length Lf -= 2 P = readByte (file) # Read the sample precision Lf -= 1 Y = readWord (file) # Read number of lines Lf -= 2 X = readWord (file) # Read the number of samples per line Lf -= 2 Nf = readByte (file) # Read number of components Lf -= 1 self.XYP = X, Y, P #print self.XYP while Lf > 0: C = readByte (file) # Read component identifier V = readByte (file) # Read sampling factors Tq = readByte (file) Lf -= 3 H = V >> 4 V &= 0xF # Assign horizontal & vertical sampling factors and qtable self.component[C] = { 'H' : H, 'V' : V, 'Tq' : Tq } def __readSOS (self, file): """ Read the start of scan marker. """ Ls = readWord (file) Ls -= 2 Ns = readByte (file) # Read number of components in scan Ls -= 1 for i in range (Ns): Cs = readByte (file) # Read the scan component selector Ls -= 1 Ta = readByte (file) # Read the huffman table selectors Ls -= 1 Td = Ta >> 4 Ta &= 0xF # Assign the DC huffman table self.component[Cs]['Td'] = Td # Assign the AC huffman table self.component[Cs]['Ta'] = Ta Ss = readByte (file) # Should be zero if baseline DCT Ls -= 1 Se = readByte (file) # Should be 63 if baseline DCT Ls -= 1 A = readByte (file) # Should be zero if baseline DCT Ls -= 1 #print "Ns:%d Ss:%d Se:%d A:%02X" % (Ns, Ss, Se, A) self.num_components = Ns self.dc = [0 for i in range (self.num_components + 1)] def dequantize (self, mcu): """ Dequantize an MCU. """ out = mcu # For each coefficient in each DU in each component, multiply by the # corresponding value in the quantization table. for c in range (len (out)): for du in range (len (out[c])): for i in range (len (out[c][du])): out[c][du][i] *= self.q_table[self.component[c + 1]['Tq']][i] return out def getHist(filename): try: import JPEG_MetaInfoPy hist, lowValue = JPEG_MetaInfoPy.generateHistogram(filename) return np.asarray(hist),np.asarray(range(lowValue,lowValue+len(hist)+1)) except Exception as ex: logging.getLogger('maskgen').warn('External JPEG_MetaInfoPy failed: {}'.format(str(ex))) DC = JPEG_Reader().readDCT_Coeffs(filename)[0] minDC = min(DC) maxDC = max(DC) binCount = maxDC - minDC + 1 return np.histogram (DC, bins=binCount, range=(minDC, maxDC + 1)) class JPEG_View: def appliesTo (self, filename): return filename.lower ().endswith (('jpg', 'jpeg')) def draw (self, frame, filename): fig = plt.figure (); self._plotHistogram (fig, getHist(filename)) canvas = FigureCanvasTkAgg (fig, frame) canvas.show () canvas.get_tk_widget ().pack (side=BOTTOM, fill=BOTH, expand=True) def _labelSigma (self, figure, sigma): """ Add a label of the value of sigma to the histogram plot. """ props = dict (boxstyle='round', facecolor='wheat', alpha=0.5) figure.text (0.25, 0.85, '$\sigma=%.2f$' % (sigma), fontsize=14, verticalalignment='top', bbox=props) class DCTView (JPEG_View): def screenName (self): return 'JPG DCT Histogram' def _plotHistogram (self, figure, histogram): ordinates, abscissae = histogram plt.bar (abscissae[:-1], ordinates, 1); self._labelSigma (figure, ordinates.std ()) class FFT_DCTView (JPEG_View): def screenName (self): return 'FFT(JPG DCT Histogram)' def _plotHistogram (self, figure, histogram): # Calculate the DFT of the zero-meaned histogram values. The n/2+1 # positive frequencies are returned by rfft. Mirror the result back # into ordinates. # mean = histogram[0].mean () posFreqs = abs (np.fft.rfft ([i - mean for i in histogram[0]])) ordinates = list (reversed (posFreqs)) ordinates.extend (posFreqs[1:]) n = len (posFreqs) abscissae = range (1 - n, n) plt.plot (abscissae, ordinates, 'k') plt.plot (abscissae, self.__hat (ordinates), 'r') self._labelSigma (figure, np.std (ordinates)) def __hat (self, data): length = len (data) intercept1 = int (length * 0.425) intercept2 = int (length * 0.575) amp = max (data) threshold = amp * 0.15 arr = np.full (length, threshold) arr[intercept1:intercept2] = amp return arr if __name__ == "__main__": DCTView ().draw (None, sys.argv[1]) FFT_DCTView ().draw (None, sys.argv[1])
bsd-3-clause
DataCanvasIO/example-modules
modules/modeling/basic/linear_svc_estimator/main.py
2
1630
#!/usr/bin/env python # -*- coding: utf-8 -*- import random from specparser import get_settings_from_file from pprint import pprint import csv from sklearn.svm import LinearSVC import numpy as np from sklearn.externals import joblib import matplotlib matplotlib.use('Agg') import datetime from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt def drawPrecisionRecall(X,Y,output_file): pdf = PdfPages(output_file) plt.figure(figsize=(len(Y), len(X))) plt.plot(Y, X, 'r-o') plt.title('Precision/Recall') pdf.savefig() # saves the current figure into a pdf page plt.close() pdf.close() def readcolumn(filename): column = [] with open(filename,"r") as fconcl: for line in fconcl: column.append(line.rstrip('\n')) return column def main(): settings = get_settings_from_file("spec.json") print(settings) X = np.genfromtxt(settings.Input.X, delimiter=',', skip_header=1) svc = joblib.load(settings.Input.MODEL) Y_out = svc.predict(X) Y_list = [Y_out] np.savetxt("./conclusion.csv", Y_out, fmt="%d", delimiter=",") conclusion = readcolumn("./conclusion.csv") label = readcolumn(settings.Input.Y) precision_list = [] recall_list = [] hits = 0 for i in range(len(label)): if conclusion[i] == label[i]: hits+=1 precision_list.append(1.0*hits/(i+1)) recall_list.append(1.0*hits/(len(label))) drawPrecisionRecall(precision_list,recall_list,settings.Output.report) print("Done") if __name__ == "__main__": main()
bsd-3-clause
bjlittle/iris
docs/gallery_code/oceanography/plot_atlantic_profiles.py
2
3317
""" Oceanographic Profiles and T-S Diagrams ======================================= This example demonstrates how to plot vertical profiles of different variables in the same axes, and how to make a scatter plot of two variables. There is an oceanographic theme but the same techniques are equally applicable to atmospheric or other kinds of data. The data used are profiles of potential temperature and salinity in the Equatorial and South Atlantic, output from an ocean model. The y-axis of the first plot produced will be automatically inverted due to the presence of the attribute positive=down on the depth coordinate. This means depth values intuitively increase downward on the y-axis. """ import matplotlib.pyplot as plt import iris import iris.iterate import iris.plot as iplt def main(): # Load the gridded temperature and salinity data. fname = iris.sample_data_path("atlantic_profiles.nc") cubes = iris.load(fname) (theta,) = cubes.extract("sea_water_potential_temperature") (salinity,) = cubes.extract("sea_water_practical_salinity") # Extract profiles of temperature and salinity from a particular point in # the southern portion of the domain, and limit the depth of the profile # to 1000m. lon_cons = iris.Constraint(longitude=330.5) lat_cons = iris.Constraint(latitude=lambda l: -10 < l < -9) depth_cons = iris.Constraint(depth=lambda d: d <= 1000) theta_1000m = theta.extract(depth_cons & lon_cons & lat_cons) salinity_1000m = salinity.extract(depth_cons & lon_cons & lat_cons) # Plot these profiles on the same set of axes. Depth is automatically # recognised as a vertical coordinate and placed on the y-axis. # The first plot is in the default axes. We'll use the same color for the # curve and its axes/tick labels. plt.figure(figsize=(5, 6)) temperature_color = (0.3, 0.4, 0.5) ax1 = plt.gca() iplt.plot( theta_1000m, linewidth=2, color=temperature_color, alpha=0.75, ) ax1.set_xlabel("Potential Temperature / K", color=temperature_color) ax1.set_ylabel("Depth / m") for ticklabel in ax1.get_xticklabels(): ticklabel.set_color(temperature_color) # To plot salinity in the same axes we use twiny(). We'll use a different # color to identify salinity. salinity_color = (0.6, 0.1, 0.15) ax2 = plt.gca().twiny() iplt.plot( salinity_1000m, linewidth=2, color=salinity_color, alpha=0.75, ) ax2.set_xlabel("Salinity / PSU", color=salinity_color) for ticklabel in ax2.get_xticklabels(): ticklabel.set_color(salinity_color) plt.tight_layout() iplt.show() # Now plot a T-S diagram using scatter. We'll use all the profiles here, # and each point will be coloured according to its depth. plt.figure(figsize=(6, 6)) depth_values = theta.coord("depth").points for s, t in iris.iterate.izip(salinity, theta, coords="depth"): iplt.scatter(s, t, c=depth_values, marker="+", cmap="RdYlBu_r") ax = plt.gca() ax.set_xlabel("Salinity / PSU") ax.set_ylabel("Potential Temperature / K") cb = plt.colorbar(orientation="horizontal") cb.set_label("Depth / m") plt.tight_layout() iplt.show() if __name__ == "__main__": main()
lgpl-3.0
janmtl/pypsych
tests/data/generators/eprime.py
1
2106
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Script for generating mock EPrime test data """ import pandas as pd import numpy as np import io pd.set_option('display.max_rows', 50) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) from pypsych.config import Config def generate_mock_eprime_data(config_path, task_name, begaze_data, sched_path): """Generate mock eprime data based on mock begaze data.""" superconfig = Config(path=config_path) superconfig.load() config = superconfig.get_subconfig(task_name, 'EPrime') bg = begaze_data['merged_labels'][['Condition', 'ID']] ed = np.random.randint(0, 10, (bg.shape[0], len(config['channels']))) ep = pd.DataFrame(data=ed, index=bg.index, columns=config['channels']) df = pd.concat([bg, ep], axis=1, join='inner') df.rename(columns={'ID': 'Img'}, inplace=True) result = [] for _, row in df.iterrows(): props = ["\t" + str(idx) + ': ' + str(val) for idx, val in zip(list(row.index), list(row))] result.append("\n\n".join(props)) result = ('\n\n\t*** LogFrame End ***\n\n' '\tLevel: 2\n\n' '\t*** LogFrame Start ***\n\n').join(result) prestring = ('*** Header Start ***\n\n' 'GARBAGE\n\n' '*** Header End ***\n\n' '\tLevel: 2\n\n' '\t*** LogFrame Start ***\n\n') result = prestring + result + '\n\n\t*** LogFrame End ***' return {'df': df, 'raw': result} def save_mock_eprime_data(output_path, data, subject_id, task_order, task_name): """Save the mock eprime files to output_path.""" base_path = ''.join([output_path, task_name, '_', str(subject_id), str(task_order)]) raw_path = ''.join([base_path, '_eprime.txt']) df_path = ''.join([base_path, '_eprime_df.txt']) with io.open(raw_path, 'w', encoding="utf-16") as f: f.write(unicode(data['raw'])) data['df'].to_csv(df_path, sep="\t") pass
bsd-3-clause
AlexanderFabisch/scikit-learn
sklearn/metrics/pairwise.py
9
45248
# -*- coding: utf-8 -*- # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Robert Layton <[email protected]> # Andreas Mueller <[email protected]> # Philippe Gervais <[email protected]> # Lars Buitinck <[email protected]> # Joel Nothman <[email protected]> # License: BSD 3 clause import itertools import numpy as np from scipy.spatial import distance from scipy.sparse import csr_matrix from scipy.sparse import issparse from ..utils import check_array from ..utils import gen_even_slices from ..utils import gen_batches from ..utils.fixes import partial from ..utils.extmath import row_norms, safe_sparse_dot from ..preprocessing import normalize from ..externals.joblib import Parallel from ..externals.joblib import delayed from ..externals.joblib.parallel import cpu_count from .pairwise_fast import _chi2_kernel_fast, _sparse_manhattan # Utility Functions def _return_float_dtype(X, Y): """ 1. If dtype of X and Y is float32, then dtype float32 is returned. 2. Else dtype float is returned. """ if not issparse(X) and not isinstance(X, np.ndarray): X = np.asarray(X) if Y is None: Y_dtype = X.dtype elif not issparse(Y) and not isinstance(Y, np.ndarray): Y = np.asarray(Y) Y_dtype = Y.dtype else: Y_dtype = Y.dtype if X.dtype == Y_dtype == np.float32: dtype = np.float32 else: dtype = np.float return X, Y, dtype def check_pairwise_arrays(X, Y, precomputed=False): """ Set X and Y appropriately and checks inputs If Y is None, it is set as a pointer to X (i.e. not a copy). If Y is given, this does not happen. All distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats. Finally, the function checks that the size of the second dimension of the two arrays is equal, or the equivalent check for a precomputed distance matrix. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_a, n_features) Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) precomputed : bool True if X is to be treated as precomputed distances to the samples in Y. Returns ------- safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ X, Y, dtype = _return_float_dtype(X, Y) if Y is X or Y is None: X = Y = check_array(X, accept_sparse='csr', dtype=dtype) else: X = check_array(X, accept_sparse='csr', dtype=dtype) Y = check_array(Y, accept_sparse='csr', dtype=dtype) if precomputed: if X.shape[1] != Y.shape[0]: raise ValueError("Precomputed metric requires shape " "(n_queries, n_indexed). Got (%d, %d) " "for %d indexed." % (X.shape[0], X.shape[1], Y.shape[0])) elif X.shape[1] != Y.shape[1]: raise ValueError("Incompatible dimension for X and Y matrices: " "X.shape[1] == %d while Y.shape[1] == %d" % ( X.shape[1], Y.shape[1])) return X, Y def check_paired_arrays(X, Y): """ Set X and Y appropriately and checks inputs for paired distances All paired distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats. Finally, the function checks that the size of the dimensions of the two arrays are equal. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_a, n_features) Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) Returns ------- safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ X, Y = check_pairwise_arrays(X, Y) if X.shape != Y.shape: raise ValueError("X and Y should be of same shape. They were " "respectively %r and %r long." % (X.shape, Y.shape)) return X, Y # Pairwise distances def euclidean_distances(X, Y=None, Y_norm_squared=None, squared=False, X_norm_squared=None): """ Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors. For efficiency reasons, the euclidean distance between a pair of row vector x and y is computed as:: dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y)) This formulation has two advantages over other ways of computing distances. First, it is computationally efficient when dealing with sparse data. Second, if one argument varies but the other remains unchanged, then `dot(x, x)` and/or `dot(y, y)` can be pre-computed. However, this is not the most precise way of doing this computation, and the distance matrix returned by this function may not be exactly symmetric as required by, e.g., ``scipy.spatial.distance`` functions. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_1, n_features) Y : {array-like, sparse matrix}, shape (n_samples_2, n_features) Y_norm_squared : array-like, shape (n_samples_2, ), optional Pre-computed dot-products of vectors in Y (e.g., ``(Y**2).sum(axis=1)``) squared : boolean, optional Return squared Euclidean distances. X_norm_squared : array-like, shape = [n_samples_1], optional Pre-computed dot-products of vectors in X (e.g., ``(X**2).sum(axis=1)``) Returns ------- distances : {array, sparse matrix}, shape (n_samples_1, n_samples_2) Examples -------- >>> from sklearn.metrics.pairwise import euclidean_distances >>> X = [[0, 1], [1, 1]] >>> # distance between rows of X >>> euclidean_distances(X, X) array([[ 0., 1.], [ 1., 0.]]) >>> # get distance to origin >>> euclidean_distances(X, [[0, 0]]) array([[ 1. ], [ 1.41421356]]) See also -------- paired_distances : distances betweens pairs of elements of X and Y. """ X, Y = check_pairwise_arrays(X, Y) if X_norm_squared is not None: XX = check_array(X_norm_squared) if XX.shape == (1, X.shape[0]): XX = XX.T elif XX.shape != (X.shape[0], 1): raise ValueError( "Incompatible dimensions for X and X_norm_squared") else: XX = row_norms(X, squared=True)[:, np.newaxis] if X is Y: # shortcut in the common case euclidean_distances(X, X) YY = XX.T elif Y_norm_squared is not None: YY = np.atleast_2d(Y_norm_squared) if YY.shape != (1, Y.shape[0]): raise ValueError( "Incompatible dimensions for Y and Y_norm_squared") else: YY = row_norms(Y, squared=True)[np.newaxis, :] distances = safe_sparse_dot(X, Y.T, dense_output=True) distances *= -2 distances += XX distances += YY np.maximum(distances, 0, out=distances) if X is Y: # Ensure that distances between vectors and themselves are set to 0.0. # This may not be the case due to floating point rounding errors. distances.flat[::distances.shape[0] + 1] = 0.0 return distances if squared else np.sqrt(distances, out=distances) def pairwise_distances_argmin_min(X, Y, axis=1, metric="euclidean", batch_size=500, metric_kwargs=None): """Compute minimum distances between one point and a set of points. This function computes for each row in X, the index of the row of Y which is closest (according to the specified distance). The minimal distances are also returned. This is mostly equivalent to calling: (pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis), pairwise_distances(X, Y=Y, metric=metric).min(axis=axis)) but uses much less memory, and is faster for large arrays. Parameters ---------- X, Y : {array-like, sparse matrix} Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) batch_size : integer To reduce memory consumption over the naive solution, data are processed in batches, comprising batch_size rows of X and batch_size rows of Y. The default value is quite conservative, but can be changed for fine-tuning. The larger the number, the larger the memory usage. metric : string or callable, default 'euclidean' metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_kwargs : dict, optional Keyword arguments to pass to specified metric function. axis : int, optional, default 1 Axis along which the argmin and distances are to be computed. Returns ------- argmin : numpy.ndarray Y[argmin[i], :] is the row in Y that is closest to X[i, :]. distances : numpy.ndarray distances[i] is the distance between the i-th row in X and the argmin[i]-th row in Y. See also -------- sklearn.metrics.pairwise_distances sklearn.metrics.pairwise_distances_argmin """ dist_func = None if metric in PAIRWISE_DISTANCE_FUNCTIONS: dist_func = PAIRWISE_DISTANCE_FUNCTIONS[metric] elif not callable(metric) and not isinstance(metric, str): raise ValueError("'metric' must be a string or a callable") X, Y = check_pairwise_arrays(X, Y) if metric_kwargs is None: metric_kwargs = {} if axis == 0: X, Y = Y, X # Allocate output arrays indices = np.empty(X.shape[0], dtype=np.intp) values = np.empty(X.shape[0]) values.fill(np.infty) for chunk_x in gen_batches(X.shape[0], batch_size): X_chunk = X[chunk_x, :] for chunk_y in gen_batches(Y.shape[0], batch_size): Y_chunk = Y[chunk_y, :] if dist_func is not None: if metric == 'euclidean': # special case, for speed d_chunk = safe_sparse_dot(X_chunk, Y_chunk.T, dense_output=True) d_chunk *= -2 d_chunk += row_norms(X_chunk, squared=True)[:, np.newaxis] d_chunk += row_norms(Y_chunk, squared=True)[np.newaxis, :] np.maximum(d_chunk, 0, d_chunk) else: d_chunk = dist_func(X_chunk, Y_chunk, **metric_kwargs) else: d_chunk = pairwise_distances(X_chunk, Y_chunk, metric=metric, **metric_kwargs) # Update indices and minimum values using chunk min_indices = d_chunk.argmin(axis=1) min_values = d_chunk[np.arange(chunk_x.stop - chunk_x.start), min_indices] flags = values[chunk_x] > min_values indices[chunk_x][flags] = min_indices[flags] + chunk_y.start values[chunk_x][flags] = min_values[flags] if metric == "euclidean" and not metric_kwargs.get("squared", False): np.sqrt(values, values) return indices, values def pairwise_distances_argmin(X, Y, axis=1, metric="euclidean", batch_size=500, metric_kwargs=None): """Compute minimum distances between one point and a set of points. This function computes for each row in X, the index of the row of Y which is closest (according to the specified distance). This is mostly equivalent to calling: pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis) but uses much less memory, and is faster for large arrays. This function works with dense 2D arrays only. Parameters ---------- X : array-like Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) Y : array-like Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) batch_size : integer To reduce memory consumption over the naive solution, data are processed in batches, comprising batch_size rows of X and batch_size rows of Y. The default value is quite conservative, but can be changed for fine-tuning. The larger the number, the larger the memory usage. metric : string or callable metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_kwargs : dict keyword arguments to pass to specified metric function. axis : int, optional, default 1 Axis along which the argmin and distances are to be computed. Returns ------- argmin : numpy.ndarray Y[argmin[i], :] is the row in Y that is closest to X[i, :]. See also -------- sklearn.metrics.pairwise_distances sklearn.metrics.pairwise_distances_argmin_min """ if metric_kwargs is None: metric_kwargs = {} return pairwise_distances_argmin_min(X, Y, axis, metric, batch_size, metric_kwargs)[0] def manhattan_distances(X, Y=None, sum_over_features=True, size_threshold=5e8): """ Compute the L1 distances between the vectors in X and Y. With sum_over_features equal to False it returns the componentwise distances. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array_like An array with shape (n_samples_X, n_features). Y : array_like, optional An array with shape (n_samples_Y, n_features). sum_over_features : bool, default=True If True the function returns the pairwise distance matrix else it returns the componentwise L1 pairwise-distances. Not supported for sparse matrix inputs. size_threshold : int, default=5e8 Unused parameter. Returns ------- D : array If sum_over_features is False shape is (n_samples_X * n_samples_Y, n_features) and D contains the componentwise L1 pairwise-distances (ie. absolute difference), else shape is (n_samples_X, n_samples_Y) and D contains the pairwise L1 distances. Examples -------- >>> from sklearn.metrics.pairwise import manhattan_distances >>> manhattan_distances([[3]], [[3]])#doctest:+ELLIPSIS array([[ 0.]]) >>> manhattan_distances([[3]], [[2]])#doctest:+ELLIPSIS array([[ 1.]]) >>> manhattan_distances([[2]], [[3]])#doctest:+ELLIPSIS array([[ 1.]]) >>> manhattan_distances([[1, 2], [3, 4]],\ [[1, 2], [0, 3]])#doctest:+ELLIPSIS array([[ 0., 2.], [ 4., 4.]]) >>> import numpy as np >>> X = np.ones((1, 2)) >>> y = 2 * np.ones((2, 2)) >>> manhattan_distances(X, y, sum_over_features=False)#doctest:+ELLIPSIS array([[ 1., 1.], [ 1., 1.]]...) """ X, Y = check_pairwise_arrays(X, Y) if issparse(X) or issparse(Y): if not sum_over_features: raise TypeError("sum_over_features=%r not supported" " for sparse matrices" % sum_over_features) X = csr_matrix(X, copy=False) Y = csr_matrix(Y, copy=False) D = np.zeros((X.shape[0], Y.shape[0])) _sparse_manhattan(X.data, X.indices, X.indptr, Y.data, Y.indices, Y.indptr, X.shape[1], D) return D if sum_over_features: return distance.cdist(X, Y, 'cityblock') D = X[:, np.newaxis, :] - Y[np.newaxis, :, :] D = np.abs(D, D) return D.reshape((-1, X.shape[1])) def cosine_distances(X, Y=None): """Compute cosine distance between samples in X and Y. Cosine distance is defined as 1.0 minus the cosine similarity. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array_like, sparse matrix with shape (n_samples_X, n_features). Y : array_like, sparse matrix (optional) with shape (n_samples_Y, n_features). Returns ------- distance matrix : array An array with shape (n_samples_X, n_samples_Y). See also -------- sklearn.metrics.pairwise.cosine_similarity scipy.spatial.distance.cosine (dense matrices only) """ # 1.0 - cosine_similarity(X, Y) without copy S = cosine_similarity(X, Y) S *= -1 S += 1 return S # Paired distances def paired_euclidean_distances(X, Y): """ Computes the paired euclidean distances between X and Y Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray (n_samples, ) """ X, Y = check_paired_arrays(X, Y) return row_norms(X - Y) def paired_manhattan_distances(X, Y): """Compute the L1 distances between the vectors in X and Y. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray (n_samples, ) """ X, Y = check_paired_arrays(X, Y) diff = X - Y if issparse(diff): diff.data = np.abs(diff.data) return np.squeeze(np.array(diff.sum(axis=1))) else: return np.abs(diff).sum(axis=-1) def paired_cosine_distances(X, Y): """ Computes the paired cosine distances between X and Y Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray, shape (n_samples, ) Notes ------ The cosine distance is equivalent to the half the squared euclidean distance if each sample is normalized to unit norm """ X, Y = check_paired_arrays(X, Y) return .5 * row_norms(normalize(X) - normalize(Y), squared=True) PAIRED_DISTANCES = { 'cosine': paired_cosine_distances, 'euclidean': paired_euclidean_distances, 'l2': paired_euclidean_distances, 'l1': paired_manhattan_distances, 'manhattan': paired_manhattan_distances, 'cityblock': paired_manhattan_distances} def paired_distances(X, Y, metric="euclidean", **kwds): """ Computes the paired distances between X and Y. Computes the distances between (X[0], Y[0]), (X[1], Y[1]), etc... Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : ndarray (n_samples, n_features) Array 1 for distance computation. Y : ndarray (n_samples, n_features) Array 2 for distance computation. metric : string or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options specified in PAIRED_DISTANCES, including "euclidean", "manhattan", or "cosine". Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. Returns ------- distances : ndarray (n_samples, ) Examples -------- >>> from sklearn.metrics.pairwise import paired_distances >>> X = [[0, 1], [1, 1]] >>> Y = [[0, 1], [2, 1]] >>> paired_distances(X, Y) array([ 0., 1.]) See also -------- pairwise_distances : pairwise distances. """ if metric in PAIRED_DISTANCES: func = PAIRED_DISTANCES[metric] return func(X, Y) elif callable(metric): # Check the matrix first (it is usually done by the metric) X, Y = check_paired_arrays(X, Y) distances = np.zeros(len(X)) for i in range(len(X)): distances[i] = metric(X[i], Y[i]) return distances else: raise ValueError('Unknown distance %s' % metric) # Kernels def linear_kernel(X, Y=None): """ Compute the linear kernel between X and Y. Read more in the :ref:`User Guide <linear_kernel>`. Parameters ---------- X : array of shape (n_samples_1, n_features) Y : array of shape (n_samples_2, n_features) Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) return safe_sparse_dot(X, Y.T, dense_output=True) def polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1): """ Compute the polynomial kernel between X and Y:: K(X, Y) = (gamma <X, Y> + coef0)^degree Read more in the :ref:`User Guide <polynomial_kernel>`. Parameters ---------- X : ndarray of shape (n_samples_1, n_features) Y : ndarray of shape (n_samples_2, n_features) coef0 : int, default 1 degree : int, default 3 Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = safe_sparse_dot(X, Y.T, dense_output=True) K *= gamma K += coef0 K **= degree return K def sigmoid_kernel(X, Y=None, gamma=None, coef0=1): """ Compute the sigmoid kernel between X and Y:: K(X, Y) = tanh(gamma <X, Y> + coef0) Read more in the :ref:`User Guide <sigmoid_kernel>`. Parameters ---------- X : ndarray of shape (n_samples_1, n_features) Y : ndarray of shape (n_samples_2, n_features) coef0 : int, default 1 Returns ------- Gram matrix: array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = safe_sparse_dot(X, Y.T, dense_output=True) K *= gamma K += coef0 np.tanh(K, K) # compute tanh in-place return K def rbf_kernel(X, Y=None, gamma=None): """ Compute the rbf (gaussian) kernel between X and Y:: K(x, y) = exp(-gamma ||x-y||^2) for each pair of rows x in X and y in Y. Read more in the :ref:`User Guide <rbf_kernel>`. Parameters ---------- X : array of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = euclidean_distances(X, Y, squared=True) K *= -gamma np.exp(K, K) # exponentiate K in-place return K def laplacian_kernel(X, Y=None, gamma=None): """Compute the laplacian kernel between X and Y. The laplacian kernel is defined as:: K(x, y) = exp(-gamma ||x-y||_1) for each pair of rows x in X and y in Y. Read more in the :ref:`User Guide <laplacian_kernel>`. .. versionadded:: 0.17 Parameters ---------- X : array of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = -gamma * manhattan_distances(X, Y) np.exp(K, K) # exponentiate K in-place return K def cosine_similarity(X, Y=None, dense_output=True): """Compute cosine similarity between samples in X and Y. Cosine similarity, or the cosine kernel, computes similarity as the normalized dot product of X and Y: K(X, Y) = <X, Y> / (||X||*||Y||) On L2-normalized data, this function is equivalent to linear_kernel. Read more in the :ref:`User Guide <cosine_similarity>`. Parameters ---------- X : ndarray or sparse array, shape: (n_samples_X, n_features) Input data. Y : ndarray or sparse array, shape: (n_samples_Y, n_features) Input data. If ``None``, the output will be the pairwise similarities between all samples in ``X``. dense_output : boolean (optional), default True Whether to return dense output even when the input is sparse. If ``False``, the output is sparse if both input arrays are sparse. .. versionadded:: 0.17 parameter *dense_output* for sparse output. Returns ------- kernel matrix : array An array with shape (n_samples_X, n_samples_Y). """ # to avoid recursive import X, Y = check_pairwise_arrays(X, Y) X_normalized = normalize(X, copy=True) if X is Y: Y_normalized = X_normalized else: Y_normalized = normalize(Y, copy=True) K = safe_sparse_dot(X_normalized, Y_normalized.T, dense_output=dense_output) return K def additive_chi2_kernel(X, Y=None): """Computes the additive chi-squared kernel between observations in X and Y The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = -Sum [(x - y)^2 / (x + y)] It can be interpreted as a weighted difference per entry. Read more in the :ref:`User Guide <chi2_kernel>`. Notes ----- As the negative of a distance, this kernel is only conditionally positive definite. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 http://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf See also -------- chi2_kernel : The exponentiated version of the kernel, which is usually preferable. sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to this kernel. """ if issparse(X) or issparse(Y): raise ValueError("additive_chi2 does not support sparse matrices.") X, Y = check_pairwise_arrays(X, Y) if (X < 0).any(): raise ValueError("X contains negative values.") if Y is not X and (Y < 0).any(): raise ValueError("Y contains negative values.") result = np.zeros((X.shape[0], Y.shape[0]), dtype=X.dtype) _chi2_kernel_fast(X, Y, result) return result def chi2_kernel(X, Y=None, gamma=1.): """Computes the exponential chi-squared kernel X and Y. The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = exp(-gamma Sum [(x - y)^2 / (x + y)]) It can be interpreted as a weighted difference per entry. Read more in the :ref:`User Guide <chi2_kernel>`. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float, default=1. Scaling parameter of the chi2 kernel. Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 http://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf See also -------- additive_chi2_kernel : The additive version of this kernel sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to the additive version of this kernel. """ K = additive_chi2_kernel(X, Y) K *= gamma return np.exp(K, K) # Helper functions - distance PAIRWISE_DISTANCE_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'cityblock': manhattan_distances, 'cosine': cosine_distances, 'euclidean': euclidean_distances, 'l2': euclidean_distances, 'l1': manhattan_distances, 'manhattan': manhattan_distances, 'precomputed': None, # HACK: precomputed is always allowed, never called } def distance_metrics(): """Valid metrics for pairwise_distances. This function simply returns the valid pairwise distance metrics. It exists to allow for a description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: ============ ==================================== metric Function ============ ==================================== 'cityblock' metrics.pairwise.manhattan_distances 'cosine' metrics.pairwise.cosine_distances 'euclidean' metrics.pairwise.euclidean_distances 'l1' metrics.pairwise.manhattan_distances 'l2' metrics.pairwise.euclidean_distances 'manhattan' metrics.pairwise.manhattan_distances ============ ==================================== Read more in the :ref:`User Guide <metrics>`. """ return PAIRWISE_DISTANCE_FUNCTIONS def _parallel_pairwise(X, Y, func, n_jobs, **kwds): """Break the pairwise matrix in n_jobs even slices and compute them in parallel""" if n_jobs < 0: n_jobs = max(cpu_count() + 1 + n_jobs, 1) if Y is None: Y = X if n_jobs == 1: # Special case to avoid picklability checks in delayed return func(X, Y, **kwds) # TODO: in some cases, backend='threading' may be appropriate fd = delayed(func) ret = Parallel(n_jobs=n_jobs, verbose=0)( fd(X, Y[s], **kwds) for s in gen_even_slices(Y.shape[0], n_jobs)) return np.hstack(ret) def _pairwise_callable(X, Y, metric, **kwds): """Handle the callable case for pairwise_{distances,kernels} """ X, Y = check_pairwise_arrays(X, Y) if X is Y: # Only calculate metric for upper triangle out = np.zeros((X.shape[0], Y.shape[0]), dtype='float') iterator = itertools.combinations(range(X.shape[0]), 2) for i, j in iterator: out[i, j] = metric(X[i], Y[j], **kwds) # Make symmetric # NB: out += out.T will produce incorrect results out = out + out.T # Calculate diagonal # NB: nonzero diagonals are allowed for both metrics and kernels for i in range(X.shape[0]): x = X[i] out[i, i] = metric(x, x, **kwds) else: # Calculate all cells out = np.empty((X.shape[0], Y.shape[0]), dtype='float') iterator = itertools.product(range(X.shape[0]), range(Y.shape[0])) for i, j in iterator: out[i, j] = metric(X[i], Y[j], **kwds) return out _VALID_METRICS = ['euclidean', 'l2', 'l1', 'manhattan', 'cityblock', 'braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', "wminkowski"] def pairwise_distances(X, Y=None, metric="euclidean", n_jobs=1, **kwds): """ Compute the distance matrix from a vector array X and optional Y. This method takes either a vector array or a distance matrix, and returns a distance matrix. If the input is a vector array, the distances are computed. If the input is a distances matrix, it is returned instead. This method provides a safe way to take a distance matrix as input, while preserving compatibility with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise distance between the arrays from both X and Y. Valid values for metric are: - From scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan']. These metrics support sparse matrix inputs. - From scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. These metrics do not support sparse matrix inputs. Note that in the case of 'cityblock', 'cosine' and 'euclidean' (which are valid scipy.spatial.distance metrics), the scikit-learn implementation will be used, which is faster and has support for sparse matrices (except for 'cityblock'). For a verbose description of the metrics from scikit-learn, see the __doc__ of the sklearn.pairwise.distance_metrics function. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. Y : array [n_samples_b, n_features], optional An optional second feature array. Only allowed if metric != "precomputed". metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. n_jobs : int The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- D : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b] A distance matrix D such that D_{i, j} is the distance between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then D_{i, j} is the distance between the ith array from X and the jth array from Y. """ if (metric not in _VALID_METRICS and not callable(metric) and metric != "precomputed"): raise ValueError("Unknown metric %s. " "Valid metrics are %s, or 'precomputed', or a " "callable" % (metric, _VALID_METRICS)) if metric == "precomputed": X, _ = check_pairwise_arrays(X, Y, precomputed=True) return X elif metric in PAIRWISE_DISTANCE_FUNCTIONS: func = PAIRWISE_DISTANCE_FUNCTIONS[metric] elif callable(metric): func = partial(_pairwise_callable, metric=metric, **kwds) else: if issparse(X) or issparse(Y): raise TypeError("scipy distance metrics do not" " support sparse matrices.") X, Y = check_pairwise_arrays(X, Y) if n_jobs == 1 and X is Y: return distance.squareform(distance.pdist(X, metric=metric, **kwds)) func = partial(distance.cdist, metric=metric, **kwds) return _parallel_pairwise(X, Y, func, n_jobs, **kwds) # Helper functions - distance PAIRWISE_KERNEL_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'additive_chi2': additive_chi2_kernel, 'chi2': chi2_kernel, 'linear': linear_kernel, 'polynomial': polynomial_kernel, 'poly': polynomial_kernel, 'rbf': rbf_kernel, 'laplacian': laplacian_kernel, 'sigmoid': sigmoid_kernel, 'cosine': cosine_similarity, } def kernel_metrics(): """ Valid metrics for pairwise_kernels This function simply returns the valid pairwise distance metrics. It exists, however, to allow for a verbose description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: =============== ======================================== metric Function =============== ======================================== 'additive_chi2' sklearn.pairwise.additive_chi2_kernel 'chi2' sklearn.pairwise.chi2_kernel 'linear' sklearn.pairwise.linear_kernel 'poly' sklearn.pairwise.polynomial_kernel 'polynomial' sklearn.pairwise.polynomial_kernel 'rbf' sklearn.pairwise.rbf_kernel 'laplacian' sklearn.pairwise.laplacian_kernel 'sigmoid' sklearn.pairwise.sigmoid_kernel 'cosine' sklearn.pairwise.cosine_similarity =============== ======================================== Read more in the :ref:`User Guide <metrics>`. """ return PAIRWISE_KERNEL_FUNCTIONS KERNEL_PARAMS = { "additive_chi2": (), "chi2": (), "cosine": (), "exp_chi2": frozenset(["gamma"]), "linear": (), "poly": frozenset(["gamma", "degree", "coef0"]), "polynomial": frozenset(["gamma", "degree", "coef0"]), "rbf": frozenset(["gamma"]), "laplacian": frozenset(["gamma"]), "sigmoid": frozenset(["gamma", "coef0"]), } def pairwise_kernels(X, Y=None, metric="linear", filter_params=False, n_jobs=1, **kwds): """Compute the kernel between arrays X and optional array Y. This method takes either a vector array or a kernel matrix, and returns a kernel matrix. If the input is a vector array, the kernels are computed. If the input is a kernel matrix, it is returned instead. This method provides a safe way to take a kernel matrix as input, while preserving compatibility with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise kernel between the arrays from both X and Y. Valid values for metric are:: ['rbf', 'sigmoid', 'polynomial', 'poly', 'linear', 'cosine'] Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise kernels between samples, or a feature array. Y : array [n_samples_b, n_features] A second feature array only if X has shape [n_samples_a, n_features]. metric : string, or callable The metric to use when calculating kernel between instances in a feature array. If metric is a string, it must be one of the metrics in pairwise.PAIRWISE_KERNEL_FUNCTIONS. If metric is "precomputed", X is assumed to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. n_jobs : int The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. filter_params: boolean Whether to filter invalid parameters or not. `**kwds` : optional keyword parameters Any further parameters are passed directly to the kernel function. Returns ------- K : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b] A kernel matrix K such that K_{i, j} is the kernel between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then K_{i, j} is the kernel between the ith array from X and the jth array from Y. Notes ----- If metric is 'precomputed', Y is ignored and X is returned. """ # import GPKernel locally to prevent circular imports from ..gaussian_process.kernels import Kernel as GPKernel if metric == "precomputed": X, _ = check_pairwise_arrays(X, Y, precomputed=True) return X elif isinstance(metric, GPKernel): func = metric.__call__ elif metric in PAIRWISE_KERNEL_FUNCTIONS: if filter_params: kwds = dict((k, kwds[k]) for k in kwds if k in KERNEL_PARAMS[metric]) func = PAIRWISE_KERNEL_FUNCTIONS[metric] elif callable(metric): func = partial(_pairwise_callable, metric=metric, **kwds) else: raise ValueError("Unknown kernel %r" % metric) return _parallel_pairwise(X, Y, func, n_jobs, **kwds)
bsd-3-clause
dingocuster/scikit-learn
examples/applications/plot_species_distribution_modeling.py
254
7434
""" ============================= Species distribution modeling ============================= Modeling species' geographic distributions is an important problem in conservation biology. In this example we model the geographic distribution of two south american mammals given past observations and 14 environmental variables. Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density estimation problem and use the `OneClassSVM` provided by the package `sklearn.svm` as our modeling tool. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.sourceforge.net/basemap/doc/html/>`_ to plot the coast lines and national boundaries of South America. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: BSD 3 clause from __future__ import print_function from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.base import Bunch from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn import svm, metrics # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False print(__doc__) def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid): """Create a bunch with information about a particular organism This will use the test/train record arrays to extract the data specific to the given species name. """ bunch = Bunch(name=' '.join(species_name.split("_")[:2])) species_name = species_name.encode('ascii') points = dict(test=test, train=train) for label, pts in points.items(): # choose points associated with the desired species pts = pts[pts['species'] == species_name] bunch['pts_%s' % label] = pts # determine coverage values for each of the training & testing points ix = np.searchsorted(xgrid, pts['dd long']) iy = np.searchsorted(ygrid, pts['dd lat']) bunch['cov_%s' % label] = coverages[:, -iy, ix].T return bunch def plot_species_distribution(species=("bradypus_variegatus_0", "microryzomys_minutus_0")): """ Plot the species distribution. """ if len(species) > 2: print("Note: when more than two species are provided," " only the first two will be used") t0 = time() # Load the compressed data data = fetch_species_distributions() # Set up the data grid xgrid, ygrid = construct_grids(data) # The grid in x,y coordinates X, Y = np.meshgrid(xgrid, ygrid[::-1]) # create a bunch for each species BV_bunch = create_species_bunch(species[0], data.train, data.test, data.coverages, xgrid, ygrid) MM_bunch = create_species_bunch(species[1], data.train, data.test, data.coverages, xgrid, ygrid) # background points (grid coordinates) for evaluation np.random.seed(13) background_points = np.c_[np.random.randint(low=0, high=data.Ny, size=10000), np.random.randint(low=0, high=data.Nx, size=10000)].T # We'll make use of the fact that coverages[6] has measurements at all # land points. This will help us decide between land and water. land_reference = data.coverages[6] # Fit, predict, and plot for each species. for i, species in enumerate([BV_bunch, MM_bunch]): print("_" * 80) print("Modeling distribution of species '%s'" % species.name) # Standardize features mean = species.cov_train.mean(axis=0) std = species.cov_train.std(axis=0) train_cover_std = (species.cov_train - mean) / std # Fit OneClassSVM print(" - fit OneClassSVM ... ", end='') clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5) clf.fit(train_cover_std) print("done.") # Plot map of South America plt.subplot(1, 2, i + 1) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) print(" - predict species distribution") # Predict species distribution using the training data Z = np.ones((data.Ny, data.Nx), dtype=np.float64) # We'll predict only for the land points. idx = np.where(land_reference > -9999) coverages_land = data.coverages[:, idx[0], idx[1]].T pred = clf.decision_function((coverages_land - mean) / std)[:, 0] Z *= pred.min() Z[idx[0], idx[1]] = pred levels = np.linspace(Z.min(), Z.max(), 25) Z[land_reference == -9999] = -9999 # plot contours of the prediction plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) plt.colorbar(format='%.2f') # scatter training/testing points plt.scatter(species.pts_train['dd long'], species.pts_train['dd lat'], s=2 ** 2, c='black', marker='^', label='train') plt.scatter(species.pts_test['dd long'], species.pts_test['dd lat'], s=2 ** 2, c='black', marker='x', label='test') plt.legend() plt.title(species.name) plt.axis('equal') # Compute AUC with regards to background points pred_background = Z[background_points[0], background_points[1]] pred_test = clf.decision_function((species.cov_test - mean) / std)[:, 0] scores = np.r_[pred_test, pred_background] y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)] fpr, tpr, thresholds = metrics.roc_curve(y, scores) roc_auc = metrics.auc(fpr, tpr) plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right") print("\n Area under the ROC curve : %f" % roc_auc) print("\ntime elapsed: %.2fs" % (time() - t0)) plot_species_distribution() plt.show()
bsd-3-clause
nguy/brawl4d
LMA/controller.py
1
10240
""" Support for LMA data display in brawl4d. These are meant to be lightweight wrappers to coordinate data formats understood by the lmatools package. """ import numpy as np from lmatools.flashsort.autosort.LMAarrayFile import LMAdataFile from stormdrain.bounds import Bounds, BoundsFilter from stormdrain.data import NamedArrayDataset, indexed from stormdrain.pipeline import Branchpoint, coroutine, ItemModifier from stormdrain.support.matplotlib.artistupdaters import PanelsScatterController from stormdrain.support.matplotlib.poly_lasso import LassoPayloadController class LMAAnimator(object): def __init__(self, duration, variable='time'): self.tstart = time.time() self.duration = duration def draw_frame(self, animator, time_fraction): pass def init_draw(self, animator): pass class LMAController(object): """ Manages bounds object with LMA-specific criteria. Convenience functions for loading LMA data. """ z_alt_mapping = {'z':('alt', (lambda v: (v[0]*1.0e3 - 1.0e3, v[1]*1.0e3 + 1.0e3)) ) } def __init__(self, *args, **kwargs): super(LMAController, self).__init__(*args, **kwargs) self.bounds = Bounds(chi2=(0.0, 1.0), stations=(6, 99)) self.default_color_bounds = Bounds(parent=self.bounds, charge=(-1,1)) self.datasets = set() self.flash_datasets = set() def pipeline_for_dataset(self, d, panels, names4d=('lon', 'lat', 'alt', 'time'), transform_mapping=None, scatter_kwargs = {} ): """ Set 4d_names to the spatial coordinate names in d that provide longitude, latitude, altitude, and time. Default of lon, lat, alt, and time which are assumed to be in deg, deg, meters, seconds entries in the scatter_kwargs dictionary are passed as kwargs to the matplotlib scatter call. """ # Set up dataset -> time-height bound filter -> brancher branch = Branchpoint([]) brancher = branch.broadcast() # strictly speaking, z in the map projection and MSL alt aren't the same - z is somewhat distorted by the projection. # therefore, add some padding. filtered again later after projection. quality_filter = BoundsFilter(target=brancher, bounds=self.bounds).filter() if transform_mapping is None: transform_mapping = self.z_alt_mapping # Use 'time', which is the name in panels.bounds, and not names4d[3], which should # is linked to 'time' by transform_mapping if necessary bound_filter = BoundsFilter(target=quality_filter, bounds=panels.bounds, restrict_to=('time'), transform_mapping=transform_mapping) filterer = bound_filter.filter() d.target = filterer # Set up brancher -> coordinate transform -> final_filter -> mutli-axis scatter updater scatter_ctrl = PanelsScatterController( panels=panels, color_field=names4d[3], default_color_bounds=self.default_color_bounds, **scatter_kwargs) scatter_outlet_broadcaster = scatter_ctrl.branchpoint scatter_updater = scatter_outlet_broadcaster.broadcast() final_bound_filter = BoundsFilter(target=scatter_updater, bounds=panels.bounds) final_filterer = final_bound_filter.filter() cs_transformer = panels.cs.project_points( target=final_filterer, x_coord='x', y_coord='y', z_coord='z', lat_coord=names4d[1], lon_coord=names4d[0], alt_coord=names4d[2], distance_scale_factor=1.0e-3) branch.targets.add(cs_transformer) # return each broadcaster so that other things can tap into results of transformation of this dataset return branch, scatter_ctrl @coroutine def flash_stat_printer(self, min_points=10): while True: ev, fl = (yield) template = "{0} of {1} flashes have > {3} points. Their average area = {2:5.1f} km^2" N = len(fl) good = (fl['n_points'] >= min_points) N_good = len(fl[good]) area = np.mean(fl['area'][good]) print template.format(N_good, N, area, min_points) def flash_stats_for_dataset(self, d, selection_broadcaster): flash_stat_branchpoint = Branchpoint([self.flash_stat_printer()]) flash_stat_brancher = flash_stat_branchpoint.broadcast() @coroutine def flash_data_for_selection(target, flash_id_key = 'flash_id'): """ Accepts an array of event data from the pipeline, and sends event and flash data. """ while True: ev = (yield) # array of event data fl_dat = d.flash_data flash_ids = set(ev[flash_id_key]) flashes = np.fromiter( (fl for fl in fl_dat if fl[flash_id_key] in flash_ids), dtype=fl_dat.dtype) target.send((ev, flashes)) selection_broadcaster.targets.add(flash_data_for_selection(flash_stat_brancher)) return flash_stat_branchpoint @indexed() def read_dat(self, *args, **kwargs): """ All args and kwargs are passed to the LMAdataFile object from lmatools""" lma = LMAdataFile(*args, **kwargs) stn = lma.stations # adds stations to lma.data as a side-effect d = NamedArrayDataset(lma.data) self.datasets.add(d) return d def load_dat_to_panels(self, panels, *args, **kwargs): """ All args and kwargs are passed to the LMAdataFile object from lmatools""" d = self.read_dat(*args, **kwargs) post_filter_brancher, scatter_ctrl = self.pipeline_for_dataset(d, panels) branch_to_scatter_artists = scatter_ctrl.branchpoint # ask for a copy of the array from each selection operation, so that # it's saved and ready for any lasso operations charge_lasso = LassoChargeController( target=ItemModifier( target=d.update(field_names=['charge']), item_name='charge').modify()) branch_to_scatter_artists.targets.add(charge_lasso.cache_segment.cache_segment()) return d, post_filter_brancher, scatter_ctrl, charge_lasso @indexed(index_name='hdf_row_idx') def read_hdf5(self, LMAfileHDF): try: import tables except ImportError: print "couldn't import pytables" return None from hdf5_lma import HDF5Dataset # get the HDF5 table name LMAh5 = tables.openFile(LMAfileHDF, 'r') table_names = LMAh5.root.events._v_children.keys() table_path = '/events/' + table_names[0] LMAh5.close() d = HDF5Dataset(LMAfileHDF, table_path=table_path, mode='a') self.datasets.add(d) if d.flash_table is not None: print "found flash data" return d def load_hdf5_to_panels(self, panels, LMAfileHDF, scatter_kwargs={}): d = self.read_hdf5(LMAfileHDF) post_filter_brancher, scatter_ctrl = self.pipeline_for_dataset(d, panels, scatter_kwargs=scatter_kwargs) branch_to_scatter_artists = scatter_ctrl.branchpoint charge_lasso = LassoChargeController( target=ItemModifier( target=d.update(index_name='hdf_row_idx', field_names=['charge']), item_name='charge').modify()) branch_to_scatter_artists.targets.add(charge_lasso.cache_segment.cache_segment()) return d, post_filter_brancher, scatter_ctrl, charge_lasso def load_hdf5_flashes_to_panels(self, panels, hdf5dataset, min_points=10): """ Set up a flash dataset display. The sole argument is usually the HDF5 LMA dataset returned by a call to self.load_hdf5_to_panels """ from hdf5_lma import HDF5FlashDataset if hdf5dataset.flash_table is not None: point_count_dtype = hdf5dataset.flash_data['n_points'].dtype self.bounds.n_points = (min_points, np.iinfo(point_count_dtype)) flash_d = HDF5FlashDataset(hdf5dataset) transform_mapping = {} transform_mapping['time'] = ('start', (lambda v: (v[0], v[1])) ) transform_mapping['lat'] = ('init_lat', (lambda v: (v[0], v[1])) ) transform_mapping['lon'] = ('init_lon', (lambda v: (v[0], v[1])) ) transform_mapping['z'] = ('init_alt', (lambda v: (v[0]*1.0e3 - 1.0e3, v[1]*1.0e3 + 1.0e3)) ) flash_post_filter_brancher, flash_scatter_ctrl = self.pipeline_for_dataset(flash_d, panels, transform_mapping=transform_mapping, names4d=('init_lon', 'init_lat', 'init_alt', 'start') ) for art in flash_scatter_ctrl.artist_outlet_controllers: # there is no time variable, but the artist updater is set to expect # time. Patch that up. if art.coords == ('time', 'z'): art.coords = ('start', 'z') # Draw flash markers in a different style art.artist.set_edgecolor('k') self.flash_datasets.add(flash_d) return flash_d, flash_post_filter_brancher, flash_scatter_ctrl class LassoChargeController(LassoPayloadController): """ The "charge" attribute is one of {-1, 0, 1} to set negative, unclassified, or positive charge, or None to do nothing. """ charge = LassoPayloadController.Payload()
bsd-2-clause
ashokpant/clandmark
python_interface/bin/flandmark_demo.py
6
2152
import numpy as np import os from fnmatch import fnmatch from py_flandmark import PyFlandmark from PIL import Image import ImageDraw import matplotlib.pyplot as plt def rgb2gray(rgb): """ converts rgb array to grey scale variant accordingly to fomula taken from wiki (this function is missing in python) """ return np.dot(rgb[...,:3], [0.299, 0.587, 0.144]) def read_bbox_from_txt(file_name): """ returns 2x2 matrix coordinates of left upper and right lower corners of rectangle that contains face stored in columns of matrix """ f = open(file_name) str = f.read().replace(',', ' ') f.close() ret = np.array(map(int,str.split()) ,dtype=np.int32) ret = ret.reshape((2,2), order='F') return ret DIR = '../../../data/Images/' JPGS = [f for f in os.listdir(DIR) if fnmatch(f, '*.jpg')] flmrk = PyFlandmark("../../../data/flandmark_model.xml", False) for jpg_name in JPGS: file_name = jpg_name[:-4] img = Image.open(DIR + jpg_name) arr = rgb2gray(np.asarray(img)) bbox = read_bbox_from_txt(DIR + jpg_name[:-4] + '.det') d_landmarks = flmrk.detect(arr, bbox) n = d_landmarks.shape[1] print "test detect method" im = Image.fromarray(arr) img_dr = ImageDraw.Draw(im) img_dr.rectangle([tuple(bbox[:,0]), tuple(bbox[:,1])], outline="#FF00FF") r = 2. for i in xrange(n): x = d_landmarks[0,i] y = d_landmarks[1,i] img_dr.ellipse((x-r, y-r, x+r, y+r), fill=0.) plt.imshow(np.asarray(im), cmap = plt.get_cmap('gray')) plt.show() print "test detect method" frame = flmrk.get_normalized_frame(arr, bbox)[0] frame = frame.astype(np.double) im = Image.fromarray(frame) plt.imshow(np.asarray(im), cmap = plt.get_cmap('gray')) plt.show() print "test detect_base method" landmarks = flmrk.detect_base(frame) im = Image.fromarray(frame) img_dr = ImageDraw.Draw(im) r = 2. for i in xrange(n): x = landmarks[0,i] y = landmarks[1,i] img_dr.ellipse((x-r, y-r, x+r, y+r), fill=0.) plt.imshow(np.asarray(im), cmap = plt.get_cmap('gray')) plt.show() print "test psi method" psi = flmrk.get_psi(frame, landmarks.astype(np.int32), bbox) #flmrk.get_psi(d_landmarks, arr, bbox) break
gpl-3.0
abbeymiles/aima-python
submissions/Blue/myNN.py
10
3071
from sklearn import datasets from sklearn.neural_network import MLPClassifier import traceback from submissions.Blue import music class DataFrame: data = [] feature_names = [] target = [] target_names = [] musicATRB = DataFrame() musicATRB.data = [] targetData = [] ''' Extract data from the CORGIS Music Library. Most 'hit' songs average 48-52 bars and no more than ~3 minutes (180 seconds)... ''' allSongs = music.get_songs() for song in allSongs: try: length = float(song['song']["duration"]) targetData.append(length) genre = song['artist']['terms'] #String title = song['song']['title'] #String # release = float(song['song']['Release']) musicATRB.data.append([genre, title]) except: traceback.print_exc() musicATRB.feature_names = [ 'Genre', 'Title', 'Release', 'Length', ] musicATRB.target = [] def musicTarget(release): if (song['song']['duration'] <= 210 ): #if the song is less that 3.5 minutes (210 seconds) long return 1 return 0 for i in targetData: tt = musicTarget(i) musicATRB.target.append(tt) musicATRB.target_names = [ 'Not a hit song', 'Could be a hit song', ] Examples = { 'Music': musicATRB, } ''' Make a customn classifier, ''' mlpc = MLPClassifier( hidden_layer_sizes = (100,), activation = 'relu', solver='sgd', # 'adam', alpha = 0.0001, # batch_size='auto', learning_rate = 'adaptive', # 'constant', # power_t = 0.5, max_iter = 1000, # 200, shuffle = True, # random_state = None, # tol = 1e-4, # verbose = False, # warm_start = False, # momentum = 0.9, # nesterovs_momentum = True, # early_stopping = False, # validation_fraction = 0.1, # beta_1 = 0.9, # beta_2 = 0.999, # epsilon = 1e-8, ) ''' Try scaling the data. ''' musicScaled = DataFrame() def setupScales(grid): global min, max min = list(grid[0]) max = list(grid[0]) for row in range(1, len(grid)): for col in range(len(grid[row])): cell = grid[row][col] if cell < min[col]: min[col] = cell if cell > max[col]: max[col] = cell def scaleGrid(grid): newGrid = [] for row in range(len(grid)): newRow = [] for col in range(len(grid[row])): try: cell = grid[row][col] scaled = (cell - min[col]) \ / (max[col] - min[col]) newRow.append(scaled) except: pass newGrid.append(newRow) return newGrid setupScales(musicATRB.data) musicScaled.data = scaleGrid(musicATRB.data) musicScaled.feature_names = musicATRB.feature_names musicScaled.target = musicATRB.target musicScaled.target_names = musicATRB.target_names Examples = { 'musicDefault': { 'frame': musicATRB, }, 'MusicSGD': { 'frame': musicATRB, 'mlpc': mlpc }, 'MusisScaled': { 'frame': musicScaled, }, }
mit
jblackburne/scikit-learn
sklearn/manifold/setup.py
24
1279
import os from os.path import join import numpy from numpy.distutils.misc_util import Configuration from sklearn._build_utils import get_blas_info def configuration(parent_package="", top_path=None): config = Configuration("manifold", parent_package, top_path) libraries = [] if os.name == 'posix': libraries.append('m') config.add_extension("_utils", sources=["_utils.c"], include_dirs=[numpy.get_include()], libraries=libraries, extra_compile_args=["-O3"]) cblas_libs, blas_info = get_blas_info() eca = blas_info.pop('extra_compile_args', []) eca.append("-O4") config.add_extension("_barnes_hut_tsne", libraries=cblas_libs, sources=["_barnes_hut_tsne.c"], include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=eca, **blas_info) config.add_subpackage('tests') return config if __name__ == "__main__": from numpy.distutils.core import setup setup(**configuration().todict())
bsd-3-clause
MartinDelzant/scikit-learn
sklearn/utils/tests/test_random.py
230
7344
from __future__ import division import numpy as np import scipy.sparse as sp from scipy.misc import comb as combinations from numpy.testing import assert_array_almost_equal from sklearn.utils.random import sample_without_replacement from sklearn.utils.random import random_choice_csc from sklearn.utils.testing import ( assert_raises, assert_equal, assert_true) ############################################################################### # test custom sampling without replacement algorithm ############################################################################### def test_invalid_sample_without_replacement_algorithm(): assert_raises(ValueError, sample_without_replacement, 5, 4, "unknown") def test_sample_without_replacement_algorithms(): methods = ("auto", "tracking_selection", "reservoir_sampling", "pool") for m in methods: def sample_without_replacement_method(n_population, n_samples, random_state=None): return sample_without_replacement(n_population, n_samples, method=m, random_state=random_state) check_edge_case_of_sample_int(sample_without_replacement_method) check_sample_int(sample_without_replacement_method) check_sample_int_distribution(sample_without_replacement_method) def check_edge_case_of_sample_int(sample_without_replacement): # n_poluation < n_sample assert_raises(ValueError, sample_without_replacement, 0, 1) assert_raises(ValueError, sample_without_replacement, 1, 2) # n_population == n_samples assert_equal(sample_without_replacement(0, 0).shape, (0, )) assert_equal(sample_without_replacement(1, 1).shape, (1, )) # n_population >= n_samples assert_equal(sample_without_replacement(5, 0).shape, (0, )) assert_equal(sample_without_replacement(5, 1).shape, (1, )) # n_population < 0 or n_samples < 0 assert_raises(ValueError, sample_without_replacement, -1, 5) assert_raises(ValueError, sample_without_replacement, 5, -1) def check_sample_int(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # the sample is of the correct length and contains only unique items n_population = 100 for n_samples in range(n_population + 1): s = sample_without_replacement(n_population, n_samples) assert_equal(len(s), n_samples) unique = np.unique(s) assert_equal(np.size(unique), n_samples) assert_true(np.all(unique < n_population)) # test edge case n_population == n_samples == 0 assert_equal(np.size(sample_without_replacement(0, 0)), 0) def check_sample_int_distribution(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # sample generates all possible permutations n_population = 10 # a large number of trials prevents false negatives without slowing normal # case n_trials = 10000 for n_samples in range(n_population): # Counting the number of combinations is not as good as counting the # the number of permutations. However, it works with sampling algorithm # that does not provide a random permutation of the subset of integer. n_expected = combinations(n_population, n_samples, exact=True) output = {} for i in range(n_trials): output[frozenset(sample_without_replacement(n_population, n_samples))] = None if len(output) == n_expected: break else: raise AssertionError( "number of combinations != number of expected (%s != %s)" % (len(output), n_expected)) def test_random_choice_csc(n_samples=10000, random_state=24): # Explicit class probabilities classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Implicit class probabilities classes = [[0, 1], [1, 2]] # test for array-like support class_probabilites = [np.array([0.5, 0.5]), np.array([0, 1/2, 1/2])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Edge case proabilites 1.0 and 0.0 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([1.0, 0.0]), np.array([0.0, 1.0, 0.0])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel(), minlength=len(class_probabilites[k])) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) # One class target data classes = [[1], [0]] # test for array-like support class_probabilites = [np.array([0.0, 1.0]), np.array([1.0])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) def test_random_choice_csc_errors(): # the length of an array in classes and class_probabilites is mismatched classes = [np.array([0, 1]), np.array([0, 1, 2, 3])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array(["a", "1"]), np.array(["z", "1", "2"])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array([4.2, 0.1]), np.array([0.1, 0.2, 9.4])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # Given proabilites don't sum to 1 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.6]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1)
bsd-3-clause
juanshishido/okcupid
utils/permutation.py
1
2439
import numpy as np from scipy.stats import ttest_ind from sklearn.metrics import accuracy_score def _diff_means(m, arr): """Calculate the difference-in-means statistic. This is based on an input array, `arr`, where the first `m` observations correspond to a particular class. Parameters ---------- m : int Number of samples in the first class arr : np.ndarray Data for both classes Returns ------- float """ return np.mean(arr[:m]) - np.mean(arr[m:]) def _permute(a, b, comparison='predictions', permutations=10000): """Estimate of the permutation-based p-value Parameters ---------- a : np.ndarray Data for one class or ground truth (correct) labels b : np.ndarray Data for another class or predicted labels, as returned by a classifier comparison : str {'predictions', 'means'} permutations : int, optional Number of permutations Returns ------- p_value : float The proportion of times a value as extreme as the observed estimate is seen Notes ----- This calculates the two-tailed p-value """ assert comparison in ('predictions', 'means') np.random.seed(42) if comparison == 'predictions': c = b.copy() compare = accuracy_score else: c = np.append(a, b) a = a.shape[0] compare = _diff_means baseline = compare(a, c) v = [] for _ in range(permutations): np.random.shuffle(c) v.append(compare(a, c)) p_value = (np.abs(np.array(v)) >= np.abs(baseline)).sum() / permutations return p_value def print_pvalues(a, b): """Wrapper function for printing meand and p-values both permutation-based and classical Parameters ---------- a : np.ndarray Data for one class or ground truth (correct) labels b : np.ndarray Data for another class or predicted labels, as returned by a classifier Returns ------- None """ assert isinstance(a, np.ndarray) and isinstance(b, np.ndarray) rnd = lambda x: np.round(x, 8) permutation = _permute(a, b, 'means') classical = ttest_ind(a, b, equal_var=False)[1] print("[means] 'a':", rnd(a.mean()), "'b':", rnd(b.mean())) print("p-values:") print(" [permutation]:", rnd(permutation)) print(" [classical]: ", rnd(classical))
mit
jrbourbeau/cr-composition
processing/legacy/anisotropy/random_trials/process_kstest.py
2
7627
#!/usr/bin/env python import os import argparse import numpy as np import pandas as pd import pycondor import comptools as comp if __name__ == "__main__": p = argparse.ArgumentParser( description='Extracts and saves desired information from simulation/data .i3 files') p.add_argument('-c', '--config', dest='config', default='IC86.2012', choices=['IC79', 'IC86.2012', 'IC86.2013', 'IC86.2014', 'IC86.2015'], help='Detector configuration') p.add_argument('--low_energy', dest='low_energy', default=False, action='store_true', help='Only use events with energy < 10**6.75 GeV') p.add_argument('--n_side', dest='n_side', type=int, default=64, help='Number of times to split the DataFrame') p.add_argument('--chunksize', dest='chunksize', type=int, default=1000, help='Number of lines used when reading in DataFrame') p.add_argument('--n_batches', dest='n_batches', type=int, default=50, help='Number batches running in parallel for each ks-test trial') p.add_argument('--ks_trials', dest='ks_trials', type=int, default=100, help='Number of random maps to generate') p.add_argument('--overwrite', dest='overwrite', default=False, action='store_true', help='Option to overwrite reference map file, ' 'if it alreadu exists') p.add_argument('--test', dest='test', default=False, action='store_true', help='Option to run small test version') args = p.parse_args() if args.test: args.ks_trials = 20 args.n_batches = 10000 args.chunksize = 100 # Define output directories error = comp.paths.condor_data_dir + '/ks_test_{}/error'.format(args.config) output = comp.paths.condor_data_dir + '/ks_test_{}/output'.format(args.config) log = comp.paths.condor_scratch_dir + '/ks_test_{}/log'.format(args.config) submit = comp.paths.condor_scratch_dir + '/ks_test_{}/submit'.format(args.config) # Define path to executables make_maps_ex = os.path.join(comp.paths.project_home, 'processing/anisotropy/ks_test_multipart', 'make_maps.py') merge_maps_ex = os.path.join(comp.paths.project_home, 'processing/anisotropy/ks_test_multipart', 'merge_maps.py') save_pvals_ex = os.path.join(comp.paths.project_home, 'processing/anisotropy/ks_test_multipart', 'save_pvals.py') # Create Dagman instance dag_name = 'anisotropy_kstest_{}'.format(args.config) if args.test: dag_name += '_test' dagman = pycondor.Dagman(dag_name, submit=submit, verbose=1) # Create Job for saving ks-test p-values for each trial save_pvals_name = 'save_pvals_{}'.format(args.config) if args.low_energy: save_pvals_name += '_lowenergy' save_pvals_job = pycondor.Job(save_pvals_name, save_pvals_ex, error=error, output=output, log=log, submit=submit, verbose=1) save_pvals_infiles_0 = [] save_pvals_infiles_1 = [] dagman.add_job(save_pvals_job) outdir = os.path.join(comp.paths.comp_data_dir, args.config + '_data', 'anisotropy', 'random_splits') if args.test: outdir = os.path.join(outdir, 'test') for trial_num in range(args.ks_trials): # Create map_maps jobs for this ks_trial make_maps_name = 'make_maps_{}_trial-{}'.format(args.config, trial_num) if args.low_energy: make_maps_name += '_lowenergy' make_maps_job = pycondor.Job(make_maps_name, make_maps_ex, error=error, output=output, log=log, submit=submit, verbose=1) dagman.add_job(make_maps_job) merge_maps_infiles_0 = [] merge_maps_infiles_1 = [] for batch_idx in range(args.n_batches): if args.test and batch_idx > 2: break outfile_sample_1 = os.path.join(outdir, 'random_split_1_trial-{}_batch-{}.fits'.format(trial_num, batch_idx)) outfile_sample_0 = os.path.join(outdir, 'random_split_0_trial-{}_batch-{}.fits'.format(trial_num, batch_idx)) make_maps_arg_list = [] make_maps_arg_list.append('--config {}'.format(args.config)) make_maps_arg_list.append('--n_side {}'.format(args.n_side)) make_maps_arg_list.append('--chunksize {}'.format(args.chunksize)) make_maps_arg_list.append('--n_batches {}'.format(args.n_batches)) make_maps_arg_list.append('--batch_idx {}'.format(batch_idx)) make_maps_arg_list.append('--outfile_sample_0 {}'.format(outfile_sample_0)) make_maps_arg_list.append('--outfile_sample_1 {}'.format(outfile_sample_1)) make_maps_arg = ' '.join(make_maps_arg_list) if args.low_energy: make_maps_arg += ' --low_energy' make_maps_job.add_arg(make_maps_arg) # Add this outfile to the list of infiles for merge_maps_job merge_maps_infiles_0.append(outfile_sample_0) merge_maps_infiles_1.append(outfile_sample_1) for sample_idx, input_file_list in enumerate([merge_maps_infiles_0, merge_maps_infiles_1]): merge_maps_name = 'merge_maps_{}_trial-{}_split-{}'.format(args.config, trial_num, sample_idx) if args.low_energy: merge_maps_name += '_lowenergy' merge_maps_job = pycondor.Job(merge_maps_name, merge_maps_ex, error=error, output=output, log=log, submit=submit, verbose=1) # Ensure that make_maps_job completes before merge_maps_job begins make_maps_job.add_child(merge_maps_job) merge_maps_job.add_child(save_pvals_job) dagman.add_job(merge_maps_job) merge_infiles_str = ' '.join(input_file_list) # Assemble merged output file path merge_outfile = os.path.join(outdir, 'random_split_{}_trial-{}.fits'.format(sample_idx, trial_num)) merge_maps_arg = '--infiles {} --outfile {}'.format(merge_infiles_str, merge_outfile) merge_maps_job.add_arg(merge_maps_arg) if sample_idx == 0: save_pvals_infiles_0.append(merge_outfile) else: save_pvals_infiles_1.append(merge_outfile) save_pvals_infiles_0_str = ' '.join(save_pvals_infiles_0) save_pvals_infiles_1_str = ' '.join(save_pvals_infiles_1) if args.low_energy: outfile_basename = 'ks_test_dataframe_lowenergy.hdf' else: outfile_basename = 'ks_test_dataframe.hdf' outfile = os.path.join(outdir, outfile_basename) save_pvals_arg = '--infiles_sample_0 {} --infiles_sample_1 {} ' \ '--outfile {}'.format(save_pvals_infiles_0_str, save_pvals_infiles_1_str, outfile) save_pvals_job.add_arg(save_pvals_arg) dagman.build_submit(fancyname=True)
mit
bradleyhd/netsim
nodes_vs_routing_speed.py
1
2878
import matplotlib.pyplot as plt import numpy as np import math from scipy.optimize import curve_fit def linear(x, a, b): return a * x + b def quadratic(x, a, b, c): return a * x**2 + b * x + c def exponential(x, a, b, c): return a * x**b + c fig = plt.figure(num=None, figsize=(12, 8), dpi=300, facecolor='k', edgecolor='k') xs = [[1014, 4383, 11821, 37698, 108043, 286563, 672292], [1014, 4383, 11821, 37698, 108043, 286563, 672292], [1014, 4383, 11821, 37698, 108043, 286563, 672292], [1014, 4383, 11821, 37698, 108043, 286563, 672292]] ys = [[0.00013309850001519408, 0.00059208550001699223, 0.002604027000003839, 0.004665461000030291, 0.014662985999962075, 0.023410306499954459, 0.041176939000251878], [0.00014861549998101964, 0.00055641999999522795, 0.002577900000005684, 0.0054275369999459144, 0.021226498000032734, 0.029786237500047719, 0.059782716000881919], [0.00012334000000180367, 0.00043368899999052246, 0.0020054734999632728, 0.005848614000001362, 0.014609930999995413, 0.019599954500336025, 0.028973604500606598], [0.00012613299999486571, 0.00044437049999146438, 0.0021501399999692694, 0.0055929929999933847, 0.019908546500118973, 0.039582631500252319, 0.054390303499531001]] ys = np.array(ys) * 1000 def graph(i, label, color, marker, l_marker): y = np.array(ys[i]) x = np.array(xs[i]) xl = np.linspace(np.min(x), np.max(x), 500) popt, pcov = curve_fit(exponential, x, y) plt.scatter(x, y, label=label, color=color, marker=marker) plt.plot(xl, exponential(xl, *popt), color=color, linestyle=l_marker) blue = '#5738FF' purple = '#E747E7' orange = '#E7A725' green = '#A1FF47' red = '#FF1E43' gray = '#333333' white = 'w' graph(0, 'EDS5 - original graph', red, 'o', '--') graph(1, 'N5 - original graph', purple, 's', '--') graph(2, 'EDS5 - decision graph', blue, '^', '--') graph(3, 'N5 - decision graph', white, 'D', '--') ax = fig.gca() plt.title('Effects of Node Ordering on Routing Speed', color=white) plt.xlabel('Effective $\\vert V\/\\vert$') plt.ylabel('Routing Time (ms)') plt.axes().set_axis_bgcolor('black') ax.xaxis.label.set_color(white) ax.yaxis.label.set_color(white) ax.tick_params(axis='x', colors=white) ax.tick_params(axis='y', colors=white) ax.spines['bottom'].set_color(white) ax.spines['top'].set_color(white) ax.spines['left'].set_color(white) ax.spines['right'].set_color(white) legend = plt.legend(loc=0, numpoints=1, framealpha=0.0) legend.get_frame().set_facecolor('k') max_x = np.max(np.array(xs)) max_y = np.max(np.array(ys)) min_x = np.min(np.array(xs)) min_y = 0 - (max_y * 0.01) min_x = 0 - (max_x * 0.01) max_x *= 1.01 max_y *= 1.01 plt.axes().set_xlim([min_x, max_x]) plt.axes().set_ylim([min_y, max_y]) for text in legend.get_texts(): text.set_color(white) # plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) plt.savefig('nodes_vs_routing_speed.png', transparent=True) #plt.show()
gpl-3.0
esc/dask
dask/dataframe/shuffle.py
4
2967
from itertools import count from collections import Iterator from math import ceil from toolz import merge, accumulate, merge_sorted import toolz from operator import getitem, setitem import pandas as pd import numpy as np from pframe import pframe from .. import threaded from .core import DataFrame, Series, get, names from ..compatibility import unicode from ..utils import ignoring tokens = ('-%d' % i for i in count(1)) def set_index(f, index, npartitions=None, **kwargs): """ Set DataFrame index to new column Sorts index and realigns Dataframe to new sorted order. This shuffles and repartitions your data. """ npartitions = npartitions or f.npartitions if not isinstance(index, Series): index2 = f[index] else: index2 = index divisions = (index2 .quantiles(np.linspace(0, 100, npartitions+1)[1:-1]) .compute()) return f.set_partition(index, divisions, **kwargs) partition_names = ('set_partition-%d' % i for i in count(1)) def set_partition(f, index, divisions, get=threaded.get, **kwargs): """ Set new partitioning along index given divisions """ divisions = unique(divisions) name = next(names) if isinstance(index, Series): assert index.divisions == f.divisions dsk = dict(((name, i), (f._partition_type.set_index, block, ind)) for i, (block, ind) in enumerate(zip(f._keys(), index._keys()))) f2 = type(f)(merge(f.dask, index.dask, dsk), name, f.column_info, f.divisions) else: dsk = dict(((name, i), (f._partition_type.set_index, block, index)) for i, block in enumerate(f._keys())) f2 = type(f)(merge(f.dask, dsk), name, f.column_info, f.divisions) head = f2.head() pf = pframe(like=head, divisions=divisions, **kwargs) def append(block): pf.append(block) return 0 f2.map_blocks(append).compute(get=get) pf.flush() return from_pframe(pf) def from_pframe(pf): """ Load dask.array from pframe """ name = next(names) dsk = dict(((name, i), (pframe.get_partition, pf, i)) for i in range(pf.npartitions)) return DataFrame(dsk, name, pf.columns, pf.divisions) def unique(divisions): """ Polymorphic unique function >>> list(unique([1, 2, 3, 1, 2, 3])) [1, 2, 3] >>> unique(np.array([1, 2, 3, 1, 2, 3])) array([1, 2, 3]) >>> unique(pd.Categorical(['Alice', 'Bob', 'Alice'], ordered=False)) [Alice, Bob] Categories (2, object): [Alice, Bob] """ if isinstance(divisions, np.ndarray): return np.unique(divisions) if isinstance(divisions, pd.Categorical): return pd.Categorical.from_codes(np.unique(divisions.codes), divisions.categories, divisions.ordered) if isinstance(divisions, (tuple, list, Iterator)): return tuple(toolz.unique(divisions)) raise NotImplementedError()
bsd-3-clause
q1ang/scikit-learn
examples/ensemble/plot_forest_importances_faces.py
403
1519
""" ================================================= Pixel importances with a parallel forest of trees ================================================= This example shows the use of forests of trees to evaluate the importance of the pixels in an image classification task (faces). The hotter the pixel, the more important. The code below also illustrates how the construction and the computation of the predictions can be parallelized within multiple jobs. """ print(__doc__) from time import time import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.ensemble import ExtraTreesClassifier # Number of cores to use to perform parallel fitting of the forest model n_jobs = 1 # Load the faces dataset data = fetch_olivetti_faces() X = data.images.reshape((len(data.images), -1)) y = data.target mask = y < 5 # Limit to 5 classes X = X[mask] y = y[mask] # Build a forest and compute the pixel importances print("Fitting ExtraTreesClassifier on faces data with %d cores..." % n_jobs) t0 = time() forest = ExtraTreesClassifier(n_estimators=1000, max_features=128, n_jobs=n_jobs, random_state=0) forest.fit(X, y) print("done in %0.3fs" % (time() - t0)) importances = forest.feature_importances_ importances = importances.reshape(data.images[0].shape) # Plot pixel importances plt.matshow(importances, cmap=plt.cm.hot) plt.title("Pixel importances with forests of trees") plt.show()
bsd-3-clause
yavalvas/yav_com
build/matplotlib/doc/mpl_toolkits/axes_grid/examples/demo_parasite_axes2.py
16
1208
from mpl_toolkits.axes_grid1 import host_subplot import mpl_toolkits.axisartist as AA import matplotlib.pyplot as plt if 1: host = host_subplot(111, axes_class=AA.Axes) plt.subplots_adjust(right=0.75) par1 = host.twinx() par2 = host.twinx() offset = 60 new_fixed_axis = par2.get_grid_helper().new_fixed_axis par2.axis["right"] = new_fixed_axis(loc="right", axes=par2, offset=(offset, 0)) par2.axis["right"].toggle(all=True) host.set_xlim(0, 2) host.set_ylim(0, 2) host.set_xlabel("Distance") host.set_ylabel("Density") par1.set_ylabel("Temperature") par2.set_ylabel("Velocity") p1, = host.plot([0, 1, 2], [0, 1, 2], label="Density") p2, = par1.plot([0, 1, 2], [0, 3, 2], label="Temperature") p3, = par2.plot([0, 1, 2], [50, 30, 15], label="Velocity") par1.set_ylim(0, 4) par2.set_ylim(1, 65) host.legend() host.axis["left"].label.set_color(p1.get_color()) par1.axis["right"].label.set_color(p2.get_color()) par2.axis["right"].label.set_color(p3.get_color()) plt.draw() plt.show() #plt.savefig("Test")
mit
woozzu/pylearn2
pylearn2/scripts/tests/test_print_monitor_cv.py
48
1927
""" Test print_monitor_cv.py by training on a short TrainCV YAML file and analyzing the output pickle. """ import os import tempfile from pylearn2.config import yaml_parse from pylearn2.scripts import print_monitor_cv from pylearn2.testing.skip import skip_if_no_sklearn def test_print_monitor_cv(): """Test print_monitor_cv.py.""" skip_if_no_sklearn() handle, filename = tempfile.mkstemp() trainer = yaml_parse.load(test_print_monitor_cv_yaml % {'filename': filename}) trainer.main_loop() # run print_monitor_cv.py main print_monitor_cv.main(filename) # run print_monitor_cv.py main with all=True print_monitor_cv.main(filename, all=True) # cleanup os.remove(filename) test_print_monitor_cv_yaml = """ !obj:pylearn2.cross_validation.TrainCV { dataset_iterator: !obj:pylearn2.cross_validation.dataset_iterators.DatasetKFold { dataset: !obj:pylearn2.testing.datasets.random_one_hot_dense_design_matrix { rng: !obj:numpy.random.RandomState { seed: 1 }, num_examples: 10, dim: 10, num_classes: 2, }, }, model: !obj:pylearn2.models.mlp.MLP { layers: [ !obj:pylearn2.models.mlp.Sigmoid { layer_name: h0, dim: 8, irange: 0.05, }, !obj:pylearn2.models.mlp.Softmax { layer_name: y, n_classes: 2, irange: 0.05, }, ], nvis: 10, }, algorithm: !obj:pylearn2.training_algorithms.bgd.BGD { batch_size: 5, line_search_mode: 'exhaustive', conjugate: 1, termination_criterion: !obj:pylearn2.termination_criteria.EpochCounter { max_epochs: 1, }, }, save_path: %(filename)s, } """
bsd-3-clause
vortex-ape/scikit-learn
examples/bicluster/plot_bicluster_newsgroups.py
39
5911
""" ================================================================ Biclustering documents with the Spectral Co-clustering algorithm ================================================================ This example demonstrates the Spectral Co-clustering algorithm on the twenty newsgroups dataset. The 'comp.os.ms-windows.misc' category is excluded because it contains many posts containing nothing but data. The TF-IDF vectorized posts form a word frequency matrix, which is then biclustered using Dhillon's Spectral Co-Clustering algorithm. The resulting document-word biclusters indicate subsets words used more often in those subsets documents. For a few of the best biclusters, its most common document categories and its ten most important words get printed. The best biclusters are determined by their normalized cut. The best words are determined by comparing their sums inside and outside the bicluster. For comparison, the documents are also clustered using MiniBatchKMeans. The document clusters derived from the biclusters achieve a better V-measure than clusters found by MiniBatchKMeans. """ from __future__ import print_function from collections import defaultdict import operator from time import time import numpy as np from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.cluster import MiniBatchKMeans from sklearn.externals.six import iteritems from sklearn.datasets.twenty_newsgroups import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.cluster import v_measure_score print(__doc__) def number_normalizer(tokens): """ Map all numeric tokens to a placeholder. For many applications, tokens that begin with a number are not directly useful, but the fact that such a token exists can be relevant. By applying this form of dimensionality reduction, some methods may perform better. """ return ("#NUMBER" if token[0].isdigit() else token for token in tokens) class NumberNormalizingVectorizer(TfidfVectorizer): def build_tokenizer(self): tokenize = super(NumberNormalizingVectorizer, self).build_tokenizer() return lambda doc: list(number_normalizer(tokenize(doc))) # exclude 'comp.os.ms-windows.misc' categories = ['alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc'] newsgroups = fetch_20newsgroups(categories=categories) y_true = newsgroups.target vectorizer = NumberNormalizingVectorizer(stop_words='english', min_df=5) cocluster = SpectralCoclustering(n_clusters=len(categories), svd_method='arpack', random_state=0) kmeans = MiniBatchKMeans(n_clusters=len(categories), batch_size=20000, random_state=0) print("Vectorizing...") X = vectorizer.fit_transform(newsgroups.data) print("Coclustering...") start_time = time() cocluster.fit(X) y_cocluster = cocluster.row_labels_ print("Done in {:.2f}s. V-measure: {:.4f}".format( time() - start_time, v_measure_score(y_cocluster, y_true))) print("MiniBatchKMeans...") start_time = time() y_kmeans = kmeans.fit_predict(X) print("Done in {:.2f}s. V-measure: {:.4f}".format( time() - start_time, v_measure_score(y_kmeans, y_true))) feature_names = vectorizer.get_feature_names() document_names = list(newsgroups.target_names[i] for i in newsgroups.target) def bicluster_ncut(i): rows, cols = cocluster.get_indices(i) if not (np.any(rows) and np.any(cols)): import sys return sys.float_info.max row_complement = np.nonzero(np.logical_not(cocluster.rows_[i]))[0] col_complement = np.nonzero(np.logical_not(cocluster.columns_[i]))[0] # Note: the following is identical to X[rows[:, np.newaxis], # cols].sum() but much faster in scipy <= 0.16 weight = X[rows][:, cols].sum() cut = (X[row_complement][:, cols].sum() + X[rows][:, col_complement].sum()) return cut / weight def most_common(d): """Items of a defaultdict(int) with the highest values. Like Counter.most_common in Python >=2.7. """ return sorted(iteritems(d), key=operator.itemgetter(1), reverse=True) bicluster_ncuts = list(bicluster_ncut(i) for i in range(len(newsgroups.target_names))) best_idx = np.argsort(bicluster_ncuts)[:5] print() print("Best biclusters:") print("----------------") for idx, cluster in enumerate(best_idx): n_rows, n_cols = cocluster.get_shape(cluster) cluster_docs, cluster_words = cocluster.get_indices(cluster) if not len(cluster_docs) or not len(cluster_words): continue # categories counter = defaultdict(int) for i in cluster_docs: counter[document_names[i]] += 1 cat_string = ", ".join("{:.0f}% {}".format(float(c) / n_rows * 100, name) for name, c in most_common(counter)[:3]) # words out_of_cluster_docs = cocluster.row_labels_ != cluster out_of_cluster_docs = np.where(out_of_cluster_docs)[0] word_col = X[:, cluster_words] word_scores = np.array(word_col[cluster_docs, :].sum(axis=0) - word_col[out_of_cluster_docs, :].sum(axis=0)) word_scores = word_scores.ravel() important_words = list(feature_names[cluster_words[i]] for i in word_scores.argsort()[:-11:-1]) print("bicluster {} : {} documents, {} words".format( idx, n_rows, n_cols)) print("categories : {}".format(cat_string)) print("words : {}\n".format(', '.join(important_words)))
bsd-3-clause
fmacias64/spyre
setup.py
3
1217
from setuptools import setup, find_packages setup( name='DataSpyre', version='0.2.0', description='Spyre makes it easy to build interactive web applications, and requires no knowledge of HTML, CSS, or Javascript.', url='https://github.com/adamhajari/spyre', author='Adam Hajari', author_email='[email protected]', license='MIT', classifiers=[ 'Development Status :: 4 - Beta', 'Framework :: CherryPy', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Environment :: Web Environment', 'Topic :: Scientific/Engineering', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', ], keywords='web application template data visualization', include_package_data = True, # include everything in source control packages = ['spyre'], # include all packages under src package_data = { '': ['*.js','*.css','*.html'], 'public': ['js/*.js','css/*.css'], }, install_requires=[ "numpy", "pandas", "cherrypy", "jinja2", "matplotlib", ] )
mit
davidgardenier/frbpoppy
tests/lognlogs/local.py
1
1611
"""Check the log N log F slope of a local population.""" import numpy as np import matplotlib.pyplot as plt from frbpoppy import CosmicPopulation, Survey, SurveyPopulation from frbpoppy.population import unpickle from tests.convenience import plot_aa_style, rel_path MAKE = True if MAKE: population = CosmicPopulation.simple(1e5, generate=True) survey = Survey('perfect') surv_pop = SurveyPopulation(population, survey) surv_pop.name = 'lognlogflocal' surv_pop.save() else: surv_pop = unpickle('lognlogflocal') # Get parameter parms = surv_pop.frbs.fluence min_p = min(parms) max_p = max(parms) # Bin up min_f = np.log10(min(parms)) max_f = np.log10(max(parms)) log_bins = np.logspace(min_f, max_f, 50) hist, edges = np.histogram(parms, bins=log_bins) n_gt_s = np.cumsum(hist[::-1])[::-1] # Calculate alpha alpha, alpha_err, norm = surv_pop.frbs.calc_logn_logs(parameter='fluence', min_p=min_p, max_p=max_p) print(alpha, alpha_err, norm) xs = 10**((np.log10(edges[:-1]) + np.log10(edges[1:])) / 2) xs = xs[xs >= min_p] xs = xs[xs <= max_p] ys = [norm*x**(alpha) for x in xs] plot_aa_style() fig = plt.figure() ax = fig.add_subplot(111) plt.step(edges[:-1], n_gt_s, where='post') plt.plot(xs, ys, linestyle='--', label=rf'$\alpha$ = {alpha:.3} $\pm$ {round(abs(alpha_err), 2)}') plt.xlabel('Fluence (Jy ms)') plt.ylabel(r'N(${>}Fluence$)') plt.xscale('log') plt.yscale('log') plt.legend() plt.tight_layout() plt.savefig(rel_path('plots/logn_logf_local.pdf'))
mit
wooga/airflow
tests/providers/presto/hooks/test_presto.py
5
4331
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import unittest from unittest import mock from unittest.mock import patch from prestodb.transaction import IsolationLevel from airflow.models import Connection from airflow.providers.presto.hooks.presto import PrestoHook class TestPrestoHookConn(unittest.TestCase): def setUp(self): super().setUp() self.connection = Connection( login='login', password='password', host='host', schema='hive', ) class UnitTestPrestoHook(PrestoHook): conn_name_attr = 'presto_conn_id' self.db_hook = UnitTestPrestoHook() self.db_hook.get_connection = mock.Mock() self.db_hook.get_connection.return_value = self.connection @patch('airflow.providers.presto.hooks.presto.prestodb.auth.BasicAuthentication') @patch('airflow.providers.presto.hooks.presto.prestodb.dbapi.connect') def test_get_conn(self, mock_connect, mock_basic_auth): self.db_hook.get_conn() mock_connect.assert_called_once_with(catalog='hive', host='host', port=None, http_scheme='http', schema='hive', source='airflow', user='login', isolation_level=0, auth=mock_basic_auth('login', 'password')) class TestPrestoHook(unittest.TestCase): def setUp(self): super().setUp() self.cur = mock.MagicMock() self.conn = mock.MagicMock() self.conn.cursor.return_value = self.cur conn = self.conn class UnitTestPrestoHook(PrestoHook): conn_name_attr = 'test_conn_id' def get_conn(self): return conn def get_isolation_level(self): return IsolationLevel.READ_COMMITTED self.db_hook = UnitTestPrestoHook() @patch('airflow.hooks.dbapi_hook.DbApiHook.insert_rows') def test_insert_rows(self, mock_insert_rows): table = "table" rows = [("hello",), ("world",)] target_fields = None commit_every = 10 self.db_hook.insert_rows(table, rows, target_fields, commit_every) mock_insert_rows.assert_called_once_with(table, rows, None, 10) def test_get_first_record(self): statement = 'SQL' result_sets = [('row1',), ('row2',)] self.cur.fetchone.return_value = result_sets[0] self.assertEqual(result_sets[0], self.db_hook.get_first(statement)) self.conn.close.assert_called_once_with() self.cur.close.assert_called_once_with() self.cur.execute.assert_called_once_with(statement) def test_get_records(self): statement = 'SQL' result_sets = [('row1',), ('row2',)] self.cur.fetchall.return_value = result_sets self.assertEqual(result_sets, self.db_hook.get_records(statement)) self.conn.close.assert_called_once_with() self.cur.close.assert_called_once_with() self.cur.execute.assert_called_once_with(statement) def test_get_pandas_df(self): statement = 'SQL' column = 'col' result_sets = [('row1',), ('row2',)] self.cur.description = [(column,)] self.cur.fetchall.return_value = result_sets df = self.db_hook.get_pandas_df(statement) self.assertEqual(column, df.columns[0]) self.assertEqual(result_sets[0][0], df.values.tolist()[0][0]) self.assertEqual(result_sets[1][0], df.values.tolist()[1][0]) self.cur.execute.assert_called_once_with(statement, None)
apache-2.0
billy-inn/scikit-learn
examples/linear_model/lasso_dense_vs_sparse_data.py
348
1862
""" ============================== Lasso on dense and sparse data ============================== We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse data the speed is improved. """ print(__doc__) from time import time from scipy import sparse from scipy import linalg from sklearn.datasets.samples_generator import make_regression from sklearn.linear_model import Lasso ############################################################################### # The two Lasso implementations on Dense data print("--- Dense matrices") X, y = make_regression(n_samples=200, n_features=5000, random_state=0) X_sp = sparse.coo_matrix(X) alpha = 1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) t0 = time() sparse_lasso.fit(X_sp, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(X, y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_)) ############################################################################### # The two Lasso implementations on Sparse data print("--- Sparse matrices") Xs = X.copy() Xs[Xs < 2.5] = 0.0 Xs = sparse.coo_matrix(Xs) Xs = Xs.tocsc() print("Matrix density : %s %%" % (Xs.nnz / float(X.size) * 100)) alpha = 0.1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) t0 = time() sparse_lasso.fit(Xs, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(Xs.toarray(), y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_))
bsd-3-clause
florentchandelier/zipline
tests/data/bundles/test_csvdir.py
1
5092
from __future__ import division import numpy as np import pandas as pd from zipline.utils.calendars import get_calendar from zipline.data.bundles import ingest, load, bundles from zipline.testing import test_resource_path from zipline.testing.fixtures import ZiplineTestCase from zipline.testing.predicates import assert_equal from zipline.utils.functional import apply class CSVDIRBundleTestCase(ZiplineTestCase): symbols = 'AAPL', 'IBM', 'KO', 'MSFT' asset_start = pd.Timestamp('2012-01-03', tz='utc') asset_end = pd.Timestamp('2014-12-31', tz='utc') bundle = bundles['csvdir'] calendar = get_calendar(bundle.calendar_name) start_date = calendar.first_session end_date = calendar.last_session api_key = 'ayylmao' columns = 'open', 'high', 'low', 'close', 'volume' def _expected_data(self, asset_finder): sids = { symbol: asset_finder.lookup_symbol( symbol, self.asset_start, ).sid for symbol in self.symbols } def per_symbol(symbol): df = pd.read_csv( test_resource_path('csvdir_samples', 'csvdir', 'daily', symbol + '.csv.gz'), parse_dates=['date'], index_col='date', usecols=[ 'open', 'high', 'low', 'close', 'volume', 'date', 'dividend', 'split', ], na_values=['NA'], ) df['sid'] = sids[symbol] return df all_ = pd.concat(map(per_symbol, self.symbols)).set_index( 'sid', append=True, ).unstack() # fancy list comprehension with statements @list @apply def pricing(): for column in self.columns: vs = all_[column].values if column == 'volume': vs = np.nan_to_num(vs) yield vs adjustments = [[5572, 5576, 5595, 5634, 5639, 5659, 5698, 5699, 5701, 5702, 5722, 5760, 5764, 5774, 5821, 5822, 5829, 5845, 5884, 5885, 5888, 5908, 5947, 5948, 5951, 5972, 6011, 6020, 6026, 6073, 6080, 6096, 6135, 6136, 6139, 6157, 6160, 6198, 6199, 6207, 6223, 6263, 6271, 6277], [5572, 5576, 5595, 5634, 5639, 5659, 5698, 5699, 5701, 5702, 5722, 5760, 5764, 5774, 5821, 5822, 5829, 5845, 5884, 5885, 5888, 5908, 5947, 5948, 5951, 5972, 6011, 6020, 6026, 6073, 6080, 6096, 6135, 6136, 6139, 6157, 6160, 6198, 6199, 6207, 6223, 6263, 6271, 6277], [5572, 5576, 5595, 5634, 5639, 5659, 5698, 5699, 5701, 5702, 5722, 5760, 5764, 5774, 5821, 5822, 5829, 5845, 5884, 5885, 5888, 5908, 5947, 5948, 5951, 5972, 6011, 6020, 6026, 6073, 6080, 6096, 6135, 6136, 6139, 6157, 6160, 6198, 6199, 6207, 6223, 6263, 6271, 6277], [5572, 5576, 5595, 5634, 5639, 5659, 5698, 5699, 5701, 5702, 5722, 5760, 5764, 5774, 5821, 5822, 5829, 5845, 5884, 5885, 5888, 5908, 5947, 5948, 5951, 5972, 6011, 6020, 6026, 6073, 6080, 6096, 6135, 6136, 6139, 6157, 6160, 6198, 6199, 6207, 6223, 6263, 6271, 6277], [5701, 6157]] return pricing, adjustments def test_bundle(self): environ = { 'CSVDIR': test_resource_path('csvdir_samples', 'csvdir') } ingest('csvdir', environ=environ) bundle = load('csvdir', environ=environ) sids = 0, 1, 2, 3 assert_equal(set(bundle.asset_finder.sids), set(sids)) for equity in bundle.asset_finder.retrieve_all(sids): assert_equal(equity.start_date, self.asset_start, msg=equity) assert_equal(equity.end_date, self.asset_end, msg=equity) sessions = self.calendar.all_sessions actual = bundle.equity_daily_bar_reader.load_raw_arrays( self.columns, sessions[sessions.get_loc(self.asset_start, 'bfill')], sessions[sessions.get_loc(self.asset_end, 'ffill')], sids, ) expected_pricing, expected_adjustments = self._expected_data( bundle.asset_finder, ) assert_equal(actual, expected_pricing, array_decimal=2) adjustments_for_cols = bundle.adjustment_reader.load_adjustments( self.columns, sessions, pd.Index(sids), ) assert_equal([sorted(adj.keys()) for adj in adjustments_for_cols], expected_adjustments)
apache-2.0
milankl/swm
calc/misc/c_diss_plot.py
1
3966
from __future__ import print_function path = '/home/mkloewer/python/swm/' import os; os.chdir(path) # change working directory import numpy as np from scipy import sparse import time as tictoc from netCDF4 import Dataset import glob import matplotlib.pyplot as plt # OPTIONS runfolder = [2,3] ## read data for r,i in zip(runfolder,range(len(runfolder))): runpath = path+'data/run%04i' % r if i == 0: u = np.load(runpath+'/u_sub.npy') v = np.load(runpath+'/v_sub.npy') h = np.load(runpath+'/h_sub.npy') time = np.load(runpath+'/t_sub.npy') print('run %i read.' % r) else: u = np.concatenate((u,np.load(runpath+'/u_sub.npy'))) v = np.concatenate((v,np.load(runpath+'/v_sub.npy'))) h = np.concatenate((h,np.load(runpath+'/h_sub.npy'))) time = np.hstack((time,np.load(runpath+'/t_sub.npy'))) print('run %i read.' % r) t = time / 3600. / 24. # in days ## read param global param param = np.load(runpath+'/param.npy').all() param['dat_type'] = np.float32 # import functions exec(open(path+'swm_param.py').read()) exec(open(path+'swm_operators.py').read()) exec(open(path+'swm_output.py').read()) param['output'] = 0 set_grad_mat() set_interp_mat() set_lapl_mat() set_coriolis() tlen = len(time) ## create ouputfolder try: os.mkdir(runpath+'/analysis') except: pass ## reshape u,v u = u.reshape((tlen,param['Nu'])).T v = v.reshape((tlen,param['Nv'])).T h = h.reshape((tlen,param['NT'])).T print('Reshape done.') ## dudx = Gux.dot(u) dudy = Guy.dot(u) dvdx = Gvx.dot(v) dvdy = Gvy.dot(v) n = 2 D = np.sqrt((dudx - dvdy)**2 + IqT.dot((dudy + dvdx)**2)) Ro = (D.T/f_T) Rom = Ro.mean(axis=0) c = (1/(1+Ro)**n).mean(axis=0) # REYNOLDS, ROSSBY, EKMAN NUMBER MEAN u_T = IuT.dot(u) v_T = IvT.dot(v) print('u,v interpolation done.') #advective term adv_u = u_T*Gux.dot(u) + v_T*IqT.dot(Guy.dot(u)) adv_v = u_T*IqT.dot(Gvx.dot(v)) + v_T*Gvy.dot(v) del u_T,v_T adv_term = np.sqrt(adv_u**2 + adv_v**2) del adv_u, adv_v print('Advection term done.') #coriolis term cor_term = (f_T*np.sqrt(IuT.dot(u**2) + IvT.dot(v**2)).T).T print('Coriolis term done.') Ro2 = adv_term / cor_term c2 = (1/(1+Ro2)**n).mean(axis=1) Ro2m = Ro2.mean(axis=1) ## levs1 = np.linspace(0,.2,21) levs2 = np.linspace(0.5,1,21) fig,axs = plt.subplots(2,3,sharex=True,sharey=True,figsize=(9,5.5)) plt.tight_layout(rect=[-.02,-.03,1.12,.97],w_pad=0.1) axs[0,0].contourf(param['x_T'],param['y_T'],h2mat(Ro2m),levs1) axs[0,1].contourf(param['x_T'],param['y_T'],h2mat(Rom),levs1,extend='max') m1 = axs[0,2].contourf(param['x_T'],param['y_T'],h2mat(Ro[-1,:]),levs1,extend='max') plt.colorbar(m1,ax=(axs[0,0],axs[0,1],axs[0,2]),ticks=np.arange(0,.22,.04)) axs[1,0].contourf(param['x_T'],param['y_T'],h2mat(c2),levs2) m21 = axs[1,0].contour(param['x_T'],param['y_T'],h2mat(c2),[0.8],linewidths=0.7) axs[1,1].contourf(param['x_T'],param['y_T'],h2mat(c),levs2) m2 = axs[1,2].contourf(param['x_T'],param['y_T'],h2mat(1/(1+Ro[-1,:])**n),levs2,extend='min') axs[1,2].contour(param['x_T'],param['y_T'],h2mat(1/(1+Ro[-1,:])**n),[0.8],linewidths=0.7) m22 = axs[1,1].contour(param['x_T'],param['y_T'],h2mat(c),[0.8],linewidths=0.7) plt.colorbar(m2,ax=(axs[1,0],axs[1,1],axs[1,2]),ticks=np.arange(0.5,1.05,.05)) plt.clabel(m22, inline=1, fontsize=5,fmt='%.1f') plt.clabel(m21, inline=1, fontsize=5,fmt='%.1f') axs[0,0].set_xticks([]) axs[0,0].set_yticks([]) axs[0,0].set_title(r'$\overline{R_o} = \overline{\frac{|(\mathbf{u} \cdot \nabla)\mathbf{u}|}{|f\mathbf{u}|}}$') axs[0,1].set_title(r'$\overline{R_o^*} = \overline{\frac{|D|}{f}}$') axs[0,2].set_title(r'snapshot: $R_o^*$') axs[1,0].set_title(r'$(1+\overline{R_o})^{-2}$') axs[1,1].set_title(r'$(1+\overline{R_o}^*)^{-2}$') axs[1,2].set_title(r'$(1+R_o^*)^{-2}$') axs[0,0].set_ylabel('y') axs[1,0].set_ylabel('y') axs[1,0].set_xlabel('x') axs[1,1].set_xlabel('x') plt.savefig(path+'compare/Ro_scaling.png',dpi=150) plt.close(fig) #plt.show()
gpl-3.0
Aasmi/scikit-learn
sklearn/feature_selection/variance_threshold.py
238
2594
# Author: Lars Buitinck <[email protected]> # License: 3-clause BSD import numpy as np from ..base import BaseEstimator from .base import SelectorMixin from ..utils import check_array from ..utils.sparsefuncs import mean_variance_axis from ..utils.validation import check_is_fitted class VarianceThreshold(BaseEstimator, SelectorMixin): """Feature selector that removes all low-variance features. This feature selection algorithm looks only at the features (X), not the desired outputs (y), and can thus be used for unsupervised learning. Read more in the :ref:`User Guide <variance_threshold>`. Parameters ---------- threshold : float, optional Features with a training-set variance lower than this threshold will be removed. The default is to keep all features with non-zero variance, i.e. remove the features that have the same value in all samples. Attributes ---------- variances_ : array, shape (n_features,) Variances of individual features. Examples -------- The following dataset has integer features, two of which are the same in every sample. These are removed with the default setting for threshold:: >>> X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]] >>> selector = VarianceThreshold() >>> selector.fit_transform(X) array([[2, 0], [1, 4], [1, 1]]) """ def __init__(self, threshold=0.): self.threshold = threshold def fit(self, X, y=None): """Learn empirical variances from X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Sample vectors from which to compute variances. y : any Ignored. This parameter exists only for compatibility with sklearn.pipeline.Pipeline. Returns ------- self """ X = check_array(X, ('csr', 'csc'), dtype=np.float64) if hasattr(X, "toarray"): # sparse matrix _, self.variances_ = mean_variance_axis(X, axis=0) else: self.variances_ = np.var(X, axis=0) if np.all(self.variances_ <= self.threshold): msg = "No feature in X meets the variance threshold {0:.5f}" if X.shape[0] == 1: msg += " (X contains only one sample)" raise ValueError(msg.format(self.threshold)) return self def _get_support_mask(self): check_is_fitted(self, 'variances_') return self.variances_ > self.threshold
bsd-3-clause
OpenMined/PySyft
packages/syft/src/syft/lib/pandas/categorical_dtype.py
1
1173
# third party import pandas as pd # syft relative from ...generate_wrapper import GenerateWrapper from ...lib.python.list import List from ...lib.python.primitive_factory import PrimitiveFactory from ...proto.lib.pandas.categorical_pb2 import ( PandasCategoricalDtype as PandasCategoricalDtype_PB, ) def object2proto(obj: pd.CategoricalDtype) -> PandasCategoricalDtype_PB: # since pd.Index type is not integrated converted obj.categories to List pd_cat_list = PrimitiveFactory.generate_primitive(value=obj.categories.tolist()) cat_list_proto = pd_cat_list._object2proto() return PandasCategoricalDtype_PB( id=cat_list_proto.id, categories=cat_list_proto, ordered=obj.ordered ) def proto2object(proto: PandasCategoricalDtype_PB) -> pd.CategoricalDtype: categories = List._proto2object(proto.categories).upcast() ordered = proto.ordered return pd.CategoricalDtype(categories=categories, ordered=ordered) GenerateWrapper( wrapped_type=pd.CategoricalDtype, import_path="pandas.CategoricalDtype", protobuf_scheme=PandasCategoricalDtype_PB, type_object2proto=object2proto, type_proto2object=proto2object, )
apache-2.0
poojavade/Genomics_Docker
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/statsmodels-0.5.0-py2.7-linux-x86_64.egg/statsmodels/datasets/statecrime/data.py
3
2985
#! /usr/bin/env python """Statewide Crime Data""" __docformat__ = 'restructuredtext' COPYRIGHT = """Public domain.""" TITLE = """Statewide Crime Data 2009""" SOURCE = """ All data is for 2009 and was obtained from the American Statistical Abstracts except as indicated below. """ DESCRSHORT = """State crime data 2009""" DESCRLONG = DESCRSHORT #suggested notes NOTE = """ Number of observations: 51 Number of variables: 8 Variable name definitions: state All 50 states plus DC. violent Rate of violent crimes / 100,000 population. Includes murder, forcible rape, robbery, and aggravated assault. Numbers for Illinois and Minnesota do not include forcible rapes. Footnote included with the American Statistical Abstract table reads: "The data collection methodology for the offense of forcible rape used by the Illinois and the Minnesota state Uniform Crime Reporting (UCR) Programs (with the exception of Rockford, Illinois, and Minneapolis and St. Paul, Minnesota) does not comply with national UCR guidelines. Consequently, their state figures for forcible rape and violent crime (of which forcible rape is a part) are not published in this table." murder Rate of murders / 100,000 population. hs_grad Precent of population having graduated from high school or higher. poverty % of individuals below the poverty line white Percent of population that is one race - white only. From 2009 American Community Survey single Calculated from 2009 1-year American Community Survey obtained obtained from Census. Variable is Male householder, no wife present, family household combined with Female household, no husband prsent, family household, divided by the total number of Family households. urban % of population in Urbanized Areas as of 2010 Census. Urbanized Areas are area of 50,000 or more people.""" import numpy as np from statsmodels.datasets import utils as du from os.path import dirname, abspath def load(): """ Load the statecrime data and return a Dataset class instance. Returns ------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() ##### SET THE INDICES ##### #NOTE: None for exog_idx is the complement of endog_idx return du.process_recarray(data, endog_idx=2, exog_idx=[7, 4, 3, 5], dtype=float) def load_pandas(): data = _get_data() ##### SET THE INDICES ##### #NOTE: None for exog_idx is the complement of endog_idx return du.process_recarray_pandas(data, endog_idx=2, exog_idx=[7,4,3,5], dtype=float, index_idx=0) def _get_data(): filepath = dirname(abspath(__file__)) ##### EDIT THE FOLLOWING TO POINT TO DatasetName.csv ##### data = np.recfromtxt(open(filepath + '/statecrime.csv', 'rb'), delimiter=",", names=True, dtype=None) return data
apache-2.0
asadziach/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/pandas_io.py
92
4535
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Methods to allow pandas.DataFrame.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.estimator.inputs.pandas_io import pandas_input_fn as core_pandas_input_fn try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False PANDAS_DTYPES = { 'int8': 'int', 'int16': 'int', 'int32': 'int', 'int64': 'int', 'uint8': 'int', 'uint16': 'int', 'uint32': 'int', 'uint64': 'int', 'float16': 'float', 'float32': 'float', 'float64': 'float', 'bool': 'i' } def pandas_input_fn(x, y=None, batch_size=128, num_epochs=1, shuffle=True, queue_capacity=1000, num_threads=1, target_column='target'): """This input_fn diffs from the core version with default `shuffle`.""" return core_pandas_input_fn(x=x, y=y, batch_size=batch_size, shuffle=shuffle, num_epochs=num_epochs, queue_capacity=queue_capacity, num_threads=num_threads, target_column=target_column) def extract_pandas_data(data): """Extract data from pandas.DataFrame for predictors. Given a DataFrame, will extract the values and cast them to float. The DataFrame is expected to contain values of type int, float or bool. Args: data: `pandas.DataFrame` containing the data to be extracted. Returns: A numpy `ndarray` of the DataFrame's values as floats. Raises: ValueError: if data contains types other than int, float or bool. """ if not isinstance(data, pd.DataFrame): return data bad_data = [column for column in data if data[column].dtype.name not in PANDAS_DTYPES] if not bad_data: return data.values.astype('float') else: error_report = [("'" + str(column) + "' type='" + data[column].dtype.name + "'") for column in bad_data] raise ValueError('Data types for extracting pandas data must be int, ' 'float, or bool. Found: ' + ', '.join(error_report)) def extract_pandas_matrix(data): """Extracts numpy matrix from pandas DataFrame. Args: data: `pandas.DataFrame` containing the data to be extracted. Returns: A numpy `ndarray` of the DataFrame's values. """ if not isinstance(data, pd.DataFrame): return data return data.as_matrix() def extract_pandas_labels(labels): """Extract data from pandas.DataFrame for labels. Args: labels: `pandas.DataFrame` or `pandas.Series` containing one column of labels to be extracted. Returns: A numpy `ndarray` of labels from the DataFrame. Raises: ValueError: if more than one column is found or type is not int, float or bool. """ if isinstance(labels, pd.DataFrame): # pandas.Series also belongs to DataFrame if len(labels.columns) > 1: raise ValueError('Only one column for labels is allowed.') bad_data = [column for column in labels if labels[column].dtype.name not in PANDAS_DTYPES] if not bad_data: return labels.values else: error_report = ["'" + str(column) + "' type=" + str(labels[column].dtype.name) for column in bad_data] raise ValueError('Data types for extracting labels must be int, ' 'float, or bool. Found: ' + ', '.join(error_report)) else: return labels
apache-2.0
cbertinato/pandas
pandas/io/excel/_openpyxl.py
1
14098
from pandas.io.excel._base import ExcelWriter from pandas.io.excel._util import _validate_freeze_panes class _OpenpyxlWriter(ExcelWriter): engine = 'openpyxl' supported_extensions = ('.xlsx', '.xlsm') def __init__(self, path, engine=None, mode='w', **engine_kwargs): # Use the openpyxl module as the Excel writer. from openpyxl.workbook import Workbook super().__init__(path, mode=mode, **engine_kwargs) if self.mode == 'a': # Load from existing workbook from openpyxl import load_workbook book = load_workbook(self.path) self.book = book else: # Create workbook object with default optimized_write=True. self.book = Workbook() if self.book.worksheets: try: self.book.remove(self.book.worksheets[0]) except AttributeError: # compat - for openpyxl <= 2.4 self.book.remove_sheet(self.book.worksheets[0]) def save(self): """ Save workbook to disk. """ return self.book.save(self.path) @classmethod def _convert_to_style(cls, style_dict): """ converts a style_dict to an openpyxl style object Parameters ---------- style_dict : style dictionary to convert """ from openpyxl.style import Style xls_style = Style() for key, value in style_dict.items(): for nk, nv in value.items(): if key == "borders": (xls_style.borders.__getattribute__(nk) .__setattr__('border_style', nv)) else: xls_style.__getattribute__(key).__setattr__(nk, nv) return xls_style @classmethod def _convert_to_style_kwargs(cls, style_dict): """ Convert a style_dict to a set of kwargs suitable for initializing or updating-on-copy an openpyxl v2 style object Parameters ---------- style_dict : dict A dict with zero or more of the following keys (or their synonyms). 'font' 'fill' 'border' ('borders') 'alignment' 'number_format' 'protection' Returns ------- style_kwargs : dict A dict with the same, normalized keys as ``style_dict`` but each value has been replaced with a native openpyxl style object of the appropriate class. """ _style_key_map = { 'borders': 'border', } style_kwargs = {} for k, v in style_dict.items(): if k in _style_key_map: k = _style_key_map[k] _conv_to_x = getattr(cls, '_convert_to_{k}'.format(k=k), lambda x: None) new_v = _conv_to_x(v) if new_v: style_kwargs[k] = new_v return style_kwargs @classmethod def _convert_to_color(cls, color_spec): """ Convert ``color_spec`` to an openpyxl v2 Color object Parameters ---------- color_spec : str, dict A 32-bit ARGB hex string, or a dict with zero or more of the following keys. 'rgb' 'indexed' 'auto' 'theme' 'tint' 'index' 'type' Returns ------- color : openpyxl.styles.Color """ from openpyxl.styles import Color if isinstance(color_spec, str): return Color(color_spec) else: return Color(**color_spec) @classmethod def _convert_to_font(cls, font_dict): """ Convert ``font_dict`` to an openpyxl v2 Font object Parameters ---------- font_dict : dict A dict with zero or more of the following keys (or their synonyms). 'name' 'size' ('sz') 'bold' ('b') 'italic' ('i') 'underline' ('u') 'strikethrough' ('strike') 'color' 'vertAlign' ('vertalign') 'charset' 'scheme' 'family' 'outline' 'shadow' 'condense' Returns ------- font : openpyxl.styles.Font """ from openpyxl.styles import Font _font_key_map = { 'sz': 'size', 'b': 'bold', 'i': 'italic', 'u': 'underline', 'strike': 'strikethrough', 'vertalign': 'vertAlign', } font_kwargs = {} for k, v in font_dict.items(): if k in _font_key_map: k = _font_key_map[k] if k == 'color': v = cls._convert_to_color(v) font_kwargs[k] = v return Font(**font_kwargs) @classmethod def _convert_to_stop(cls, stop_seq): """ Convert ``stop_seq`` to a list of openpyxl v2 Color objects, suitable for initializing the ``GradientFill`` ``stop`` parameter. Parameters ---------- stop_seq : iterable An iterable that yields objects suitable for consumption by ``_convert_to_color``. Returns ------- stop : list of openpyxl.styles.Color """ return map(cls._convert_to_color, stop_seq) @classmethod def _convert_to_fill(cls, fill_dict): """ Convert ``fill_dict`` to an openpyxl v2 Fill object Parameters ---------- fill_dict : dict A dict with one or more of the following keys (or their synonyms), 'fill_type' ('patternType', 'patterntype') 'start_color' ('fgColor', 'fgcolor') 'end_color' ('bgColor', 'bgcolor') or one or more of the following keys (or their synonyms). 'type' ('fill_type') 'degree' 'left' 'right' 'top' 'bottom' 'stop' Returns ------- fill : openpyxl.styles.Fill """ from openpyxl.styles import PatternFill, GradientFill _pattern_fill_key_map = { 'patternType': 'fill_type', 'patterntype': 'fill_type', 'fgColor': 'start_color', 'fgcolor': 'start_color', 'bgColor': 'end_color', 'bgcolor': 'end_color', } _gradient_fill_key_map = { 'fill_type': 'type', } pfill_kwargs = {} gfill_kwargs = {} for k, v in fill_dict.items(): pk = gk = None if k in _pattern_fill_key_map: pk = _pattern_fill_key_map[k] if k in _gradient_fill_key_map: gk = _gradient_fill_key_map[k] if pk in ['start_color', 'end_color']: v = cls._convert_to_color(v) if gk == 'stop': v = cls._convert_to_stop(v) if pk: pfill_kwargs[pk] = v elif gk: gfill_kwargs[gk] = v else: pfill_kwargs[k] = v gfill_kwargs[k] = v try: return PatternFill(**pfill_kwargs) except TypeError: return GradientFill(**gfill_kwargs) @classmethod def _convert_to_side(cls, side_spec): """ Convert ``side_spec`` to an openpyxl v2 Side object Parameters ---------- side_spec : str, dict A string specifying the border style, or a dict with zero or more of the following keys (or their synonyms). 'style' ('border_style') 'color' Returns ------- side : openpyxl.styles.Side """ from openpyxl.styles import Side _side_key_map = { 'border_style': 'style', } if isinstance(side_spec, str): return Side(style=side_spec) side_kwargs = {} for k, v in side_spec.items(): if k in _side_key_map: k = _side_key_map[k] if k == 'color': v = cls._convert_to_color(v) side_kwargs[k] = v return Side(**side_kwargs) @classmethod def _convert_to_border(cls, border_dict): """ Convert ``border_dict`` to an openpyxl v2 Border object Parameters ---------- border_dict : dict A dict with zero or more of the following keys (or their synonyms). 'left' 'right' 'top' 'bottom' 'diagonal' 'diagonal_direction' 'vertical' 'horizontal' 'diagonalUp' ('diagonalup') 'diagonalDown' ('diagonaldown') 'outline' Returns ------- border : openpyxl.styles.Border """ from openpyxl.styles import Border _border_key_map = { 'diagonalup': 'diagonalUp', 'diagonaldown': 'diagonalDown', } border_kwargs = {} for k, v in border_dict.items(): if k in _border_key_map: k = _border_key_map[k] if k == 'color': v = cls._convert_to_color(v) if k in ['left', 'right', 'top', 'bottom', 'diagonal']: v = cls._convert_to_side(v) border_kwargs[k] = v return Border(**border_kwargs) @classmethod def _convert_to_alignment(cls, alignment_dict): """ Convert ``alignment_dict`` to an openpyxl v2 Alignment object Parameters ---------- alignment_dict : dict A dict with zero or more of the following keys (or their synonyms). 'horizontal' 'vertical' 'text_rotation' 'wrap_text' 'shrink_to_fit' 'indent' Returns ------- alignment : openpyxl.styles.Alignment """ from openpyxl.styles import Alignment return Alignment(**alignment_dict) @classmethod def _convert_to_number_format(cls, number_format_dict): """ Convert ``number_format_dict`` to an openpyxl v2.1.0 number format initializer. Parameters ---------- number_format_dict : dict A dict with zero or more of the following keys. 'format_code' : str Returns ------- number_format : str """ return number_format_dict['format_code'] @classmethod def _convert_to_protection(cls, protection_dict): """ Convert ``protection_dict`` to an openpyxl v2 Protection object. Parameters ---------- protection_dict : dict A dict with zero or more of the following keys. 'locked' 'hidden' Returns ------- """ from openpyxl.styles import Protection return Protection(**protection_dict) def write_cells(self, cells, sheet_name=None, startrow=0, startcol=0, freeze_panes=None): # Write the frame cells using openpyxl. sheet_name = self._get_sheet_name(sheet_name) _style_cache = {} if sheet_name in self.sheets: wks = self.sheets[sheet_name] else: wks = self.book.create_sheet() wks.title = sheet_name self.sheets[sheet_name] = wks if _validate_freeze_panes(freeze_panes): wks.freeze_panes = wks.cell(row=freeze_panes[0] + 1, column=freeze_panes[1] + 1) for cell in cells: xcell = wks.cell( row=startrow + cell.row + 1, column=startcol + cell.col + 1 ) xcell.value, fmt = self._value_with_fmt(cell.val) if fmt: xcell.number_format = fmt style_kwargs = {} if cell.style: key = str(cell.style) style_kwargs = _style_cache.get(key) if style_kwargs is None: style_kwargs = self._convert_to_style_kwargs(cell.style) _style_cache[key] = style_kwargs if style_kwargs: for k, v in style_kwargs.items(): setattr(xcell, k, v) if cell.mergestart is not None and cell.mergeend is not None: wks.merge_cells( start_row=startrow + cell.row + 1, start_column=startcol + cell.col + 1, end_column=startcol + cell.mergeend + 1, end_row=startrow + cell.mergestart + 1 ) # When cells are merged only the top-left cell is preserved # The behaviour of the other cells in a merged range is # undefined if style_kwargs: first_row = startrow + cell.row + 1 last_row = startrow + cell.mergestart + 1 first_col = startcol + cell.col + 1 last_col = startcol + cell.mergeend + 1 for row in range(first_row, last_row + 1): for col in range(first_col, last_col + 1): if row == first_row and col == first_col: # Ignore first cell. It is already handled. continue xcell = wks.cell(column=col, row=row) for k, v in style_kwargs.items(): setattr(xcell, k, v)
bsd-3-clause
moreati/pandashells
pandashells/lib/arg_lib.py
7
6681
from pandashells.lib import config_lib def _check_for_recognized_args(*args): """ Raise an error if unrecognized argset is specified """ allowed_arg_set = set([ 'io_in', 'io_out', 'example', 'xy_plotting', 'decorating', ]) in_arg_set = set(args) unrecognized_set = in_arg_set - allowed_arg_set if unrecognized_set: msg = '{} not in allowed set {}'.format(unrecognized_set, allowed_arg_set) raise ValueError(msg) def _io_in_adder(parser, config_dict, *args): """ Add input options to the parser """ in_arg_set = set(args) if 'io_in' in in_arg_set: group = parser.add_argument_group('Input Options') # define the valid components io_opt_list = ['csv', 'table', 'header', 'noheader'] # allow the option of supplying input column names msg = 'Overwrite input column names with this list' group.add_argument( '--names', nargs='+', type=str, dest='names', metavar="name", help=msg) default_for_input = [ config_dict['io_input_type'], config_dict['io_input_header'] ] msg = 'Must be one of {}'.format(repr(io_opt_list)) group.add_argument( '-i', '--input_options', nargs='+', type=str, dest='input_options', metavar='option', default=default_for_input, choices=io_opt_list, help=msg) def _io_out_adder(parser, config_dict, *args): """ Add output options to the parser """ in_arg_set = set(args) if 'io_out' in in_arg_set: group = parser.add_argument_group('Output Options') # define the valid components io_opt_list = [ 'csv', 'table', 'html', 'header', 'noheader', 'index', 'noindex', ] # define the current defaults default_for_output = [ config_dict['io_output_type'], config_dict['io_output_header'], config_dict['io_output_index'] ] # show the current defaults in the arg parser msg = 'Must be one of {}'.format(repr(io_opt_list)) group.add_argument( '-o', '--output_options', nargs='+', type=str, dest='output_options', metavar='option', default=default_for_output, help=msg) msg = ( 'Replace NaNs with this string. ' 'A string containing \'nan\' will set na_rep to numpy NaN. ' 'Current default is {}' ).format(repr(str(config_dict['io_output_na_rep']))) group.add_argument( '--output_na_rep', nargs=1, type=str, dest='io_output_na_rep', help=msg) def _decorating_adder(parser, *args): in_arg_set = set(args) if 'decorating' in in_arg_set: # get a list of valid plot styling info context_list = [t for t in config_lib.CONFIG_OPTS if t[0] == 'plot_context'][0][1] theme_list = [t for t in config_lib.CONFIG_OPTS if t[0] == 'plot_theme'][0][1] palette_list = [t for t in config_lib.CONFIG_OPTS if t[0] == 'plot_palette'][0][1] group = parser.add_argument_group('Plot specific Options') msg = "Set the x-limits for the plot" group.add_argument( '--xlim', nargs=2, type=float, dest='xlim', metavar=('XMIN', 'XMAX'), help=msg) msg = "Set the y-limits for the plot" group.add_argument( '--ylim', nargs=2, type=float, dest='ylim', metavar=('YMIN', 'YMAX'), help=msg) msg = "Draw x axis with log scale" group.add_argument( '--xlog', action='store_true', dest='xlog', default=False, help=msg) msg = "Draw y axis with log scale" group.add_argument( '--ylog', action='store_true', dest='ylog', default=False, help=msg) msg = "Set the x-label for the plot" group.add_argument( '--xlabel', nargs=1, type=str, dest='xlabel', help=msg) msg = "Set the y-label for the plot" group.add_argument( '--ylabel', nargs=1, type=str, dest='ylabel', help=msg) msg = "Set the title for the plot" group.add_argument( '--title', nargs=1, type=str, dest='title', help=msg) msg = "Specify legend location" group.add_argument( '--legend', nargs=1, type=str, dest='legend', choices=['1', '2', '3', '4', 'best'], help=msg) msg = "Specify whether hide the grid or not" group.add_argument( '--nogrid', action='store_true', dest='no_grid', default=False, help=msg) msg = "Specify plot context. Default = '{}' ".format(context_list[0]) group.add_argument( '--context', nargs=1, type=str, dest='plot_context', default=[context_list[0]], choices=context_list, help=msg) msg = "Specify plot theme. Default = '{}' ".format(theme_list[0]) group.add_argument( '--theme', nargs=1, type=str, dest='plot_theme', default=[theme_list[0]], choices=theme_list, help=msg) msg = "Specify plot palette. Default = '{}' ".format(palette_list[0]) group.add_argument( '--palette', nargs=1, type=str, dest='plot_palette', default=[palette_list[0]], choices=palette_list, help=msg) msg = "Save the figure to this file" group.add_argument('--savefig', nargs=1, type=str, help=msg) def _xy_adder(parser, *args): in_arg_set = set(args) if 'xy_plotting' in in_arg_set: msg = 'Column to plot on x-axis' parser.add_argument( '-x', nargs=1, type=str, dest='x', metavar='col', help=msg) msg = 'List of columns to plot on y-axis' parser.add_argument( '-y', nargs='+', type=str, dest='y', metavar='col', help=msg) msg = "Plot style(s) defaults to .-" parser.add_argument( '-s', '--style', nargs='+', type=str, dest='style', default=['.-'], help=msg, metavar='style') def add_args(parser, *args): """Adds argument blocks to the arg parser :type parser: argparse instance :param parser: The argarse instance to use in adding arguments Additinional arguments are the names of argument blocks to add """ config_dict = config_lib.get_config() _check_for_recognized_args(*args) _io_in_adder(parser, config_dict, *args) _io_out_adder(parser, config_dict, *args) _decorating_adder(parser, *args) _xy_adder(parser, *args)
bsd-2-clause
mykoz/ThinkStats2
code/thinkstats2.py
68
68825
"""This file contains code for use with "Think Stats" and "Think Bayes", both by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function, division """This file contains class definitions for: Hist: represents a histogram (map from values to integer frequencies). Pmf: represents a probability mass function (map from values to probs). _DictWrapper: private parent class for Hist and Pmf. Cdf: represents a discrete cumulative distribution function Pdf: represents a continuous probability density function """ import bisect import copy import logging import math import random import re from collections import Counter from operator import itemgetter import thinkplot import numpy as np import pandas import scipy from scipy import stats from scipy import special from scipy import ndimage from io import open ROOT2 = math.sqrt(2) def RandomSeed(x): """Initialize the random and np.random generators. x: int seed """ random.seed(x) np.random.seed(x) def Odds(p): """Computes odds for a given probability. Example: p=0.75 means 75 for and 25 against, or 3:1 odds in favor. Note: when p=1, the formula for odds divides by zero, which is normally undefined. But I think it is reasonable to define Odds(1) to be infinity, so that's what this function does. p: float 0-1 Returns: float odds """ if p == 1: return float('inf') return p / (1 - p) def Probability(o): """Computes the probability corresponding to given odds. Example: o=2 means 2:1 odds in favor, or 2/3 probability o: float odds, strictly positive Returns: float probability """ return o / (o + 1) def Probability2(yes, no): """Computes the probability corresponding to given odds. Example: yes=2, no=1 means 2:1 odds in favor, or 2/3 probability. yes, no: int or float odds in favor """ return yes / (yes + no) class Interpolator(object): """Represents a mapping between sorted sequences; performs linear interp. Attributes: xs: sorted list ys: sorted list """ def __init__(self, xs, ys): self.xs = xs self.ys = ys def Lookup(self, x): """Looks up x and returns the corresponding value of y.""" return self._Bisect(x, self.xs, self.ys) def Reverse(self, y): """Looks up y and returns the corresponding value of x.""" return self._Bisect(y, self.ys, self.xs) def _Bisect(self, x, xs, ys): """Helper function.""" if x <= xs[0]: return ys[0] if x >= xs[-1]: return ys[-1] i = bisect.bisect(xs, x) frac = 1.0 * (x - xs[i - 1]) / (xs[i] - xs[i - 1]) y = ys[i - 1] + frac * 1.0 * (ys[i] - ys[i - 1]) return y class _DictWrapper(object): """An object that contains a dictionary.""" def __init__(self, obj=None, label=None): """Initializes the distribution. obj: Hist, Pmf, Cdf, Pdf, dict, pandas Series, list of pairs label: string label """ self.label = label if label is not None else '_nolegend_' self.d = {} # flag whether the distribution is under a log transform self.log = False if obj is None: return if isinstance(obj, (_DictWrapper, Cdf, Pdf)): self.label = label if label is not None else obj.label if isinstance(obj, dict): self.d.update(obj.items()) elif isinstance(obj, (_DictWrapper, Cdf, Pdf)): self.d.update(obj.Items()) elif isinstance(obj, pandas.Series): self.d.update(obj.value_counts().iteritems()) else: # finally, treat it like a list self.d.update(Counter(obj)) if len(self) > 0 and isinstance(self, Pmf): self.Normalize() def __hash__(self): return id(self) def __str__(self): cls = self.__class__.__name__ return '%s(%s)' % (cls, str(self.d)) __repr__ = __str__ def __eq__(self, other): return self.d == other.d def __len__(self): return len(self.d) def __iter__(self): return iter(self.d) def iterkeys(self): """Returns an iterator over keys.""" return iter(self.d) def __contains__(self, value): return value in self.d def __getitem__(self, value): return self.d.get(value, 0) def __setitem__(self, value, prob): self.d[value] = prob def __delitem__(self, value): del self.d[value] def Copy(self, label=None): """Returns a copy. Make a shallow copy of d. If you want a deep copy of d, use copy.deepcopy on the whole object. label: string label for the new Hist returns: new _DictWrapper with the same type """ new = copy.copy(self) new.d = copy.copy(self.d) new.label = label if label is not None else self.label return new def Scale(self, factor): """Multiplies the values by a factor. factor: what to multiply by Returns: new object """ new = self.Copy() new.d.clear() for val, prob in self.Items(): new.Set(val * factor, prob) return new def Log(self, m=None): """Log transforms the probabilities. Removes values with probability 0. Normalizes so that the largest logprob is 0. """ if self.log: raise ValueError("Pmf/Hist already under a log transform") self.log = True if m is None: m = self.MaxLike() for x, p in self.d.items(): if p: self.Set(x, math.log(p / m)) else: self.Remove(x) def Exp(self, m=None): """Exponentiates the probabilities. m: how much to shift the ps before exponentiating If m is None, normalizes so that the largest prob is 1. """ if not self.log: raise ValueError("Pmf/Hist not under a log transform") self.log = False if m is None: m = self.MaxLike() for x, p in self.d.items(): self.Set(x, math.exp(p - m)) def GetDict(self): """Gets the dictionary.""" return self.d def SetDict(self, d): """Sets the dictionary.""" self.d = d def Values(self): """Gets an unsorted sequence of values. Note: one source of confusion is that the keys of this dictionary are the values of the Hist/Pmf, and the values of the dictionary are frequencies/probabilities. """ return self.d.keys() def Items(self): """Gets an unsorted sequence of (value, freq/prob) pairs.""" return self.d.items() def Render(self, **options): """Generates a sequence of points suitable for plotting. Note: options are ignored Returns: tuple of (sorted value sequence, freq/prob sequence) """ if min(self.d.keys()) is np.nan: logging.warning('Hist: contains NaN, may not render correctly.') return zip(*sorted(self.Items())) def MakeCdf(self, label=None): """Makes a Cdf.""" label = label if label is not None else self.label return Cdf(self, label=label) def Print(self): """Prints the values and freqs/probs in ascending order.""" for val, prob in sorted(self.d.items()): print(val, prob) def Set(self, x, y=0): """Sets the freq/prob associated with the value x. Args: x: number value y: number freq or prob """ self.d[x] = y def Incr(self, x, term=1): """Increments the freq/prob associated with the value x. Args: x: number value term: how much to increment by """ self.d[x] = self.d.get(x, 0) + term def Mult(self, x, factor): """Scales the freq/prob associated with the value x. Args: x: number value factor: how much to multiply by """ self.d[x] = self.d.get(x, 0) * factor def Remove(self, x): """Removes a value. Throws an exception if the value is not there. Args: x: value to remove """ del self.d[x] def Total(self): """Returns the total of the frequencies/probabilities in the map.""" total = sum(self.d.values()) return total def MaxLike(self): """Returns the largest frequency/probability in the map.""" return max(self.d.values()) def Largest(self, n=10): """Returns the largest n values, with frequency/probability. n: number of items to return """ return sorted(self.d.items(), reverse=True)[:n] def Smallest(self, n=10): """Returns the smallest n values, with frequency/probability. n: number of items to return """ return sorted(self.d.items(), reverse=False)[:n] class Hist(_DictWrapper): """Represents a histogram, which is a map from values to frequencies. Values can be any hashable type; frequencies are integer counters. """ def Freq(self, x): """Gets the frequency associated with the value x. Args: x: number value Returns: int frequency """ return self.d.get(x, 0) def Freqs(self, xs): """Gets frequencies for a sequence of values.""" return [self.Freq(x) for x in xs] def IsSubset(self, other): """Checks whether the values in this histogram are a subset of the values in the given histogram.""" for val, freq in self.Items(): if freq > other.Freq(val): return False return True def Subtract(self, other): """Subtracts the values in the given histogram from this histogram.""" for val, freq in other.Items(): self.Incr(val, -freq) class Pmf(_DictWrapper): """Represents a probability mass function. Values can be any hashable type; probabilities are floating-point. Pmfs are not necessarily normalized. """ def Prob(self, x, default=0): """Gets the probability associated with the value x. Args: x: number value default: value to return if the key is not there Returns: float probability """ return self.d.get(x, default) def Probs(self, xs): """Gets probabilities for a sequence of values.""" return [self.Prob(x) for x in xs] def Percentile(self, percentage): """Computes a percentile of a given Pmf. Note: this is not super efficient. If you are planning to compute more than a few percentiles, compute the Cdf. percentage: float 0-100 returns: value from the Pmf """ p = percentage / 100.0 total = 0 for val, prob in sorted(self.Items()): total += prob if total >= p: return val def ProbGreater(self, x): """Probability that a sample from this Pmf exceeds x. x: number returns: float probability """ if isinstance(x, _DictWrapper): return PmfProbGreater(self, x) else: t = [prob for (val, prob) in self.d.items() if val > x] return sum(t) def ProbLess(self, x): """Probability that a sample from this Pmf is less than x. x: number returns: float probability """ if isinstance(x, _DictWrapper): return PmfProbLess(self, x) else: t = [prob for (val, prob) in self.d.items() if val < x] return sum(t) def __lt__(self, obj): """Less than. obj: number or _DictWrapper returns: float probability """ return self.ProbLess(obj) def __gt__(self, obj): """Greater than. obj: number or _DictWrapper returns: float probability """ return self.ProbGreater(obj) def __ge__(self, obj): """Greater than or equal. obj: number or _DictWrapper returns: float probability """ return 1 - (self < obj) def __le__(self, obj): """Less than or equal. obj: number or _DictWrapper returns: float probability """ return 1 - (self > obj) def Normalize(self, fraction=1.0): """Normalizes this PMF so the sum of all probs is fraction. Args: fraction: what the total should be after normalization Returns: the total probability before normalizing """ if self.log: raise ValueError("Normalize: Pmf is under a log transform") total = self.Total() if total == 0.0: raise ValueError('Normalize: total probability is zero.') #logging.warning('Normalize: total probability is zero.') #return total factor = fraction / total for x in self.d: self.d[x] *= factor return total def Random(self): """Chooses a random element from this PMF. Note: this is not very efficient. If you plan to call this more than a few times, consider converting to a CDF. Returns: float value from the Pmf """ target = random.random() total = 0.0 for x, p in self.d.items(): total += p if total >= target: return x # we shouldn't get here raise ValueError('Random: Pmf might not be normalized.') def Mean(self): """Computes the mean of a PMF. Returns: float mean """ mean = 0.0 for x, p in self.d.items(): mean += p * x return mean def Var(self, mu=None): """Computes the variance of a PMF. mu: the point around which the variance is computed; if omitted, computes the mean returns: float variance """ if mu is None: mu = self.Mean() var = 0.0 for x, p in self.d.items(): var += p * (x - mu) ** 2 return var def Std(self, mu=None): """Computes the standard deviation of a PMF. mu: the point around which the variance is computed; if omitted, computes the mean returns: float standard deviation """ var = self.Var(mu) return math.sqrt(var) def MaximumLikelihood(self): """Returns the value with the highest probability. Returns: float probability """ _, val = max((prob, val) for val, prob in self.Items()) return val def CredibleInterval(self, percentage=90): """Computes the central credible interval. If percentage=90, computes the 90% CI. Args: percentage: float between 0 and 100 Returns: sequence of two floats, low and high """ cdf = self.MakeCdf() return cdf.CredibleInterval(percentage) def __add__(self, other): """Computes the Pmf of the sum of values drawn from self and other. other: another Pmf or a scalar returns: new Pmf """ try: return self.AddPmf(other) except AttributeError: return self.AddConstant(other) def AddPmf(self, other): """Computes the Pmf of the sum of values drawn from self and other. other: another Pmf returns: new Pmf """ pmf = Pmf() for v1, p1 in self.Items(): for v2, p2 in other.Items(): pmf.Incr(v1 + v2, p1 * p2) return pmf def AddConstant(self, other): """Computes the Pmf of the sum a constant and values from self. other: a number returns: new Pmf """ pmf = Pmf() for v1, p1 in self.Items(): pmf.Set(v1 + other, p1) return pmf def __sub__(self, other): """Computes the Pmf of the diff of values drawn from self and other. other: another Pmf returns: new Pmf """ try: return self.SubPmf(other) except AttributeError: return self.AddConstant(-other) def SubPmf(self, other): """Computes the Pmf of the diff of values drawn from self and other. other: another Pmf returns: new Pmf """ pmf = Pmf() for v1, p1 in self.Items(): for v2, p2 in other.Items(): pmf.Incr(v1 - v2, p1 * p2) return pmf def __mul__(self, other): """Computes the Pmf of the product of values drawn from self and other. other: another Pmf returns: new Pmf """ try: return self.MulPmf(other) except AttributeError: return self.MulConstant(other) def MulPmf(self, other): """Computes the Pmf of the diff of values drawn from self and other. other: another Pmf returns: new Pmf """ pmf = Pmf() for v1, p1 in self.Items(): for v2, p2 in other.Items(): pmf.Incr(v1 * v2, p1 * p2) return pmf def MulConstant(self, other): """Computes the Pmf of the product of a constant and values from self. other: a number returns: new Pmf """ pmf = Pmf() for v1, p1 in self.Items(): pmf.Set(v1 * other, p1) return pmf def __div__(self, other): """Computes the Pmf of the ratio of values drawn from self and other. other: another Pmf returns: new Pmf """ try: return self.DivPmf(other) except AttributeError: return self.MulConstant(1/other) __truediv__ = __div__ def DivPmf(self, other): """Computes the Pmf of the ratio of values drawn from self and other. other: another Pmf returns: new Pmf """ pmf = Pmf() for v1, p1 in self.Items(): for v2, p2 in other.Items(): pmf.Incr(v1 / v2, p1 * p2) return pmf def Max(self, k): """Computes the CDF of the maximum of k selections from this dist. k: int returns: new Cdf """ cdf = self.MakeCdf() return cdf.Max(k) class Joint(Pmf): """Represents a joint distribution. The values are sequences (usually tuples) """ def Marginal(self, i, label=None): """Gets the marginal distribution of the indicated variable. i: index of the variable we want Returns: Pmf """ pmf = Pmf(label=label) for vs, prob in self.Items(): pmf.Incr(vs[i], prob) return pmf def Conditional(self, i, j, val, label=None): """Gets the conditional distribution of the indicated variable. Distribution of vs[i], conditioned on vs[j] = val. i: index of the variable we want j: which variable is conditioned on val: the value the jth variable has to have Returns: Pmf """ pmf = Pmf(label=label) for vs, prob in self.Items(): if vs[j] != val: continue pmf.Incr(vs[i], prob) pmf.Normalize() return pmf def MaxLikeInterval(self, percentage=90): """Returns the maximum-likelihood credible interval. If percentage=90, computes a 90% CI containing the values with the highest likelihoods. percentage: float between 0 and 100 Returns: list of values from the suite """ interval = [] total = 0 t = [(prob, val) for val, prob in self.Items()] t.sort(reverse=True) for prob, val in t: interval.append(val) total += prob if total >= percentage / 100.0: break return interval def MakeJoint(pmf1, pmf2): """Joint distribution of values from pmf1 and pmf2. Assumes that the PMFs represent independent random variables. Args: pmf1: Pmf object pmf2: Pmf object Returns: Joint pmf of value pairs """ joint = Joint() for v1, p1 in pmf1.Items(): for v2, p2 in pmf2.Items(): joint.Set((v1, v2), p1 * p2) return joint def MakeHistFromList(t, label=None): """Makes a histogram from an unsorted sequence of values. Args: t: sequence of numbers label: string label for this histogram Returns: Hist object """ return Hist(t, label=label) def MakeHistFromDict(d, label=None): """Makes a histogram from a map from values to frequencies. Args: d: dictionary that maps values to frequencies label: string label for this histogram Returns: Hist object """ return Hist(d, label) def MakePmfFromList(t, label=None): """Makes a PMF from an unsorted sequence of values. Args: t: sequence of numbers label: string label for this PMF Returns: Pmf object """ return Pmf(t, label=label) def MakePmfFromDict(d, label=None): """Makes a PMF from a map from values to probabilities. Args: d: dictionary that maps values to probabilities label: string label for this PMF Returns: Pmf object """ return Pmf(d, label=label) def MakePmfFromItems(t, label=None): """Makes a PMF from a sequence of value-probability pairs Args: t: sequence of value-probability pairs label: string label for this PMF Returns: Pmf object """ return Pmf(dict(t), label=label) def MakePmfFromHist(hist, label=None): """Makes a normalized PMF from a Hist object. Args: hist: Hist object label: string label Returns: Pmf object """ if label is None: label = hist.label return Pmf(hist, label=label) def MakeMixture(metapmf, label='mix'): """Make a mixture distribution. Args: metapmf: Pmf that maps from Pmfs to probs. label: string label for the new Pmf. Returns: Pmf object. """ mix = Pmf(label=label) for pmf, p1 in metapmf.Items(): for x, p2 in pmf.Items(): mix.Incr(x, p1 * p2) return mix def MakeUniformPmf(low, high, n): """Make a uniform Pmf. low: lowest value (inclusive) high: highest value (inclusize) n: number of values """ pmf = Pmf() for x in np.linspace(low, high, n): pmf.Set(x, 1) pmf.Normalize() return pmf class Cdf(object): """Represents a cumulative distribution function. Attributes: xs: sequence of values ps: sequence of probabilities label: string used as a graph label. """ def __init__(self, obj=None, ps=None, label=None): """Initializes. If ps is provided, obj must be the corresponding list of values. obj: Hist, Pmf, Cdf, Pdf, dict, pandas Series, list of pairs ps: list of cumulative probabilities label: string label """ self.label = label if label is not None else '_nolegend_' if isinstance(obj, (_DictWrapper, Cdf, Pdf)): if not label: self.label = label if label is not None else obj.label if obj is None: # caller does not provide obj, make an empty Cdf self.xs = np.asarray([]) self.ps = np.asarray([]) if ps is not None: logging.warning("Cdf: can't pass ps without also passing xs.") return else: # if the caller provides xs and ps, just store them if ps is not None: if isinstance(ps, str): logging.warning("Cdf: ps can't be a string") self.xs = np.asarray(obj) self.ps = np.asarray(ps) return # caller has provided just obj, not ps if isinstance(obj, Cdf): self.xs = copy.copy(obj.xs) self.ps = copy.copy(obj.ps) return if isinstance(obj, _DictWrapper): dw = obj else: dw = Hist(obj) if len(dw) == 0: self.xs = np.asarray([]) self.ps = np.asarray([]) return xs, freqs = zip(*sorted(dw.Items())) self.xs = np.asarray(xs) self.ps = np.cumsum(freqs, dtype=np.float) self.ps /= self.ps[-1] def __str__(self): return 'Cdf(%s, %s)' % (str(self.xs), str(self.ps)) __repr__ = __str__ def __len__(self): return len(self.xs) def __getitem__(self, x): return self.Prob(x) def __setitem__(self): raise UnimplementedMethodException() def __delitem__(self): raise UnimplementedMethodException() def __eq__(self, other): return np.all(self.xs == other.xs) and np.all(self.ps == other.ps) def Copy(self, label=None): """Returns a copy of this Cdf. label: string label for the new Cdf """ if label is None: label = self.label return Cdf(list(self.xs), list(self.ps), label=label) def MakePmf(self, label=None): """Makes a Pmf.""" if label is None: label = self.label return Pmf(self, label=label) def Values(self): """Returns a sorted list of values. """ return self.xs def Items(self): """Returns a sorted sequence of (value, probability) pairs. Note: in Python3, returns an iterator. """ a = self.ps b = np.roll(a, 1) b[0] = 0 return zip(self.xs, a-b) def Shift(self, term): """Adds a term to the xs. term: how much to add """ new = self.Copy() # don't use +=, or else an int array + float yields int array new.xs = new.xs + term return new def Scale(self, factor): """Multiplies the xs by a factor. factor: what to multiply by """ new = self.Copy() # don't use *=, or else an int array * float yields int array new.xs = new.xs * factor return new def Prob(self, x): """Returns CDF(x), the probability that corresponds to value x. Args: x: number Returns: float probability """ if x < self.xs[0]: return 0.0 index = bisect.bisect(self.xs, x) p = self.ps[index-1] return p def Probs(self, xs): """Gets probabilities for a sequence of values. xs: any sequence that can be converted to NumPy array returns: NumPy array of cumulative probabilities """ xs = np.asarray(xs) index = np.searchsorted(self.xs, xs, side='right') ps = self.ps[index-1] ps[xs < self.xs[0]] = 0.0 return ps ProbArray = Probs def Value(self, p): """Returns InverseCDF(p), the value that corresponds to probability p. Args: p: number in the range [0, 1] Returns: number value """ if p < 0 or p > 1: raise ValueError('Probability p must be in range [0, 1]') index = bisect.bisect_left(self.ps, p) return self.xs[index] def ValueArray(self, ps): """Returns InverseCDF(p), the value that corresponds to probability p. Args: ps: NumPy array of numbers in the range [0, 1] Returns: NumPy array of values """ ps = np.asarray(ps) if np.any(ps < 0) or np.any(ps > 1): raise ValueError('Probability p must be in range [0, 1]') index = np.searchsorted(self.ps, ps, side='left') return self.xs[index] def Percentile(self, p): """Returns the value that corresponds to percentile p. Args: p: number in the range [0, 100] Returns: number value """ return self.Value(p / 100.0) def PercentileRank(self, x): """Returns the percentile rank of the value x. x: potential value in the CDF returns: percentile rank in the range 0 to 100 """ return self.Prob(x) * 100.0 def Random(self): """Chooses a random value from this distribution.""" return self.Value(random.random()) def Sample(self, n): """Generates a random sample from this distribution. n: int length of the sample returns: NumPy array """ ps = np.random.random(n) return self.ValueArray(ps) def Mean(self): """Computes the mean of a CDF. Returns: float mean """ old_p = 0 total = 0.0 for x, new_p in zip(self.xs, self.ps): p = new_p - old_p total += p * x old_p = new_p return total def CredibleInterval(self, percentage=90): """Computes the central credible interval. If percentage=90, computes the 90% CI. Args: percentage: float between 0 and 100 Returns: sequence of two floats, low and high """ prob = (1 - percentage / 100.0) / 2 interval = self.Value(prob), self.Value(1 - prob) return interval ConfidenceInterval = CredibleInterval def _Round(self, multiplier=1000.0): """ An entry is added to the cdf only if the percentile differs from the previous value in a significant digit, where the number of significant digits is determined by multiplier. The default is 1000, which keeps log10(1000) = 3 significant digits. """ # TODO(write this method) raise UnimplementedMethodException() def Render(self, **options): """Generates a sequence of points suitable for plotting. An empirical CDF is a step function; linear interpolation can be misleading. Note: options are ignored Returns: tuple of (xs, ps) """ def interleave(a, b): c = np.empty(a.shape[0] + b.shape[0]) c[::2] = a c[1::2] = b return c a = np.array(self.xs) xs = interleave(a, a) shift_ps = np.roll(self.ps, 1) shift_ps[0] = 0 ps = interleave(shift_ps, self.ps) return xs, ps def Max(self, k): """Computes the CDF of the maximum of k selections from this dist. k: int returns: new Cdf """ cdf = self.Copy() cdf.ps **= k return cdf def MakeCdfFromItems(items, label=None): """Makes a cdf from an unsorted sequence of (value, frequency) pairs. Args: items: unsorted sequence of (value, frequency) pairs label: string label for this CDF Returns: cdf: list of (value, fraction) pairs """ return Cdf(dict(items), label=label) def MakeCdfFromDict(d, label=None): """Makes a CDF from a dictionary that maps values to frequencies. Args: d: dictionary that maps values to frequencies. label: string label for the data. Returns: Cdf object """ return Cdf(d, label=label) def MakeCdfFromList(seq, label=None): """Creates a CDF from an unsorted sequence. Args: seq: unsorted sequence of sortable values label: string label for the cdf Returns: Cdf object """ return Cdf(seq, label=label) def MakeCdfFromHist(hist, label=None): """Makes a CDF from a Hist object. Args: hist: Pmf.Hist object label: string label for the data. Returns: Cdf object """ if label is None: label = hist.label return Cdf(hist, label=label) def MakeCdfFromPmf(pmf, label=None): """Makes a CDF from a Pmf object. Args: pmf: Pmf.Pmf object label: string label for the data. Returns: Cdf object """ if label is None: label = pmf.label return Cdf(pmf, label=label) class UnimplementedMethodException(Exception): """Exception if someone calls a method that should be overridden.""" class Suite(Pmf): """Represents a suite of hypotheses and their probabilities.""" def Update(self, data): """Updates each hypothesis based on the data. data: any representation of the data returns: the normalizing constant """ for hypo in self.Values(): like = self.Likelihood(data, hypo) self.Mult(hypo, like) return self.Normalize() def LogUpdate(self, data): """Updates a suite of hypotheses based on new data. Modifies the suite directly; if you want to keep the original, make a copy. Note: unlike Update, LogUpdate does not normalize. Args: data: any representation of the data """ for hypo in self.Values(): like = self.LogLikelihood(data, hypo) self.Incr(hypo, like) def UpdateSet(self, dataset): """Updates each hypothesis based on the dataset. This is more efficient than calling Update repeatedly because it waits until the end to Normalize. Modifies the suite directly; if you want to keep the original, make a copy. dataset: a sequence of data returns: the normalizing constant """ for data in dataset: for hypo in self.Values(): like = self.Likelihood(data, hypo) self.Mult(hypo, like) return self.Normalize() def LogUpdateSet(self, dataset): """Updates each hypothesis based on the dataset. Modifies the suite directly; if you want to keep the original, make a copy. dataset: a sequence of data returns: None """ for data in dataset: self.LogUpdate(data) def Likelihood(self, data, hypo): """Computes the likelihood of the data under the hypothesis. hypo: some representation of the hypothesis data: some representation of the data """ raise UnimplementedMethodException() def LogLikelihood(self, data, hypo): """Computes the log likelihood of the data under the hypothesis. hypo: some representation of the hypothesis data: some representation of the data """ raise UnimplementedMethodException() def Print(self): """Prints the hypotheses and their probabilities.""" for hypo, prob in sorted(self.Items()): print(hypo, prob) def MakeOdds(self): """Transforms from probabilities to odds. Values with prob=0 are removed. """ for hypo, prob in self.Items(): if prob: self.Set(hypo, Odds(prob)) else: self.Remove(hypo) def MakeProbs(self): """Transforms from odds to probabilities.""" for hypo, odds in self.Items(): self.Set(hypo, Probability(odds)) def MakeSuiteFromList(t, label=None): """Makes a suite from an unsorted sequence of values. Args: t: sequence of numbers label: string label for this suite Returns: Suite object """ hist = MakeHistFromList(t, label=label) d = hist.GetDict() return MakeSuiteFromDict(d) def MakeSuiteFromHist(hist, label=None): """Makes a normalized suite from a Hist object. Args: hist: Hist object label: string label Returns: Suite object """ if label is None: label = hist.label # make a copy of the dictionary d = dict(hist.GetDict()) return MakeSuiteFromDict(d, label) def MakeSuiteFromDict(d, label=None): """Makes a suite from a map from values to probabilities. Args: d: dictionary that maps values to probabilities label: string label for this suite Returns: Suite object """ suite = Suite(label=label) suite.SetDict(d) suite.Normalize() return suite class Pdf(object): """Represents a probability density function (PDF).""" def Density(self, x): """Evaluates this Pdf at x. Returns: float or NumPy array of probability density """ raise UnimplementedMethodException() def GetLinspace(self): """Get a linspace for plotting. Not all subclasses of Pdf implement this. Returns: numpy array """ raise UnimplementedMethodException() def MakePmf(self, **options): """Makes a discrete version of this Pdf. options can include label: string low: low end of range high: high end of range n: number of places to evaluate Returns: new Pmf """ label = options.pop('label', '') xs, ds = self.Render(**options) return Pmf(dict(zip(xs, ds)), label=label) def Render(self, **options): """Generates a sequence of points suitable for plotting. If options includes low and high, it must also include n; in that case the density is evaluated an n locations between low and high, including both. If options includes xs, the density is evaluate at those location. Otherwise, self.GetLinspace is invoked to provide the locations. Returns: tuple of (xs, densities) """ low, high = options.pop('low', None), options.pop('high', None) if low is not None and high is not None: n = options.pop('n', 101) xs = np.linspace(low, high, n) else: xs = options.pop('xs', None) if xs is None: xs = self.GetLinspace() ds = self.Density(xs) return xs, ds def Items(self): """Generates a sequence of (value, probability) pairs. """ return zip(*self.Render()) class NormalPdf(Pdf): """Represents the PDF of a Normal distribution.""" def __init__(self, mu=0, sigma=1, label=None): """Constructs a Normal Pdf with given mu and sigma. mu: mean sigma: standard deviation label: string """ self.mu = mu self.sigma = sigma self.label = label if label is not None else '_nolegend_' def __str__(self): return 'NormalPdf(%f, %f)' % (self.mu, self.sigma) def GetLinspace(self): """Get a linspace for plotting. Returns: numpy array """ low, high = self.mu-3*self.sigma, self.mu+3*self.sigma return np.linspace(low, high, 101) def Density(self, xs): """Evaluates this Pdf at xs. xs: scalar or sequence of floats returns: float or NumPy array of probability density """ return stats.norm.pdf(xs, self.mu, self.sigma) class ExponentialPdf(Pdf): """Represents the PDF of an exponential distribution.""" def __init__(self, lam=1, label=None): """Constructs an exponential Pdf with given parameter. lam: rate parameter label: string """ self.lam = lam self.label = label if label is not None else '_nolegend_' def __str__(self): return 'ExponentialPdf(%f)' % (self.lam) def GetLinspace(self): """Get a linspace for plotting. Returns: numpy array """ low, high = 0, 5.0/self.lam return np.linspace(low, high, 101) def Density(self, xs): """Evaluates this Pdf at xs. xs: scalar or sequence of floats returns: float or NumPy array of probability density """ return stats.expon.pdf(xs, scale=1.0/self.lam) class EstimatedPdf(Pdf): """Represents a PDF estimated by KDE.""" def __init__(self, sample, label=None): """Estimates the density function based on a sample. sample: sequence of data label: string """ self.label = label if label is not None else '_nolegend_' self.kde = stats.gaussian_kde(sample) low = min(sample) high = max(sample) self.linspace = np.linspace(low, high, 101) def __str__(self): return 'EstimatedPdf(label=%s)' % str(self.label) def GetLinspace(self): """Get a linspace for plotting. Returns: numpy array """ return self.linspace def Density(self, xs): """Evaluates this Pdf at xs. returns: float or NumPy array of probability density """ return self.kde.evaluate(xs) def CredibleInterval(pmf, percentage=90): """Computes a credible interval for a given distribution. If percentage=90, computes the 90% CI. Args: pmf: Pmf object representing a posterior distribution percentage: float between 0 and 100 Returns: sequence of two floats, low and high """ cdf = pmf.MakeCdf() prob = (1 - percentage / 100.0) / 2 interval = cdf.Value(prob), cdf.Value(1 - prob) return interval def PmfProbLess(pmf1, pmf2): """Probability that a value from pmf1 is less than a value from pmf2. Args: pmf1: Pmf object pmf2: Pmf object Returns: float probability """ total = 0.0 for v1, p1 in pmf1.Items(): for v2, p2 in pmf2.Items(): if v1 < v2: total += p1 * p2 return total def PmfProbGreater(pmf1, pmf2): """Probability that a value from pmf1 is less than a value from pmf2. Args: pmf1: Pmf object pmf2: Pmf object Returns: float probability """ total = 0.0 for v1, p1 in pmf1.Items(): for v2, p2 in pmf2.Items(): if v1 > v2: total += p1 * p2 return total def PmfProbEqual(pmf1, pmf2): """Probability that a value from pmf1 equals a value from pmf2. Args: pmf1: Pmf object pmf2: Pmf object Returns: float probability """ total = 0.0 for v1, p1 in pmf1.Items(): for v2, p2 in pmf2.Items(): if v1 == v2: total += p1 * p2 return total def RandomSum(dists): """Chooses a random value from each dist and returns the sum. dists: sequence of Pmf or Cdf objects returns: numerical sum """ total = sum(dist.Random() for dist in dists) return total def SampleSum(dists, n): """Draws a sample of sums from a list of distributions. dists: sequence of Pmf or Cdf objects n: sample size returns: new Pmf of sums """ pmf = Pmf(RandomSum(dists) for i in range(n)) return pmf def EvalNormalPdf(x, mu, sigma): """Computes the unnormalized PDF of the normal distribution. x: value mu: mean sigma: standard deviation returns: float probability density """ return stats.norm.pdf(x, mu, sigma) def MakeNormalPmf(mu, sigma, num_sigmas, n=201): """Makes a PMF discrete approx to a Normal distribution. mu: float mean sigma: float standard deviation num_sigmas: how many sigmas to extend in each direction n: number of values in the Pmf returns: normalized Pmf """ pmf = Pmf() low = mu - num_sigmas * sigma high = mu + num_sigmas * sigma for x in np.linspace(low, high, n): p = EvalNormalPdf(x, mu, sigma) pmf.Set(x, p) pmf.Normalize() return pmf def EvalBinomialPmf(k, n, p): """Evaluates the binomial PMF. Returns the probabily of k successes in n trials with probability p. """ return stats.binom.pmf(k, n, p) def EvalHypergeomPmf(k, N, K, n): """Evaluates the hypergeometric PMF. Returns the probabily of k successes in n trials from a population N with K successes in it. """ return stats.hypergeom.pmf(k, N, K, n) def EvalPoissonPmf(k, lam): """Computes the Poisson PMF. k: number of events lam: parameter lambda in events per unit time returns: float probability """ # don't use the scipy function (yet). for lam=0 it returns NaN; # should be 0.0 # return stats.poisson.pmf(k, lam) return lam ** k * math.exp(-lam) / special.gamma(k+1) def MakePoissonPmf(lam, high, step=1): """Makes a PMF discrete approx to a Poisson distribution. lam: parameter lambda in events per unit time high: upper bound of the Pmf returns: normalized Pmf """ pmf = Pmf() for k in range(0, high + 1, step): p = EvalPoissonPmf(k, lam) pmf.Set(k, p) pmf.Normalize() return pmf def EvalExponentialPdf(x, lam): """Computes the exponential PDF. x: value lam: parameter lambda in events per unit time returns: float probability density """ return lam * math.exp(-lam * x) def EvalExponentialCdf(x, lam): """Evaluates CDF of the exponential distribution with parameter lam.""" return 1 - math.exp(-lam * x) def MakeExponentialPmf(lam, high, n=200): """Makes a PMF discrete approx to an exponential distribution. lam: parameter lambda in events per unit time high: upper bound n: number of values in the Pmf returns: normalized Pmf """ pmf = Pmf() for x in np.linspace(0, high, n): p = EvalExponentialPdf(x, lam) pmf.Set(x, p) pmf.Normalize() return pmf def StandardNormalCdf(x): """Evaluates the CDF of the standard Normal distribution. See http://en.wikipedia.org/wiki/Normal_distribution #Cumulative_distribution_function Args: x: float Returns: float """ return (math.erf(x / ROOT2) + 1) / 2 def EvalNormalCdf(x, mu=0, sigma=1): """Evaluates the CDF of the normal distribution. Args: x: float mu: mean parameter sigma: standard deviation parameter Returns: float """ return stats.norm.cdf(x, loc=mu, scale=sigma) def EvalNormalCdfInverse(p, mu=0, sigma=1): """Evaluates the inverse CDF of the normal distribution. See http://en.wikipedia.org/wiki/Normal_distribution#Quantile_function Args: p: float mu: mean parameter sigma: standard deviation parameter Returns: float """ return stats.norm.ppf(p, loc=mu, scale=sigma) def EvalLognormalCdf(x, mu=0, sigma=1): """Evaluates the CDF of the lognormal distribution. x: float or sequence mu: mean parameter sigma: standard deviation parameter Returns: float or sequence """ return stats.lognorm.cdf(x, loc=mu, scale=sigma) def RenderExpoCdf(lam, low, high, n=101): """Generates sequences of xs and ps for an exponential CDF. lam: parameter low: float high: float n: number of points to render returns: numpy arrays (xs, ps) """ xs = np.linspace(low, high, n) ps = 1 - np.exp(-lam * xs) #ps = stats.expon.cdf(xs, scale=1.0/lam) return xs, ps def RenderNormalCdf(mu, sigma, low, high, n=101): """Generates sequences of xs and ps for a Normal CDF. mu: parameter sigma: parameter low: float high: float n: number of points to render returns: numpy arrays (xs, ps) """ xs = np.linspace(low, high, n) ps = stats.norm.cdf(xs, mu, sigma) return xs, ps def RenderParetoCdf(xmin, alpha, low, high, n=50): """Generates sequences of xs and ps for a Pareto CDF. xmin: parameter alpha: parameter low: float high: float n: number of points to render returns: numpy arrays (xs, ps) """ if low < xmin: low = xmin xs = np.linspace(low, high, n) ps = 1 - (xs / xmin) ** -alpha #ps = stats.pareto.cdf(xs, scale=xmin, b=alpha) return xs, ps class Beta(object): """Represents a Beta distribution. See http://en.wikipedia.org/wiki/Beta_distribution """ def __init__(self, alpha=1, beta=1, label=None): """Initializes a Beta distribution.""" self.alpha = alpha self.beta = beta self.label = label if label is not None else '_nolegend_' def Update(self, data): """Updates a Beta distribution. data: pair of int (heads, tails) """ heads, tails = data self.alpha += heads self.beta += tails def Mean(self): """Computes the mean of this distribution.""" return self.alpha / (self.alpha + self.beta) def Random(self): """Generates a random variate from this distribution.""" return random.betavariate(self.alpha, self.beta) def Sample(self, n): """Generates a random sample from this distribution. n: int sample size """ size = n, return np.random.beta(self.alpha, self.beta, size) def EvalPdf(self, x): """Evaluates the PDF at x.""" return x ** (self.alpha - 1) * (1 - x) ** (self.beta - 1) def MakePmf(self, steps=101, label=None): """Returns a Pmf of this distribution. Note: Normally, we just evaluate the PDF at a sequence of points and treat the probability density as a probability mass. But if alpha or beta is less than one, we have to be more careful because the PDF goes to infinity at x=0 and x=1. In that case we evaluate the CDF and compute differences. """ if self.alpha < 1 or self.beta < 1: cdf = self.MakeCdf() pmf = cdf.MakePmf() return pmf xs = [i / (steps - 1.0) for i in range(steps)] probs = [self.EvalPdf(x) for x in xs] pmf = Pmf(dict(zip(xs, probs)), label=label) return pmf def MakeCdf(self, steps=101): """Returns the CDF of this distribution.""" xs = [i / (steps - 1.0) for i in range(steps)] ps = [special.betainc(self.alpha, self.beta, x) for x in xs] cdf = Cdf(xs, ps) return cdf class Dirichlet(object): """Represents a Dirichlet distribution. See http://en.wikipedia.org/wiki/Dirichlet_distribution """ def __init__(self, n, conc=1, label=None): """Initializes a Dirichlet distribution. n: number of dimensions conc: concentration parameter (smaller yields more concentration) label: string label """ if n < 2: raise ValueError('A Dirichlet distribution with ' 'n<2 makes no sense') self.n = n self.params = np.ones(n, dtype=np.float) * conc self.label = label if label is not None else '_nolegend_' def Update(self, data): """Updates a Dirichlet distribution. data: sequence of observations, in order corresponding to params """ m = len(data) self.params[:m] += data def Random(self): """Generates a random variate from this distribution. Returns: normalized vector of fractions """ p = np.random.gamma(self.params) return p / p.sum() def Likelihood(self, data): """Computes the likelihood of the data. Selects a random vector of probabilities from this distribution. Returns: float probability """ m = len(data) if self.n < m: return 0 x = data p = self.Random() q = p[:m] ** x return q.prod() def LogLikelihood(self, data): """Computes the log likelihood of the data. Selects a random vector of probabilities from this distribution. Returns: float log probability """ m = len(data) if self.n < m: return float('-inf') x = self.Random() y = np.log(x[:m]) * data return y.sum() def MarginalBeta(self, i): """Computes the marginal distribution of the ith element. See http://en.wikipedia.org/wiki/Dirichlet_distribution #Marginal_distributions i: int Returns: Beta object """ alpha0 = self.params.sum() alpha = self.params[i] return Beta(alpha, alpha0 - alpha) def PredictivePmf(self, xs, label=None): """Makes a predictive distribution. xs: values to go into the Pmf Returns: Pmf that maps from x to the mean prevalence of x """ alpha0 = self.params.sum() ps = self.params / alpha0 return Pmf(zip(xs, ps), label=label) def BinomialCoef(n, k): """Compute the binomial coefficient "n choose k". n: number of trials k: number of successes Returns: float """ return scipy.misc.comb(n, k) def LogBinomialCoef(n, k): """Computes the log of the binomial coefficient. http://math.stackexchange.com/questions/64716/ approximating-the-logarithm-of-the-binomial-coefficient n: number of trials k: number of successes Returns: float """ return n * math.log(n) - k * math.log(k) - (n - k) * math.log(n - k) def NormalProbability(ys, jitter=0.0): """Generates data for a normal probability plot. ys: sequence of values jitter: float magnitude of jitter added to the ys returns: numpy arrays xs, ys """ n = len(ys) xs = np.random.normal(0, 1, n) xs.sort() if jitter: ys = Jitter(ys, jitter) else: ys = np.array(ys) ys.sort() return xs, ys def Jitter(values, jitter=0.5): """Jitters the values by adding a uniform variate in (-jitter, jitter). values: sequence jitter: scalar magnitude of jitter returns: new numpy array """ n = len(values) return np.random.uniform(-jitter, +jitter, n) + values def NormalProbabilityPlot(sample, fit_color='0.8', **options): """Makes a normal probability plot with a fitted line. sample: sequence of numbers fit_color: color string for the fitted line options: passed along to Plot """ xs, ys = NormalProbability(sample) mean, var = MeanVar(sample) std = math.sqrt(var) fit = FitLine(xs, mean, std) thinkplot.Plot(*fit, color=fit_color, label='model') xs, ys = NormalProbability(sample) thinkplot.Plot(xs, ys, **options) def Mean(xs): """Computes mean. xs: sequence of values returns: float mean """ return np.mean(xs) def Var(xs, mu=None, ddof=0): """Computes variance. xs: sequence of values mu: option known mean ddof: delta degrees of freedom returns: float """ xs = np.asarray(xs) if mu is None: mu = xs.mean() ds = xs - mu return np.dot(ds, ds) / (len(xs) - ddof) def Std(xs, mu=None, ddof=0): """Computes standard deviation. xs: sequence of values mu: option known mean ddof: delta degrees of freedom returns: float """ var = Var(xs, mu, ddof) return math.sqrt(var) def MeanVar(xs, ddof=0): """Computes mean and variance. Based on http://stackoverflow.com/questions/19391149/ numpy-mean-and-variance-from-single-function xs: sequence of values ddof: delta degrees of freedom returns: pair of float, mean and var """ xs = np.asarray(xs) mean = xs.mean() s2 = Var(xs, mean, ddof) return mean, s2 def Trim(t, p=0.01): """Trims the largest and smallest elements of t. Args: t: sequence of numbers p: fraction of values to trim off each end Returns: sequence of values """ n = int(p * len(t)) t = sorted(t)[n:-n] return t def TrimmedMean(t, p=0.01): """Computes the trimmed mean of a sequence of numbers. Args: t: sequence of numbers p: fraction of values to trim off each end Returns: float """ t = Trim(t, p) return Mean(t) def TrimmedMeanVar(t, p=0.01): """Computes the trimmed mean and variance of a sequence of numbers. Side effect: sorts the list. Args: t: sequence of numbers p: fraction of values to trim off each end Returns: float """ t = Trim(t, p) mu, var = MeanVar(t) return mu, var def CohenEffectSize(group1, group2): """Compute Cohen's d. group1: Series or NumPy array group2: Series or NumPy array returns: float """ diff = group1.mean() - group2.mean() n1, n2 = len(group1), len(group2) var1 = group1.var() var2 = group2.var() pooled_var = (n1 * var1 + n2 * var2) / (n1 + n2) d = diff / math.sqrt(pooled_var) return d def Cov(xs, ys, meanx=None, meany=None): """Computes Cov(X, Y). Args: xs: sequence of values ys: sequence of values meanx: optional float mean of xs meany: optional float mean of ys Returns: Cov(X, Y) """ xs = np.asarray(xs) ys = np.asarray(ys) if meanx is None: meanx = np.mean(xs) if meany is None: meany = np.mean(ys) cov = np.dot(xs-meanx, ys-meany) / len(xs) return cov def Corr(xs, ys): """Computes Corr(X, Y). Args: xs: sequence of values ys: sequence of values Returns: Corr(X, Y) """ xs = np.asarray(xs) ys = np.asarray(ys) meanx, varx = MeanVar(xs) meany, vary = MeanVar(ys) corr = Cov(xs, ys, meanx, meany) / math.sqrt(varx * vary) return corr def SerialCorr(series, lag=1): """Computes the serial correlation of a series. series: Series lag: integer number of intervals to shift returns: float correlation """ xs = series[lag:] ys = series.shift(lag)[lag:] corr = Corr(xs, ys) return corr def SpearmanCorr(xs, ys): """Computes Spearman's rank correlation. Args: xs: sequence of values ys: sequence of values Returns: float Spearman's correlation """ xranks = pandas.Series(xs).rank() yranks = pandas.Series(ys).rank() return Corr(xranks, yranks) def MapToRanks(t): """Returns a list of ranks corresponding to the elements in t. Args: t: sequence of numbers Returns: list of integer ranks, starting at 1 """ # pair up each value with its index pairs = enumerate(t) # sort by value sorted_pairs = sorted(pairs, key=itemgetter(1)) # pair up each pair with its rank ranked = enumerate(sorted_pairs) # sort by index resorted = sorted(ranked, key=lambda trip: trip[1][0]) # extract the ranks ranks = [trip[0]+1 for trip in resorted] return ranks def LeastSquares(xs, ys): """Computes a linear least squares fit for ys as a function of xs. Args: xs: sequence of values ys: sequence of values Returns: tuple of (intercept, slope) """ meanx, varx = MeanVar(xs) meany = Mean(ys) slope = Cov(xs, ys, meanx, meany) / varx inter = meany - slope * meanx return inter, slope def FitLine(xs, inter, slope): """Fits a line to the given data. xs: sequence of x returns: tuple of numpy arrays (sorted xs, fit ys) """ fit_xs = np.sort(xs) fit_ys = inter + slope * fit_xs return fit_xs, fit_ys def Residuals(xs, ys, inter, slope): """Computes residuals for a linear fit with parameters inter and slope. Args: xs: independent variable ys: dependent variable inter: float intercept slope: float slope Returns: list of residuals """ xs = np.asarray(xs) ys = np.asarray(ys) res = ys - (inter + slope * xs) return res def CoefDetermination(ys, res): """Computes the coefficient of determination (R^2) for given residuals. Args: ys: dependent variable res: residuals Returns: float coefficient of determination """ return 1 - Var(res) / Var(ys) def CorrelatedGenerator(rho): """Generates standard normal variates with serial correlation. rho: target coefficient of correlation Returns: iterable """ x = random.gauss(0, 1) yield x sigma = math.sqrt(1 - rho**2) while True: x = random.gauss(x * rho, sigma) yield x def CorrelatedNormalGenerator(mu, sigma, rho): """Generates normal variates with serial correlation. mu: mean of variate sigma: standard deviation of variate rho: target coefficient of correlation Returns: iterable """ for x in CorrelatedGenerator(rho): yield x * sigma + mu def RawMoment(xs, k): """Computes the kth raw moment of xs. """ return sum(x**k for x in xs) / len(xs) def CentralMoment(xs, k): """Computes the kth central moment of xs. """ mean = RawMoment(xs, 1) return sum((x - mean)**k for x in xs) / len(xs) def StandardizedMoment(xs, k): """Computes the kth standardized moment of xs. """ var = CentralMoment(xs, 2) std = math.sqrt(var) return CentralMoment(xs, k) / std**k def Skewness(xs): """Computes skewness. """ return StandardizedMoment(xs, 3) def Median(xs): """Computes the median (50th percentile) of a sequence. xs: sequence or anything else that can initialize a Cdf returns: float """ cdf = Cdf(xs) return cdf.Value(0.5) def IQR(xs): """Computes the interquartile of a sequence. xs: sequence or anything else that can initialize a Cdf returns: pair of floats """ cdf = Cdf(xs) return cdf.Value(0.25), cdf.Value(0.75) def PearsonMedianSkewness(xs): """Computes the Pearson median skewness. """ median = Median(xs) mean = RawMoment(xs, 1) var = CentralMoment(xs, 2) std = math.sqrt(var) gp = 3 * (mean - median) / std return gp class FixedWidthVariables(object): """Represents a set of variables in a fixed width file.""" def __init__(self, variables, index_base=0): """Initializes. variables: DataFrame index_base: are the indices 0 or 1 based? Attributes: colspecs: list of (start, end) index tuples names: list of string variable names """ self.variables = variables # note: by default, subtract 1 from colspecs self.colspecs = variables[['start', 'end']] - index_base # convert colspecs to a list of pair of int self.colspecs = self.colspecs.astype(np.int).values.tolist() self.names = variables['name'] def ReadFixedWidth(self, filename, **options): """Reads a fixed width ASCII file. filename: string filename returns: DataFrame """ df = pandas.read_fwf(filename, colspecs=self.colspecs, names=self.names, **options) return df def ReadStataDct(dct_file, **options): """Reads a Stata dictionary file. dct_file: string filename options: dict of options passed to open() returns: FixedWidthVariables object """ type_map = dict(byte=int, int=int, long=int, float=float, double=float) var_info = [] for line in open(dct_file, **options): match = re.search( r'_column\(([^)]*)\)', line) if match: start = int(match.group(1)) t = line.split() vtype, name, fstring = t[1:4] name = name.lower() if vtype.startswith('str'): vtype = str else: vtype = type_map[vtype] long_desc = ' '.join(t[4:]).strip('"') var_info.append((start, vtype, name, fstring, long_desc)) columns = ['start', 'type', 'name', 'fstring', 'desc'] variables = pandas.DataFrame(var_info, columns=columns) # fill in the end column by shifting the start column variables['end'] = variables.start.shift(-1) variables.loc[len(variables)-1, 'end'] = 0 dct = FixedWidthVariables(variables, index_base=1) return dct def Resample(xs, n=None): """Draw a sample from xs with the same length as xs. xs: sequence n: sample size (default: len(xs)) returns: NumPy array """ if n is None: n = len(xs) return np.random.choice(xs, n, replace=True) def SampleRows(df, nrows, replace=False): """Choose a sample of rows from a DataFrame. df: DataFrame nrows: number of rows replace: whether to sample with replacement returns: DataDf """ indices = np.random.choice(df.index, nrows, replace=replace) sample = df.loc[indices] return sample def ResampleRows(df): """Resamples rows from a DataFrame. df: DataFrame returns: DataFrame """ return SampleRows(df, len(df), replace=True) def ResampleRowsWeighted(df, column='finalwgt'): """Resamples a DataFrame using probabilities proportional to given column. df: DataFrame column: string column name to use as weights returns: DataFrame """ weights = df[column] cdf = Cdf(dict(weights)) indices = cdf.Sample(len(weights)) sample = df.loc[indices] return sample def PercentileRow(array, p): """Selects the row from a sorted array that maps to percentile p. p: float 0--100 returns: NumPy array (one row) """ rows, cols = array.shape index = int(rows * p / 100) return array[index,] def PercentileRows(ys_seq, percents): """Given a collection of lines, selects percentiles along vertical axis. For example, if ys_seq contains simulation results like ys as a function of time, and percents contains (5, 95), the result would be a 90% CI for each vertical slice of the simulation results. ys_seq: sequence of lines (y values) percents: list of percentiles (0-100) to select returns: list of NumPy arrays, one for each percentile """ nrows = len(ys_seq) ncols = len(ys_seq[0]) array = np.zeros((nrows, ncols)) for i, ys in enumerate(ys_seq): array[i,] = ys array = np.sort(array, axis=0) rows = [PercentileRow(array, p) for p in percents] return rows def Smooth(xs, sigma=2, **options): """Smooths a NumPy array with a Gaussian filter. xs: sequence sigma: standard deviation of the filter """ return ndimage.filters.gaussian_filter1d(xs, sigma, **options) class HypothesisTest(object): """Represents a hypothesis test.""" def __init__(self, data): """Initializes. data: data in whatever form is relevant """ self.data = data self.MakeModel() self.actual = self.TestStatistic(data) self.test_stats = None self.test_cdf = None def PValue(self, iters=1000): """Computes the distribution of the test statistic and p-value. iters: number of iterations returns: float p-value """ self.test_stats = [self.TestStatistic(self.RunModel()) for _ in range(iters)] self.test_cdf = Cdf(self.test_stats) count = sum(1 for x in self.test_stats if x >= self.actual) return count / iters def MaxTestStat(self): """Returns the largest test statistic seen during simulations. """ return max(self.test_stats) def PlotCdf(self, label=None): """Draws a Cdf with vertical lines at the observed test stat. """ def VertLine(x): """Draws a vertical line at x.""" thinkplot.Plot([x, x], [0, 1], color='0.8') VertLine(self.actual) thinkplot.Cdf(self.test_cdf, label=label) def TestStatistic(self, data): """Computes the test statistic. data: data in whatever form is relevant """ raise UnimplementedMethodException() def MakeModel(self): """Build a model of the null hypothesis. """ pass def RunModel(self): """Run the model of the null hypothesis. returns: simulated data """ raise UnimplementedMethodException() def main(): pass if __name__ == '__main__': main()
gpl-3.0
paulorauber/nn
examples/rnn.py
1
2389
import numpy as np from sklearn.utils import check_random_state from nn.model.recurrent import RecurrentNetwork random_state = check_random_state(None) def nback(n, k, length): """Random n-back targets given n, number of digits k and sequence length""" Xi = random_state.randint(k, size=length) yi = np.zeros(length, dtype=int) for t in range(n, length): yi[t] = (Xi[t - n] == Xi[t]) return Xi, yi def one_of_k(Xi_, k): Xi = np.zeros((len(Xi_), k)) for t, Xit in np.ndenumerate(Xi_): Xi[t, Xit] = 1 return Xi def nback_dataset(n_sequences, mean_length, std_length, n, k): X, y = [], [] for _ in range(n_sequences): length = random_state.normal(loc=mean_length, scale=std_length) length = int(max(n + 1, length)) Xi_, yi = nback(n, k, length) Xi = one_of_k(Xi_, k) X.append(Xi) y.append(yi) return X, y def nback_example(): # Input dimension k = 4 # n-back n = 3 n_sequences = 100 mean_length = 20 std_length = 5 # Training Xtrain, ytrain = nback_dataset(n_sequences, mean_length, std_length, n, k) rnn = RecurrentNetwork(64, learning_rate=2.0, n_epochs=30, lmbda=0.0, mu=0.2, output_activation='softmax', random_state=None, verbose=1) rnn.fit(Xtrain, ytrain) # Evaluating Xtest, ytest = nback_dataset(5*n_sequences, 5*mean_length, 5*std_length, n, k) print('Average accuracy: {0:.3f}'.format(rnn.score(Xtest, ytest))) acc_zeros = 0.0 for yi in ytest: acc_zeros += float((yi == 0).sum()) / len(yi) acc_zeros /= len(ytest) print('Negative guess accuracy: {0:.3f}'.format(acc_zeros)) # Example Xi_ = [3, 2, 1, 3, 2, 1, 3, 2, 2, 1, 2, 3, 1, 2, 0, 0, 2, 0] print('\nExample sequence: {0}'.format(Xi_)) yi = np.zeros(len(Xi_), dtype=int) for t in range(n, len(Xi_)): yi[t] = (Xi_[t - n] == Xi_[t]) Xi = one_of_k(Xi_, k) yipred = rnn.predict([Xi])[0] print('Correct: \t{0}'.format(yi)) print('Predicted: \t{0}'.format(yipred)) print('Accuracy: {0:.3f}'.format(float((yi == yipred).sum())/len(yi))) def main(): nback_example() if __name__ == "__main__": main()
mit
agopalak/football_pred
pre_proc/proc_data.py
1
4667
import sys import yaml import re import datetime as DT import logging from rainbow_logging_handler import RainbowLoggingHandler import pandas as pd import numpy as np from sklearn import preprocessing from sklearn_pandas import DataFrameMapper # Capturing current module. Needed to call getattr on this module this_module = sys.modules[__name__] # Setup logging module # TODO: Figure out a standard way to install/handle logging logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) formatter = logging.Formatter('[%(filename)s:%(lineno)4s - %(funcName)15s()] %(levelname)8s: %(message)s') # Setup RainbowLoggingHandler handler = RainbowLoggingHandler(sys.stderr, color_funcName=('black', 'yellow', True)) handler.setFormatter(formatter) logger.addHandler(handler) # Converting Boolean to String during YAML load # Done to workaround quirkness with PyYAML def bool_constructor(self, node): value = self.construct_yaml_bool(node) if value == False: return 'False' else: return 'True' yaml.Loader.add_constructor(u'tag:yaml.org,2002:bool', bool_constructor) yaml.SafeLoader.add_constructor(u'tag:yaml.org,2002:bool', bool_constructor) # Load data from CSV, configuration file # Process data and provide input/output data frames def load_data(data_csv, data_cfg): # Load Data YAML configuration file with open(data_cfg, 'r') as yf: data = yaml.load(yf) # Read CSV into data frame df = pd.read_csv(data_csv) # Filling holes with zeros df.fillna(0, inplace=True) # Process Columns for item in data: if item['include'] == False: continue else: colnum = item['column'] logger.info('Processing Column %s', colnum) # Create a column data frame col_df = df.iloc[:, [colnum-1]].copy() logger.debug(col_df.columns) logger.debug('Preprocess Column Input\n%s', col_df.head()) # Apply transformations col_df = do_transform(col_df, item['transform']) logger.debug('Preprocess Column Output\n%s', col_df.head()) # Perform Data Transformations def do_transform(df, tf): for func in tf: funckey, funcval = func.items()[0] # Getting transformation call name transform = getattr(this_module, funckey, None) # Splitting funcval to individual function arguments # First argument is True/False to indicate if transform is called try: pattern = re.compile('\s*,\s*') funcvals = pattern.split(funcval) logger.debug('Funcvals --> %s', funcvals) except AttributeError: funcvals = [funcval] # Calling transformation if funcvals[0] == 'True': try: logger.debug('Funckey --> %s', funckey) df = transform(df, funcvals[1:]) except AttributeError: logger.error('Function %s has not been implemented!', funckey) return df # Performs feature scaling on data frame # TODO: scale - Add implementation to handle val def scale(df, val): logger.info('Function %s called..', sys._getframe().f_code.co_name) mms = preprocessing.MinMaxScaler() return pd.DataFrame(mms.fit_transform(df.values.ravel().reshape(-1, 1)), columns=df.columns) # conv2num: Converts column data to ordered integers # TODO: conv2num - Add implementation to handle args def conv2num(df, args): logger.info('Function %s called..', sys._getframe().f_code.co_name) le = preprocessing.LabelEncoder() return pd.DataFrame(le.fit_transform(df.values.ravel()), columns=df.columns) # conv2bin: Converts column data to binary # TODO: conv2bin - Add implementation to handle args def conv2bin(df, args): logger.info('Function %s called..', sys._getframe().f_code.co_name) le = preprocessing.LabelBinarizer() return pd.DataFrame(le.fit_transform(df.values.ravel()), columns=df.columns) # conv2timedelta: Converts column data to age # TODO: conv2timedelta - Current returns in years. May need to make it more scalable def conv2timedelta(df, args): logger.info('Function %s called..', sys._getframe().f_code.co_name) if args[1] == 'now': refdate = pd.Timestamp(DT.datetime.now()) else: refdate = pd.Timestamp(DT.datetime.strptime(args[1], args[0])) logger.debug('Reference date is: %s', refdate) df = pd.DataFrame((refdate - pd.to_datetime(df.values.ravel())), columns=df.columns) return df.apply(lambda x: (x/np.timedelta64(1, 'Y')).astype(int)) # Main Program if __name__ == '__main__': load_data('nflData.csv', 'datacfg.yaml')
mit
alexeyum/scikit-learn
sklearn/decomposition/tests/test_incremental_pca.py
297
8265
"""Tests for Incremental PCA.""" import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.decomposition import PCA, IncrementalPCA iris = datasets.load_iris() def test_incremental_pca(): # Incremental PCA on dense arrays. X = iris.data batch_size = X.shape[0] // 3 ipca = IncrementalPCA(n_components=2, batch_size=batch_size) pca = PCA(n_components=2) pca.fit_transform(X) X_transformed = ipca.fit_transform(X) np.testing.assert_equal(X_transformed.shape, (X.shape[0], 2)) assert_almost_equal(ipca.explained_variance_ratio_.sum(), pca.explained_variance_ratio_.sum(), 1) for n_components in [1, 2, X.shape[1]]: ipca = IncrementalPCA(n_components, batch_size=batch_size) ipca.fit(X) cov = ipca.get_covariance() precision = ipca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1])) def test_incremental_pca_check_projection(): # Test that the projection of data is correct. rng = np.random.RandomState(1999) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) # Get the reconstruction of the generated data X # Note that Xt has the same "components" as X, just separated # This is what we want to ensure is recreated correctly Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt) # Normalize Yt /= np.sqrt((Yt ** 2).sum()) # Make sure that the first element of Yt is ~1, this means # the reconstruction worked as expected assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_incremental_pca_inverse(): # Test that the projection of data can be inverted. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) ipca = IncrementalPCA(n_components=2, batch_size=10).fit(X) Y = ipca.transform(X) Y_inverse = ipca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_incremental_pca_validation(): # Test that n_components is >=1 and <= n_features. X = [[0, 1], [1, 0]] for n_components in [-1, 0, .99, 3]: assert_raises(ValueError, IncrementalPCA(n_components, batch_size=10).fit, X) def test_incremental_pca_set_params(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 20 X = rng.randn(n_samples, n_features) X2 = rng.randn(n_samples, n_features) X3 = rng.randn(n_samples, n_features) ipca = IncrementalPCA(n_components=20) ipca.fit(X) # Decreasing number of components ipca.set_params(n_components=10) assert_raises(ValueError, ipca.partial_fit, X2) # Increasing number of components ipca.set_params(n_components=15) assert_raises(ValueError, ipca.partial_fit, X3) # Returning to original setting ipca.set_params(n_components=20) ipca.partial_fit(X) def test_incremental_pca_num_features_change(): # Test that changing n_components will raise an error. rng = np.random.RandomState(1999) n_samples = 100 X = rng.randn(n_samples, 20) X2 = rng.randn(n_samples, 50) ipca = IncrementalPCA(n_components=None) ipca.fit(X) assert_raises(ValueError, ipca.partial_fit, X2) def test_incremental_pca_batch_signs(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(10, 20) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(np.sign(i), np.sign(j), decimal=6) def test_incremental_pca_batch_values(): # Test that components_ values are stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(20, 40, 3) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(i, j, decimal=1) def test_incremental_pca_partial_fit(): # Test that fit and partial_fit get equivalent results. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) batch_size = 10 ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X) pipca = IncrementalPCA(n_components=2, batch_size=batch_size) # Add one to make sure endpoint is included batch_itr = np.arange(0, n + 1, batch_size) for i, j in zip(batch_itr[:-1], batch_itr[1:]): pipca.partial_fit(X[i:j, :]) assert_almost_equal(ipca.components_, pipca.components_, decimal=3) def test_incremental_pca_against_pca_iris(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). X = iris.data Y_pca = PCA(n_components=2).fit_transform(X) Y_ipca = IncrementalPCA(n_components=2, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_incremental_pca_against_pca_random_data(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features) Y_pca = PCA(n_components=3).fit_transform(X) Y_ipca = IncrementalPCA(n_components=3, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_explained_variances(): # Test that PCA and IncrementalPCA calculations match X = datasets.make_low_rank_matrix(1000, 100, tail_strength=0., effective_rank=10, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 99]: pca = PCA(n_components=nc).fit(X) ipca = IncrementalPCA(n_components=nc, batch_size=100).fit(X) assert_almost_equal(pca.explained_variance_, ipca.explained_variance_, decimal=prec) assert_almost_equal(pca.explained_variance_ratio_, ipca.explained_variance_ratio_, decimal=prec) assert_almost_equal(pca.noise_variance_, ipca.noise_variance_, decimal=prec) def test_whitening(): # Test that PCA and IncrementalPCA transforms match to sign flip. X = datasets.make_low_rank_matrix(1000, 10, tail_strength=0., effective_rank=2, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 9]: pca = PCA(whiten=True, n_components=nc).fit(X) ipca = IncrementalPCA(whiten=True, n_components=nc, batch_size=250).fit(X) Xt_pca = pca.transform(X) Xt_ipca = ipca.transform(X) assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec) Xinv_ipca = ipca.inverse_transform(Xt_ipca) Xinv_pca = pca.inverse_transform(Xt_pca) assert_almost_equal(X, Xinv_ipca, decimal=prec) assert_almost_equal(X, Xinv_pca, decimal=prec) assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
bsd-3-clause
Akshay0724/scikit-learn
sklearn/gaussian_process/tests/test_kernels.py
3
12567
"""Testing for kernels for Gaussian processes.""" # Author: Jan Hendrik Metzen <[email protected]> # License: BSD 3 clause from sklearn.externals.funcsigs import signature import numpy as np from sklearn.gaussian_process.kernels import _approx_fprime from sklearn.metrics.pairwise \ import PAIRWISE_KERNEL_FUNCTIONS, euclidean_distances, pairwise_kernels from sklearn.gaussian_process.kernels \ import (RBF, Matern, RationalQuadratic, ExpSineSquared, DotProduct, ConstantKernel, WhiteKernel, PairwiseKernel, KernelOperator, Exponentiation) from sklearn.base import clone from sklearn.utils.testing import (assert_equal, assert_almost_equal, assert_not_equal, assert_array_equal, assert_array_almost_equal) X = np.random.RandomState(0).normal(0, 1, (5, 2)) Y = np.random.RandomState(0).normal(0, 1, (6, 2)) kernel_white = RBF(length_scale=2.0) + WhiteKernel(noise_level=3.0) kernels = [RBF(length_scale=2.0), RBF(length_scale_bounds=(0.5, 2.0)), ConstantKernel(constant_value=10.0), 2.0 * RBF(length_scale=0.33, length_scale_bounds="fixed"), 2.0 * RBF(length_scale=0.5), kernel_white, 2.0 * RBF(length_scale=[0.5, 2.0]), 2.0 * Matern(length_scale=0.33, length_scale_bounds="fixed"), 2.0 * Matern(length_scale=0.5, nu=0.5), 2.0 * Matern(length_scale=1.5, nu=1.5), 2.0 * Matern(length_scale=2.5, nu=2.5), 2.0 * Matern(length_scale=[0.5, 2.0], nu=0.5), 3.0 * Matern(length_scale=[2.0, 0.5], nu=1.5), 4.0 * Matern(length_scale=[0.5, 0.5], nu=2.5), RationalQuadratic(length_scale=0.5, alpha=1.5), ExpSineSquared(length_scale=0.5, periodicity=1.5), DotProduct(sigma_0=2.0), DotProduct(sigma_0=2.0) ** 2, RBF(length_scale=[2.0]), Matern(length_scale=[2.0])] for metric in PAIRWISE_KERNEL_FUNCTIONS: if metric in ["additive_chi2", "chi2"]: continue kernels.append(PairwiseKernel(gamma=1.0, metric=metric)) def test_kernel_gradient(): # Compare analytic and numeric gradient of kernels. for kernel in kernels: K, K_gradient = kernel(X, eval_gradient=True) assert_equal(K_gradient.shape[0], X.shape[0]) assert_equal(K_gradient.shape[1], X.shape[0]) assert_equal(K_gradient.shape[2], kernel.theta.shape[0]) def eval_kernel_for_theta(theta): kernel_clone = kernel.clone_with_theta(theta) K = kernel_clone(X, eval_gradient=False) return K K_gradient_approx = \ _approx_fprime(kernel.theta, eval_kernel_for_theta, 1e-10) assert_almost_equal(K_gradient, K_gradient_approx, 4) def test_kernel_theta(): # Check that parameter vector theta of kernel is set correctly. for kernel in kernels: if isinstance(kernel, KernelOperator) \ or isinstance(kernel, Exponentiation): # skip non-basic kernels continue theta = kernel.theta _, K_gradient = kernel(X, eval_gradient=True) # Determine kernel parameters that contribute to theta init_sign = signature(kernel.__class__.__init__).parameters.values() args = [p.name for p in init_sign if p.name != 'self'] theta_vars = map(lambda s: s[0:-len("_bounds")], filter(lambda s: s.endswith("_bounds"), args)) assert_equal( set(hyperparameter.name for hyperparameter in kernel.hyperparameters), set(theta_vars)) # Check that values returned in theta are consistent with # hyperparameter values (being their logarithms) for i, hyperparameter in enumerate(kernel.hyperparameters): assert_equal(theta[i], np.log(getattr(kernel, hyperparameter.name))) # Fixed kernel parameters must be excluded from theta and gradient. for i, hyperparameter in enumerate(kernel.hyperparameters): # create copy with certain hyperparameter fixed params = kernel.get_params() params[hyperparameter.name + "_bounds"] = "fixed" kernel_class = kernel.__class__ new_kernel = kernel_class(**params) # Check that theta and K_gradient are identical with the fixed # dimension left out _, K_gradient_new = new_kernel(X, eval_gradient=True) assert_equal(theta.shape[0], new_kernel.theta.shape[0] + 1) assert_equal(K_gradient.shape[2], K_gradient_new.shape[2] + 1) if i > 0: assert_equal(theta[:i], new_kernel.theta[:i]) assert_array_equal(K_gradient[..., :i], K_gradient_new[..., :i]) if i + 1 < len(kernel.hyperparameters): assert_equal(theta[i + 1:], new_kernel.theta[i:]) assert_array_equal(K_gradient[..., i + 1:], K_gradient_new[..., i:]) # Check that values of theta are modified correctly for i, hyperparameter in enumerate(kernel.hyperparameters): theta[i] = np.log(42) kernel.theta = theta assert_almost_equal(getattr(kernel, hyperparameter.name), 42) setattr(kernel, hyperparameter.name, 43) assert_almost_equal(kernel.theta[i], np.log(43)) def test_auto_vs_cross(): # Auto-correlation and cross-correlation should be consistent. for kernel in kernels: if kernel == kernel_white: continue # Identity is not satisfied on diagonal K_auto = kernel(X) K_cross = kernel(X, X) assert_almost_equal(K_auto, K_cross, 5) def test_kernel_diag(): # Test that diag method of kernel returns consistent results. for kernel in kernels: K_call_diag = np.diag(kernel(X)) K_diag = kernel.diag(X) assert_almost_equal(K_call_diag, K_diag, 5) def test_kernel_operator_commutative(): # Adding kernels and multiplying kernels should be commutative. # Check addition assert_almost_equal((RBF(2.0) + 1.0)(X), (1.0 + RBF(2.0))(X)) # Check multiplication assert_almost_equal((3.0 * RBF(2.0))(X), (RBF(2.0) * 3.0)(X)) def test_kernel_anisotropic(): # Anisotropic kernel should be consistent with isotropic kernels. kernel = 3.0 * RBF([0.5, 2.0]) K = kernel(X) X1 = np.array(X) X1[:, 0] *= 4 K1 = 3.0 * RBF(2.0)(X1) assert_almost_equal(K, K1) X2 = np.array(X) X2[:, 1] /= 4 K2 = 3.0 * RBF(0.5)(X2) assert_almost_equal(K, K2) # Check getting and setting via theta kernel.theta = kernel.theta + np.log(2) assert_array_equal(kernel.theta, np.log([6.0, 1.0, 4.0])) assert_array_equal(kernel.k2.length_scale, [1.0, 4.0]) def test_kernel_stationary(): # Test stationarity of kernels. for kernel in kernels: if not kernel.is_stationary(): continue K = kernel(X, X + 1) assert_almost_equal(K[0, 0], np.diag(K)) def check_hyperparameters_equal(kernel1, kernel2): # Check that hyperparameters of two kernels are equal for attr in set(dir(kernel1) + dir(kernel2)): if attr.startswith("hyperparameter_"): attr_value1 = getattr(kernel1, attr) attr_value2 = getattr(kernel2, attr) assert_equal(attr_value1, attr_value2) def test_kernel_clone(): # Test that sklearn's clone works correctly on kernels. bounds = (1e-5, 1e5) for kernel in kernels: kernel_cloned = clone(kernel) # XXX: Should this be fixed? # This differs from the sklearn's estimators equality check. assert_equal(kernel, kernel_cloned) assert_not_equal(id(kernel), id(kernel_cloned)) # Check that all constructor parameters are equal. assert_equal(kernel.get_params(), kernel_cloned.get_params()) # Check that all hyperparameters are equal. yield check_hyperparameters_equal, kernel, kernel_cloned # This test is to verify that using set_params does not # break clone on kernels. # This used to break because in kernels such as the RBF, non-trivial # logic that modified the length scale used to be in the constructor # See https://github.com/scikit-learn/scikit-learn/issues/6961 # for more details. params = kernel.get_params() # RationalQuadratic kernel is isotropic. isotropic_kernels = (ExpSineSquared, RationalQuadratic) if 'length_scale' in params and not isinstance(kernel, isotropic_kernels): length_scale = params['length_scale'] if np.iterable(length_scale): params['length_scale'] = length_scale[0] params['length_scale_bounds'] = bounds else: params['length_scale'] = [length_scale] * 2 params['length_scale_bounds'] = bounds * 2 kernel_cloned.set_params(**params) kernel_cloned_clone = clone(kernel_cloned) assert_equal(kernel_cloned_clone.get_params(), kernel_cloned.get_params()) assert_not_equal(id(kernel_cloned_clone), id(kernel_cloned)) yield (check_hyperparameters_equal, kernel_cloned, kernel_cloned_clone) def test_matern_kernel(): # Test consistency of Matern kernel for special values of nu. K = Matern(nu=1.5, length_scale=1.0)(X) # the diagonal elements of a matern kernel are 1 assert_array_almost_equal(np.diag(K), np.ones(X.shape[0])) # matern kernel for coef0==0.5 is equal to absolute exponential kernel K_absexp = np.exp(-euclidean_distances(X, X, squared=False)) K = Matern(nu=0.5, length_scale=1.0)(X) assert_array_almost_equal(K, K_absexp) # test that special cases of matern kernel (coef0 in [0.5, 1.5, 2.5]) # result in nearly identical results as the general case for coef0 in # [0.5 + tiny, 1.5 + tiny, 2.5 + tiny] tiny = 1e-10 for nu in [0.5, 1.5, 2.5]: K1 = Matern(nu=nu, length_scale=1.0)(X) K2 = Matern(nu=nu + tiny, length_scale=1.0)(X) assert_array_almost_equal(K1, K2) def test_kernel_versus_pairwise(): # Check that GP kernels can also be used as pairwise kernels. for kernel in kernels: # Test auto-kernel if kernel != kernel_white: # For WhiteKernel: k(X) != k(X,X). This is assumed by # pairwise_kernels K1 = kernel(X) K2 = pairwise_kernels(X, metric=kernel) assert_array_almost_equal(K1, K2) # Test cross-kernel K1 = kernel(X, Y) K2 = pairwise_kernels(X, Y, metric=kernel) assert_array_almost_equal(K1, K2) def test_set_get_params(): # Check that set_params()/get_params() is consistent with kernel.theta. for kernel in kernels: # Test get_params() index = 0 params = kernel.get_params() for hyperparameter in kernel.hyperparameters: if hyperparameter.bounds == "fixed": continue size = hyperparameter.n_elements if size > 1: # anisotropic kernels assert_almost_equal(np.exp(kernel.theta[index:index + size]), params[hyperparameter.name]) index += size else: assert_almost_equal(np.exp(kernel.theta[index]), params[hyperparameter.name]) index += 1 # Test set_params() index = 0 value = 10 # arbitrary value for hyperparameter in kernel.hyperparameters: if hyperparameter.bounds == "fixed": continue size = hyperparameter.n_elements if size > 1: # anisotropic kernels kernel.set_params(**{hyperparameter.name: [value] * size}) assert_almost_equal(np.exp(kernel.theta[index:index + size]), [value] * size) index += size else: kernel.set_params(**{hyperparameter.name: value}) assert_almost_equal(np.exp(kernel.theta[index]), value) index += 1 def test_repr_kernels(): # Smoke-test for repr in kernels. for kernel in kernels: repr(kernel)
bsd-3-clause
wilsonkichoi/zipline
zipline/data/data_portal.py
1
64491
# # Copyright 2016 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from operator import mul import bcolz from logbook import Logger import numpy as np import pandas as pd from pandas.tslib import normalize_date from six import iteritems from six.moves import reduce from zipline.assets import Asset, Future, Equity from zipline.data.us_equity_pricing import NoDataOnDate from zipline.data.us_equity_loader import ( USEquityDailyHistoryLoader, USEquityMinuteHistoryLoader, ) from zipline.utils import tradingcalendar from zipline.utils.math_utils import ( nansum, nanmean, nanstd ) from zipline.utils.memoize import remember_last, weak_lru_cache from zipline.errors import ( NoTradeDataAvailableTooEarly, NoTradeDataAvailableTooLate, HistoryWindowStartsBeforeData, ) log = Logger('DataPortal') BASE_FIELDS = frozenset([ "open", "high", "low", "close", "volume", "price", "last_traded" ]) OHLCV_FIELDS = frozenset([ "open", "high", "low", "close", "volume" ]) OHLCVP_FIELDS = frozenset([ "open", "high", "low", "close", "volume", "price" ]) HISTORY_FREQUENCIES = set(["1m", "1d"]) class DailyHistoryAggregator(object): """ Converts minute pricing data into a daily summary, to be used for the last slot in a call to history with a frequency of `1d`. This summary is the same as a daily bar rollup of minute data, with the distinction that the summary is truncated to the `dt` requested. i.e. the aggregation slides forward during a the course of simulation day. Provides aggregation for `open`, `high`, `low`, `close`, and `volume`. The aggregation rules for each price type is documented in their respective """ def __init__(self, market_opens, minute_reader): self._market_opens = market_opens self._minute_reader = minute_reader # The caches are structured as (date, market_open, entries), where # entries is a dict of asset -> (last_visited_dt, value) # # Whenever an aggregation method determines the current value, # the entry for the respective asset should be overwritten with a new # entry for the current dt.value (int) and aggregation value. # # When the requested dt's date is different from date the cache is # flushed, so that the cache entries do not grow unbounded. # # Example cache: # cache = (date(2016, 3, 17), # pd.Timestamp('2016-03-17 13:31', tz='UTC'), # { # 1: (1458221460000000000, np.nan), # 2: (1458221460000000000, 42.0), # }) self._caches = { 'open': None, 'high': None, 'low': None, 'close': None, 'volume': None } # The int value is used for deltas to avoid extra computation from # creating new Timestamps. self._one_min = pd.Timedelta('1 min').value def _prelude(self, dt, field): date = dt.date() dt_value = dt.value cache = self._caches[field] if cache is None or cache[0] != date: market_open = self._market_opens.loc[date] cache = self._caches[field] = (dt.date(), market_open, {}) _, market_open, entries = cache if dt != market_open: prev_dt = dt_value - self._one_min else: prev_dt = None return market_open, prev_dt, dt_value, entries def opens(self, assets, dt): """ The open field's aggregation returns the first value that occurs for the day, if there has been no data on or before the `dt` the open is `nan`. Once the first non-nan open is seen, that value remains constant per asset for the remainder of the day. Returns ------- np.array with dtype=float64, in order of assets parameter. """ market_open, prev_dt, dt_value, entries = self._prelude(dt, 'open') opens = [] normalized_date = normalize_date(dt) for asset in assets: if not asset._is_alive(normalized_date, True): opens.append(np.NaN) continue if prev_dt is None: val = self._minute_reader.get_value(asset, dt, 'open') entries[asset] = (dt_value, val) opens.append(val) continue else: try: last_visited_dt, first_open = entries[asset] if last_visited_dt == dt_value: opens.append(first_open) continue elif not pd.isnull(first_open): opens.append(first_open) entries[asset] = (dt_value, first_open) continue else: after_last = pd.Timestamp( last_visited_dt + self._one_min, tz='UTC') window = self._minute_reader.load_raw_arrays( ['open'], after_last, dt, [asset], )[0] nonnan = window[~pd.isnull(window)] if len(nonnan): val = nonnan[0] else: val = np.nan entries[asset] = (dt_value, val) opens.append(val) continue except KeyError: window = self._minute_reader.load_raw_arrays( ['open'], market_open, dt, [asset], )[0] nonnan = window[~pd.isnull(window)] if len(nonnan): val = nonnan[0] else: val = np.nan entries[asset] = (dt_value, val) opens.append(val) continue return np.array(opens) def highs(self, assets, dt): """ The high field's aggregation returns the largest high seen between the market open and the current dt. If there has been no data on or before the `dt` the high is `nan`. Returns ------- np.array with dtype=float64, in order of assets parameter. """ market_open, prev_dt, dt_value, entries = self._prelude(dt, 'high') highs = [] normalized_date = normalize_date(dt) for asset in assets: if not asset._is_alive(normalized_date, True): highs.append(np.NaN) continue if prev_dt is None: val = self._minute_reader.get_value(asset, dt, 'high') entries[asset] = (dt_value, val) highs.append(val) continue else: try: last_visited_dt, last_max = entries[asset] if last_visited_dt == dt_value: highs.append(last_max) continue elif last_visited_dt == prev_dt: curr_val = self._minute_reader.get_value( asset, dt, 'high') if pd.isnull(curr_val): val = last_max elif pd.isnull(last_max): val = curr_val else: val = max(last_max, curr_val) entries[asset] = (dt_value, val) highs.append(val) continue else: after_last = pd.Timestamp( last_visited_dt + self._one_min, tz='UTC') window = self._minute_reader.load_raw_arrays( ['high'], after_last, dt, [asset], )[0].T val = max(last_max, np.nanmax(window)) entries[asset] = (dt_value, val) highs.append(val) continue except KeyError: window = self._minute_reader.load_raw_arrays( ['high'], market_open, dt, [asset], )[0].T val = np.nanmax(window) entries[asset] = (dt_value, val) highs.append(val) continue return np.array(highs) def lows(self, assets, dt): """ The low field's aggregation returns the smallest low seen between the market open and the current dt. If there has been no data on or before the `dt` the low is `nan`. Returns ------- np.array with dtype=float64, in order of assets parameter. """ market_open, prev_dt, dt_value, entries = self._prelude(dt, 'low') lows = [] normalized_date = normalize_date(dt) for asset in assets: if not asset._is_alive(normalized_date, True): lows.append(np.NaN) continue if prev_dt is None: val = self._minute_reader.get_value(asset, dt, 'low') entries[asset] = (dt_value, val) lows.append(val) continue else: try: last_visited_dt, last_min = entries[asset] if last_visited_dt == dt_value: lows.append(last_min) continue elif last_visited_dt == prev_dt: curr_val = self._minute_reader.get_value( asset, dt, 'low') val = np.nanmin([last_min, curr_val]) entries[asset] = (dt_value, val) lows.append(val) continue else: after_last = pd.Timestamp( last_visited_dt + self._one_min, tz='UTC') window = self._minute_reader.load_raw_arrays( ['low'], after_last, dt, [asset], )[0].T window_min = np.nanmin(window) if pd.isnull(window_min): val = last_min else: val = min(last_min, window_min) entries[asset] = (dt_value, val) lows.append(val) continue except KeyError: window = self._minute_reader.load_raw_arrays( ['low'], market_open, dt, [asset], )[0].T val = np.nanmin(window) entries[asset] = (dt_value, val) lows.append(val) continue return np.array(lows) def closes(self, assets, dt): """ The close field's aggregation returns the latest close at the given dt. If the close for the given dt is `nan`, the most recent non-nan `close` is used. If there has been no data on or before the `dt` the close is `nan`. Returns ------- np.array with dtype=float64, in order of assets parameter. """ market_open, prev_dt, dt_value, entries = self._prelude(dt, 'close') closes = [] normalized_dt = normalize_date(dt) for asset in assets: if not asset._is_alive(normalized_dt, True): closes.append(np.NaN) continue if prev_dt is None: val = self._minute_reader.get_value(asset, dt, 'close') entries[asset] = (dt_value, val) closes.append(val) continue else: try: last_visited_dt, last_close = entries[asset] if last_visited_dt == dt_value: closes.append(last_close) continue elif last_visited_dt == prev_dt: val = self._minute_reader.get_value( asset, dt, 'close') if pd.isnull(val): val = last_close entries[asset] = (dt_value, val) closes.append(val) continue else: val = self._minute_reader.get_value( asset, dt, 'close') if pd.isnull(val): val = self.closes( [asset], pd.Timestamp(prev_dt, tz='UTC'))[0] entries[asset] = (dt_value, val) closes.append(val) continue except KeyError: val = self._minute_reader.get_value( asset, dt, 'close') if pd.isnull(val): val = self.closes([asset], pd.Timestamp(prev_dt, tz='UTC'))[0] entries[asset] = (dt_value, val) closes.append(val) continue return np.array(closes) def volumes(self, assets, dt): """ The volume field's aggregation returns the sum of all volumes between the market open and the `dt` If there has been no data on or before the `dt` the volume is 0. Returns ------- np.array with dtype=int64, in order of assets parameter. """ market_open, prev_dt, dt_value, entries = self._prelude(dt, 'volume') volumes = [] normalized_date = normalize_date(dt) for asset in assets: if not asset._is_alive(normalized_date, True): volumes.append(0) continue if prev_dt is None: val = self._minute_reader.get_value(asset, dt, 'volume') entries[asset] = (dt_value, val) volumes.append(val) continue else: try: last_visited_dt, last_total = entries[asset] if last_visited_dt == dt_value: volumes.append(last_total) continue elif last_visited_dt == prev_dt: val = self._minute_reader.get_value( asset, dt, 'volume') val += last_total entries[asset] = (dt_value, val) volumes.append(val) continue else: after_last = pd.Timestamp( last_visited_dt + self._one_min, tz='UTC') window = self._minute_reader.load_raw_arrays( ['volume'], after_last, dt, [asset], )[0] val = np.nansum(window) + last_total entries[asset] = (dt_value, val) volumes.append(val) continue except KeyError: window = self._minute_reader.load_raw_arrays( ['volume'], market_open, dt, [asset], )[0] val = np.nansum(window) entries[asset] = (dt_value, val) volumes.append(val) continue return np.array(volumes) class DataPortal(object): """Interface to all of the data that a zipline simulation needs. This is used by the simulation runner to answer questions about the data, like getting the prices of assets on a given day or to service history calls. Parameters ---------- env : TradingEnvironment The trading environment for the simulation. This includes the trading calendar and benchmark data. first_trading_day : pd.Timestamp The first trading day for the simulation. equity_daily_reader : BcolzDailyBarReader, optional The daily bar reader for equities. This will be used to service daily data backtests or daily history calls in a minute backetest. If a daily bar reader is not provided but a minute bar reader is, the minutes will be rolled up to serve the daily requests. equity_minute_reader : BcolzMinuteBarReader, optional The minute bar reader for equities. This will be used to service minute data backtests or minute history calls. This can be used to serve daily calls if no daily bar reader is provided. future_daily_reader : BcolzDailyBarReader, optional The daily bar ready for futures. This will be used to service daily data backtests or daily history calls in a minute backetest. If a daily bar reader is not provided but a minute bar reader is, the minutes will be rolled up to serve the daily requests. future_minute_reader : BcolzMinuteBarReader, optional The minute bar reader for futures. This will be used to service minute data backtests or minute history calls. This can be used to serve daily calls if no daily bar reader is provided. adjustment_reader : SQLiteAdjustmentWriter, optional The adjustment reader. This is used to apply splits, dividends, and other adjustment data to the raw data from the readers. """ def __init__(self, env, first_trading_day, equity_daily_reader=None, equity_minute_reader=None, future_daily_reader=None, future_minute_reader=None, adjustment_reader=None): self.env = env self.views = {} self._asset_finder = env.asset_finder self._carrays = { 'open': {}, 'high': {}, 'low': {}, 'close': {}, 'volume': {}, 'sid': {}, } self._adjustment_reader = adjustment_reader # caches of sid -> adjustment list self._splits_dict = {} self._mergers_dict = {} self._dividends_dict = {} # Cache of sid -> the first trading day of an asset. self._asset_start_dates = {} self._asset_end_dates = {} # Handle extra sources, like Fetcher. self._augmented_sources_map = {} self._extra_source_df = None self._equity_daily_reader = equity_daily_reader if self._equity_daily_reader is not None: self._equity_history_loader = USEquityDailyHistoryLoader( self.env, self._equity_daily_reader, self._adjustment_reader ) self._equity_minute_reader = equity_minute_reader self._future_daily_reader = future_daily_reader self._future_minute_reader = future_minute_reader self._first_trading_day = first_trading_day if self._equity_minute_reader is not None: self._equity_daily_aggregator = DailyHistoryAggregator( self.env.open_and_closes.market_open, self._equity_minute_reader) self._equity_minute_history_loader = USEquityMinuteHistoryLoader( self.env, self._equity_minute_reader, self._adjustment_reader ) self.MINUTE_PRICE_ADJUSTMENT_FACTOR = \ self._equity_minute_reader._ohlc_inverse def _reindex_extra_source(self, df, source_date_index): return df.reindex(index=source_date_index, method='ffill') def handle_extra_source(self, source_df, sim_params): """ Extra sources always have a sid column. We expand the given data (by forward filling) to the full range of the simulation dates, so that lookup is fast during simulation. """ if source_df is None: return # Normalize all the dates in the df source_df.index = source_df.index.normalize() # source_df's sid column can either consist of assets we know about # (such as sid(24)) or of assets we don't know about (such as # palladium). # # In both cases, we break up the dataframe into individual dfs # that only contain a single asset's information. ie, if source_df # has data for PALLADIUM and GOLD, we split source_df into two # dataframes, one for each. (same applies if source_df has data for # AAPL and IBM). # # We then take each child df and reindex it to the simulation's date # range by forward-filling missing values. this makes reads simpler. # # Finally, we store the data. For each column, we store a mapping in # self.augmented_sources_map from the column to a dictionary of # asset -> df. In other words, # self.augmented_sources_map['days_to_cover']['AAPL'] gives us the df # holding that data. source_date_index = self.env.days_in_range( start=sim_params.period_start, end=sim_params.period_end ) # Break the source_df up into one dataframe per sid. This lets # us (more easily) calculate accurate start/end dates for each sid, # de-dup data, and expand the data to fit the backtest start/end date. grouped_by_sid = source_df.groupby(["sid"]) group_names = grouped_by_sid.groups.keys() group_dict = {} for group_name in group_names: group_dict[group_name] = grouped_by_sid.get_group(group_name) # This will be the dataframe which we query to get fetcher assets at # any given time. Get's overwritten every time there's a new fetcher # call extra_source_df = pd.DataFrame() for identifier, df in iteritems(group_dict): # Before reindexing, save the earliest and latest dates earliest_date = df.index[0] latest_date = df.index[-1] # Since we know this df only contains a single sid, we can safely # de-dupe by the index (dt). If minute granularity, will take the # last data point on any given day df = df.groupby(level=0).last() # Reindex the dataframe based on the backtest start/end date. # This makes reads easier during the backtest. df = self._reindex_extra_source(df, source_date_index) if not isinstance(identifier, Asset): # for fake assets we need to store a start/end date self._asset_start_dates[identifier] = earliest_date self._asset_end_dates[identifier] = latest_date for col_name in df.columns.difference(['sid']): if col_name not in self._augmented_sources_map: self._augmented_sources_map[col_name] = {} self._augmented_sources_map[col_name][identifier] = df # Append to extra_source_df the reindexed dataframe for the single # sid extra_source_df = extra_source_df.append(df) self._extra_source_df = extra_source_df def _open_minute_file(self, field, asset): sid_str = str(int(asset)) try: carray = self._carrays[field][sid_str] except KeyError: carray = self._carrays[field][sid_str] = \ self._get_ctable(asset)[field] return carray def _get_ctable(self, asset): sid = int(asset) if isinstance(asset, Future): if self._future_minute_reader.sid_path_func is not None: path = self._future_minute_reader.sid_path_func( self._future_minute_reader.rootdir, sid ) else: path = "{0}/{1}.bcolz".format( self._future_minute_reader.rootdir, sid) elif isinstance(asset, Equity): if self._equity_minute_reader.sid_path_func is not None: path = self._equity_minute_reader.sid_path_func( self._equity_minute_reader.rootdir, sid ) else: path = "{0}/{1}.bcolz".format( self._equity_minute_reader.rootdir, sid) else: # TODO: Figure out if assets should be allowed if neither, and # why this code path is being hit. if self._equity_minute_reader.sid_path_func is not None: path = self._equity_minute_reader.sid_path_func( self._equity_minute_reader.rootdir, sid ) else: path = "{0}/{1}.bcolz".format( self._equity_minute_reader.rootdir, sid) return bcolz.open(path, mode='r') def get_last_traded_dt(self, asset, dt, data_frequency): """ Given an asset and dt, returns the last traded dt from the viewpoint of the given dt. If there is a trade on the dt, the answer is dt provided. """ if data_frequency == 'minute': return self._equity_minute_reader.get_last_traded_dt(asset, dt) elif data_frequency == 'daily': return self._equity_daily_reader.get_last_traded_dt(asset, dt) @staticmethod def _is_extra_source(asset, field, map): """ Internal method that determines if this asset/field combination represents a fetcher value or a regular OHLCVP lookup. """ # If we have an extra source with a column called "price", only look # at it if it's on something like palladium and not AAPL (since our # own price data always wins when dealing with assets). return not (field in BASE_FIELDS and isinstance(asset, Asset)) def _get_fetcher_value(self, asset, field, dt): day = normalize_date(dt) try: return \ self._augmented_sources_map[field][asset].loc[day, field] except KeyError: return np.NaN def get_spot_value(self, asset, field, dt, data_frequency): """ Public API method that returns a scalar value representing the value of the desired asset's field at either the given dt. Parameters ---------- asset : Asset The asset whose data is desired. field : {'open', 'high', 'low', 'close', 'volume', 'price', 'last_traded'} The desired field of the asset. dt : pd.Timestamp The timestamp for the desired value. data_frequency : str The frequency of the data to query; i.e. whether the data is 'daily' or 'minute' bars Returns ------- value : float, int, or pd.Timestamp The spot value of ``field`` for ``asset`` The return type is based on the ``field`` requested. If the field is one of 'open', 'high', 'low', 'close', or 'price', the value will be a float. If the ``field`` is 'volume' the value will be a int. If the ``field`` is 'last_traded' the value will be a Timestamp. """ if self._is_extra_source(asset, field, self._augmented_sources_map): return self._get_fetcher_value(asset, field, dt) if field not in BASE_FIELDS: raise KeyError("Invalid column: " + str(field)) if dt < asset.start_date or \ (data_frequency == "daily" and dt > asset.end_date) or \ (data_frequency == "minute" and normalize_date(dt) > asset.end_date): if field == "volume": return 0 elif field != "last_traded": return np.NaN if data_frequency == "daily": day_to_use = dt day_to_use = normalize_date(day_to_use) return self._get_daily_data(asset, field, day_to_use) else: if isinstance(asset, Future): return self._get_minute_spot_value_future( asset, field, dt) else: if field == "last_traded": return self._equity_minute_reader.get_last_traded_dt( asset, dt ) elif field == "price": return self._get_minute_spot_value(asset, "close", dt, True) else: return self._get_minute_spot_value(asset, field, dt) def get_adjustments(self, assets, field, dt, perspective_dt): """ Returns a list of adjustments between the dt and perspective_dt for the given field and list of assets Parameters ---------- assets : list of type Asset, or Asset The asset, or assets whose adjustments are desired. field : {'open', 'high', 'low', 'close', 'volume', \ 'price', 'last_traded'} The desired field of the asset. dt : pd.Timestamp The timestamp for the desired value. perspective_dt : pd.Timestamp The timestamp from which the data is being viewed back from. data_frequency : str The frequency of the data to query; i.e. whether the data is 'daily' or 'minute' bars Returns ------- adjustments : list[Adjustment] The adjustments to that field. """ if isinstance(assets, Asset): assets = [assets] adjustment_ratios_per_asset = [] split_adj_factor = lambda x: x if field != 'volume' else 1.0 / x for asset in assets: adjustments_for_asset = [] split_adjustments = self._get_adjustment_list( asset, self._splits_dict, "SPLITS" ) for adj_dt, adj in split_adjustments: if dt <= adj_dt <= perspective_dt: adjustments_for_asset.append(split_adj_factor(adj)) elif adj_dt > perspective_dt: break if field != 'volume': merger_adjustments = self._get_adjustment_list( asset, self._mergers_dict, "MERGERS" ) for adj_dt, adj in merger_adjustments: if dt <= adj_dt <= perspective_dt: adjustments_for_asset.append(adj) elif adj_dt > perspective_dt: break dividend_adjustments = self._get_adjustment_list( asset, self._dividends_dict, "DIVIDENDS", ) for adj_dt, adj in dividend_adjustments: if dt <= adj_dt <= perspective_dt: adjustments_for_asset.append(adj) elif adj_dt > perspective_dt: break ratio = reduce(mul, adjustments_for_asset, 1.0) adjustment_ratios_per_asset.append(ratio) return adjustment_ratios_per_asset def get_adjusted_value(self, asset, field, dt, perspective_dt, data_frequency, spot_value=None): """ Returns a scalar value representing the value of the desired asset's field at the given dt with adjustments applied. Parameters ---------- asset : Asset The asset whose data is desired. field : {'open', 'high', 'low', 'close', 'volume', \ 'price', 'last_traded'} The desired field of the asset. dt : pd.Timestamp The timestamp for the desired value. perspective_dt : pd.Timestamp The timestamp from which the data is being viewed back from. data_frequency : str The frequency of the data to query; i.e. whether the data is 'daily' or 'minute' bars Returns ------- value : float, int, or pd.Timestamp The value of the given ``field`` for ``asset`` at ``dt`` with any adjustments known by ``perspective_dt`` applied. The return type is based on the ``field`` requested. If the field is one of 'open', 'high', 'low', 'close', or 'price', the value will be a float. If the ``field`` is 'volume' the value will be a int. If the ``field`` is 'last_traded' the value will be a Timestamp. """ if spot_value is None: # if this a fetcher field, we want to use perspective_dt (not dt) # because we want the new value as of midnight (fetcher only works # on a daily basis, all timestamps are on midnight) if self._is_extra_source(asset, field, self._augmented_sources_map): spot_value = self.get_spot_value(asset, field, perspective_dt, data_frequency) else: spot_value = self.get_spot_value(asset, field, dt, data_frequency) if isinstance(asset, Equity): ratio = self.get_adjustments(asset, field, dt, perspective_dt)[0] spot_value *= ratio return spot_value def _get_minute_spot_value_future(self, asset, column, dt): # Futures bcolz files have 1440 bars per day (24 hours), 7 days a week. # The file attributes contain the "start_dt" and "last_dt" fields, # which represent the time period for this bcolz file. # The start_dt is midnight of the first day that this future started # trading. # figure out the # of minutes between dt and this asset's start_dt start_date = self._get_asset_start_date(asset) minute_offset = int((dt - start_date).total_seconds() / 60) if minute_offset < 0: # asking for a date that is before the asset's start date, no dice return 0.0 # then just index into the bcolz carray at that offset carray = self._open_minute_file(column, asset) result = carray[minute_offset] # if there's missing data, go backwards until we run out of file while result == 0 and minute_offset > 0: minute_offset -= 1 result = carray[minute_offset] if column != 'volume': # FIXME switch to a futures reader return result * 0.001 else: return result def _get_minute_spot_value(self, asset, column, dt, ffill=False): result = self._equity_minute_reader.get_value( asset.sid, dt, column ) if column == "volume": if result == 0: return 0 elif not ffill or not np.isnan(result): # if we're not forward filling, or we found a result, return it return result # we are looking for price, and didn't find one. have to go hunting. last_traded_dt = \ self._equity_minute_reader.get_last_traded_dt(asset, dt) if last_traded_dt is pd.NaT: # no last traded dt, bail return np.nan # get the value as of the last traded dt result = self._equity_minute_reader.get_value( asset.sid, last_traded_dt, column ) if np.isnan(result): return np.nan if dt == last_traded_dt or dt.date() == last_traded_dt.date(): return result # the value we found came from a different day, so we have to adjust # the data if there are any adjustments on that day barrier return self.get_adjusted_value( asset, column, last_traded_dt, dt, "minute", spot_value=result ) def _get_daily_data(self, asset, column, dt): if column == "last_traded": last_traded_dt = \ self._equity_daily_reader.get_last_traded_dt(asset, dt) if pd.isnull(last_traded_dt): return pd.NaT else: return last_traded_dt elif column in OHLCV_FIELDS: # don't forward fill try: val = self._equity_daily_reader.spot_price(asset, dt, column) if val == -1: if column == "volume": return 0 else: return np.nan else: return val except NoDataOnDate: return np.nan elif column == "price": found_dt = dt while True: try: value = self._equity_daily_reader.spot_price( asset, found_dt, "close" ) if value != -1: if dt == found_dt: return value else: # adjust if needed return self.get_adjusted_value( asset, column, found_dt, dt, "minute", spot_value=value ) else: found_dt -= tradingcalendar.trading_day except NoDataOnDate: return np.nan @remember_last def _get_days_for_window(self, end_date, bar_count): tds = self.env.trading_days end_loc = self.env.trading_days.get_loc(end_date) start_loc = end_loc - bar_count + 1 if start_loc < 0: raise HistoryWindowStartsBeforeData( first_trading_day=self.env.first_trading_day.date(), bar_count=bar_count, suggested_start_day=tds[bar_count].date(), ) return tds[start_loc:end_loc + 1] def _get_history_daily_window(self, assets, end_dt, bar_count, field_to_use): """ Internal method that returns a dataframe containing history bars of daily frequency for the given sids. """ days_for_window = self._get_days_for_window(end_dt.date(), bar_count) if len(assets) == 0: return pd.DataFrame(None, index=days_for_window, columns=None) future_data = [] eq_assets = [] for asset in assets: if isinstance(asset, Future): future_data.append(self._get_history_daily_window_future( asset, days_for_window, end_dt, field_to_use )) else: eq_assets.append(asset) eq_data = self._get_history_daily_window_equities( eq_assets, days_for_window, end_dt, field_to_use ) if future_data: # TODO: This case appears to be uncovered by testing. data = np.concatenate(eq_data, np.array(future_data).T) else: data = eq_data return pd.DataFrame( data, index=days_for_window, columns=assets ) def _get_history_daily_window_future(self, asset, days_for_window, end_dt, column): # Since we don't have daily bcolz files for futures (yet), use minute # bars to calculate the daily values. data = [] data_groups = [] # get all the minutes for the days NOT including today for day in days_for_window[:-1]: minutes = self.env.market_minutes_for_day(day) values_for_day = np.zeros(len(minutes), dtype=np.float64) for idx, minute in enumerate(minutes): minute_val = self._get_minute_spot_value_future( asset, column, minute ) values_for_day[idx] = minute_val data_groups.append(values_for_day) # get the minutes for today last_day_minutes = pd.date_range( start=self.env.get_open_and_close(end_dt)[0], end=end_dt, freq="T" ) values_for_last_day = np.zeros(len(last_day_minutes), dtype=np.float64) for idx, minute in enumerate(last_day_minutes): minute_val = self._get_minute_spot_value_future( asset, column, minute ) values_for_last_day[idx] = minute_val data_groups.append(values_for_last_day) for group in data_groups: if len(group) == 0: continue if column == 'volume': data.append(np.sum(group)) elif column == 'open': data.append(group[0]) elif column == 'close': data.append(group[-1]) elif column == 'high': data.append(np.amax(group)) elif column == 'low': data.append(np.amin(group)) return data def _get_history_daily_window_equities( self, assets, days_for_window, end_dt, field_to_use): ends_at_midnight = end_dt.hour == 0 and end_dt.minute == 0 if ends_at_midnight: # two cases where we use daily data for the whole range: # 1) the history window ends at midnight utc. # 2) the last desired day of the window is after the # last trading day, use daily data for the whole range. return self._get_daily_window_for_sids( assets, field_to_use, days_for_window, extra_slot=False ) else: # minute mode, requesting '1d' daily_data = self._get_daily_window_for_sids( assets, field_to_use, days_for_window[0:-1] ) if field_to_use == 'open': minute_value = self._equity_daily_aggregator.opens( assets, end_dt) elif field_to_use == 'high': minute_value = self._equity_daily_aggregator.highs( assets, end_dt) elif field_to_use == 'low': minute_value = self._equity_daily_aggregator.lows( assets, end_dt) elif field_to_use == 'close': minute_value = self._equity_daily_aggregator.closes( assets, end_dt) elif field_to_use == 'volume': minute_value = self._equity_daily_aggregator.volumes( assets, end_dt) # append the partial day. daily_data[-1] = minute_value return daily_data def _get_history_minute_window(self, assets, end_dt, bar_count, field_to_use): """ Internal method that returns a dataframe containing history bars of minute frequency for the given sids. """ # get all the minutes for this window mm = self.env.market_minutes end_loc = mm.get_loc(end_dt) start_loc = end_loc - bar_count + 1 if start_loc < 0: suggested_start_day = (mm[bar_count] + self.env.trading_day).date() raise HistoryWindowStartsBeforeData( first_trading_day=self.env.first_trading_day.date(), bar_count=bar_count, suggested_start_day=suggested_start_day, ) minutes_for_window = mm[start_loc:end_loc + 1] asset_minute_data = self._get_minute_window_for_assets( assets, field_to_use, minutes_for_window, ) return pd.DataFrame( asset_minute_data, index=minutes_for_window, columns=assets ) def get_history_window(self, assets, end_dt, bar_count, frequency, field, ffill=True): """ Public API method that returns a dataframe containing the requested history window. Data is fully adjusted. Parameters ---------- assets : list of zipline.data.Asset objects The assets whose data is desired. bar_count: int The number of bars desired. frequency: string "1d" or "1m" field: string The desired field of the asset. ffill: boolean Forward-fill missing values. Only has effect if field is 'price'. Returns ------- A dataframe containing the requested data. """ if field not in OHLCVP_FIELDS: raise ValueError("Invalid field: {0}".format(field)) if frequency == "1d": if field == "price": df = self._get_history_daily_window(assets, end_dt, bar_count, "close") else: df = self._get_history_daily_window(assets, end_dt, bar_count, field) elif frequency == "1m": if field == "price": df = self._get_history_minute_window(assets, end_dt, bar_count, "close") else: df = self._get_history_minute_window(assets, end_dt, bar_count, field) else: raise ValueError("Invalid frequency: {0}".format(frequency)) # forward-fill price if field == "price": if frequency == "1m": data_frequency = 'minute' elif frequency == "1d": data_frequency = 'daily' else: raise Exception( "Only 1d and 1m are supported for forward-filling.") dt_to_fill = df.index[0] perspective_dt = df.index[-1] assets_with_leading_nan = np.where(pd.isnull(df.iloc[0]))[0] for missing_loc in assets_with_leading_nan: asset = assets[missing_loc] previous_dt = self.get_last_traded_dt( asset, dt_to_fill, data_frequency) if pd.isnull(previous_dt): continue previous_value = self.get_adjusted_value( asset, field, previous_dt, perspective_dt, data_frequency, ) df.iloc[0, missing_loc] = previous_value df.fillna(method='ffill', inplace=True) for asset in df.columns: if df.index[-1] >= asset.end_date: # if the window extends past the asset's end date, set # all post-end-date values to NaN in that asset's series series = df[asset] series[series.index.normalize() > asset.end_date] = np.NaN return df def _get_minute_window_for_assets(self, assets, field, minutes_for_window): """ Internal method that gets a window of adjusted minute data for an asset and specified date range. Used to support the history API method for minute bars. Missing bars are filled with NaN. Parameters ---------- asset : Asset The asset whose data is desired. field: string The specific field to return. "open", "high", "close_price", etc. minutes_for_window: pd.DateTimeIndex The list of minutes representing the desired window. Each minute is a pd.Timestamp. Returns ------- A numpy array with requested values. """ if isinstance(assets, Future): return self._get_minute_window_for_future([assets], field, minutes_for_window) else: # TODO: Make caller accept assets. window = self._get_minute_window_for_equities(assets, field, minutes_for_window) return window def _get_minute_window_for_future(self, asset, field, minutes_for_window): # THIS IS TEMPORARY. For now, we are only exposing futures within # equity trading hours (9:30 am to 4pm, Eastern). The easiest way to # do this is to simply do a spot lookup for each desired minute. return_data = np.zeros(len(minutes_for_window), dtype=np.float64) for idx, minute in enumerate(minutes_for_window): return_data[idx] = \ self._get_minute_spot_value_future(asset, field, minute) # Note: an improvement could be to find the consecutive runs within # minutes_for_window, and use them to read the underlying ctable # more efficiently. # Once futures are on 24-hour clock, then we can just grab all the # requested minutes in one shot from the ctable. # no adjustments for futures, yay. return return_data def _get_minute_window_for_equities( self, assets, field, minutes_for_window): return self._equity_minute_history_loader.history(assets, minutes_for_window, field) def _apply_all_adjustments(self, data, asset, dts, field, price_adj_factor=1.0): """ Internal method that applies all the necessary adjustments on the given data array. The adjustments are: - splits - if field != "volume": - mergers - dividends - * 0.001 - any zero fields replaced with NaN - all values rounded to 3 digits after the decimal point. Parameters ---------- data : np.array The data to be adjusted. asset: Asset The asset whose data is being adjusted. dts: pd.DateTimeIndex The list of minutes or days representing the desired window. field: string The field whose values are in the data array. price_adj_factor: float Factor with which to adjust OHLC values. Returns ------- None. The data array is modified in place. """ self._apply_adjustments_to_window( self._get_adjustment_list( asset, self._splits_dict, "SPLITS" ), data, dts, field != 'volume' ) if field != 'volume': self._apply_adjustments_to_window( self._get_adjustment_list( asset, self._mergers_dict, "MERGERS" ), data, dts, True ) self._apply_adjustments_to_window( self._get_adjustment_list( asset, self._dividends_dict, "DIVIDENDS" ), data, dts, True ) if price_adj_factor is not None: data *= price_adj_factor np.around(data, 3, out=data) def _get_daily_window_for_sids( self, assets, field, days_in_window, extra_slot=True): """ Internal method that gets a window of adjusted daily data for a sid and specified date range. Used to support the history API method for daily bars. Parameters ---------- asset : Asset The asset whose data is desired. start_dt: pandas.Timestamp The start of the desired window of data. bar_count: int The number of days of data to return. field: string The specific field to return. "open", "high", "close_price", etc. extra_slot: boolean Whether to allocate an extra slot in the returned numpy array. This extra slot will hold the data for the last partial day. It's much better to create it here than to create a copy of the array later just to add a slot. Returns ------- A numpy array with requested values. Any missing slots filled with nan. """ bar_count = len(days_in_window) # create an np.array of size bar_count if extra_slot: return_array = np.zeros((bar_count + 1, len(assets))) else: return_array = np.zeros((bar_count, len(assets))) if field != "volume": # volumes default to 0, so we don't need to put NaNs in the array return_array[:] = np.NAN if bar_count != 0: data = self._equity_history_loader.history(assets, days_in_window, field) if extra_slot: return_array[:len(return_array) - 1, :] = data else: return_array[:len(data)] = data return return_array @staticmethod def _apply_adjustments_to_window(adjustments_list, window_data, dts_in_window, multiply): if len(adjustments_list) == 0: return # advance idx to the correct spot in the adjustments list, based on # when the window starts idx = 0 while idx < len(adjustments_list) and dts_in_window[0] >\ adjustments_list[idx][0]: idx += 1 # if we've advanced through all the adjustments, then there's nothing # to do. if idx == len(adjustments_list): return while idx < len(adjustments_list): adjustment_to_apply = adjustments_list[idx] if adjustment_to_apply[0] > dts_in_window[-1]: break range_end = dts_in_window.searchsorted(adjustment_to_apply[0]) if multiply: window_data[0:range_end] *= adjustment_to_apply[1] else: window_data[0:range_end] /= adjustment_to_apply[1] idx += 1 def _get_adjustment_list(self, asset, adjustments_dict, table_name): """ Internal method that returns a list of adjustments for the given sid. Parameters ---------- asset : Asset The asset for which to return adjustments. adjustments_dict: dict A dictionary of sid -> list that is used as a cache. table_name: string The table that contains this data in the adjustments db. Returns ------- adjustments: list A list of [multiplier, pd.Timestamp], earliest first """ if self._adjustment_reader is None: return [] sid = int(asset) try: adjustments = adjustments_dict[sid] except KeyError: adjustments = adjustments_dict[sid] = self._adjustment_reader.\ get_adjustments_for_sid(table_name, sid) return adjustments def _check_is_currently_alive(self, asset, dt): sid = int(asset) if sid not in self._asset_start_dates: self._get_asset_start_date(asset) start_date = self._asset_start_dates[sid] if self._asset_start_dates[sid] > dt: raise NoTradeDataAvailableTooEarly( sid=sid, dt=normalize_date(dt), start_dt=start_date ) end_date = self._asset_end_dates[sid] if self._asset_end_dates[sid] < dt: raise NoTradeDataAvailableTooLate( sid=sid, dt=normalize_date(dt), end_dt=end_date ) def _get_asset_start_date(self, asset): self._ensure_asset_dates(asset) return self._asset_start_dates[asset] def _get_asset_end_date(self, asset): self._ensure_asset_dates(asset) return self._asset_end_dates[asset] def _ensure_asset_dates(self, asset): sid = int(asset) if sid not in self._asset_start_dates: if self._first_trading_day is not None: self._asset_start_dates[sid] = \ max(asset.start_date, self._first_trading_day) else: self._asset_start_dates[sid] = asset.start_date self._asset_end_dates[sid] = asset.end_date def get_splits(self, sids, dt): """ Returns any splits for the given sids and the given dt. Parameters ---------- sids : container Sids for which we want splits. dt : pd.Timestamp The date for which we are checking for splits. Note: this is expected to be midnight UTC. Returns ------- splits : list[(int, float)] List of splits, where each split is a (sid, ratio) tuple. """ if self._adjustment_reader is None or not sids: return {} # convert dt to # of seconds since epoch, because that's what we use # in the adjustments db seconds = int(dt.value / 1e9) splits = self._adjustment_reader.conn.execute( "SELECT sid, ratio FROM SPLITS WHERE effective_date = ?", (seconds,)).fetchall() splits = [split for split in splits if split[0] in sids] return splits def get_stock_dividends(self, sid, trading_days): """ Returns all the stock dividends for a specific sid that occur in the given trading range. Parameters ---------- sid: int The asset whose stock dividends should be returned. trading_days: pd.DatetimeIndex The trading range. Returns ------- list: A list of objects with all relevant attributes populated. All timestamp fields are converted to pd.Timestamps. """ if self._adjustment_reader is None: return [] if len(trading_days) == 0: return [] start_dt = trading_days[0].value / 1e9 end_dt = trading_days[-1].value / 1e9 dividends = self._adjustment_reader.conn.execute( "SELECT * FROM stock_dividend_payouts WHERE sid = ? AND " "ex_date > ? AND pay_date < ?", (int(sid), start_dt, end_dt,)).\ fetchall() dividend_info = [] for dividend_tuple in dividends: dividend_info.append({ "declared_date": dividend_tuple[1], "ex_date": pd.Timestamp(dividend_tuple[2], unit="s"), "pay_date": pd.Timestamp(dividend_tuple[3], unit="s"), "payment_sid": dividend_tuple[4], "ratio": dividend_tuple[5], "record_date": pd.Timestamp(dividend_tuple[6], unit="s"), "sid": dividend_tuple[7] }) return dividend_info def contains(self, asset, field): return field in BASE_FIELDS or \ (field in self._augmented_sources_map and asset in self._augmented_sources_map[field]) def get_fetcher_assets(self, dt): """ Returns a list of assets for the current date, as defined by the fetcher data. Returns ------- list: a list of Asset objects. """ # return a list of assets for the current date, as defined by the # fetcher source if self._extra_source_df is None: return [] day = normalize_date(dt) if day in self._extra_source_df.index: assets = self._extra_source_df.loc[day]['sid'] else: return [] if isinstance(assets, pd.Series): return [x for x in assets if isinstance(x, Asset)] else: return [assets] if isinstance(assets, Asset) else [] @weak_lru_cache(20) def _get_minute_count_for_transform(self, ending_minute, days_count): # cache size picked somewhat loosely. this code exists purely to # handle deprecated API. # bars is the number of days desired. we have to translate that # into the number of minutes we want. # we get all the minutes for the last (bars - 1) days, then add # all the minutes so far today. the +2 is to account for ignoring # today, and the previous day, in doing the math. previous_day = self.env.previous_trading_day(ending_minute) days = self.env.days_in_range( self.env.add_trading_days(-days_count + 2, previous_day), previous_day, ) minutes_count = \ sum(210 if day in self.env.early_closes else 390 for day in days) # add the minutes for today today_open = self.env.get_open_and_close(ending_minute)[0] minutes_count += \ ((ending_minute - today_open).total_seconds() // 60) + 1 return minutes_count def get_simple_transform(self, asset, transform_name, dt, data_frequency, bars=None): if transform_name == "returns": # returns is always calculated over the last 2 days, regardless # of the simulation's data frequency. hst = self.get_history_window( [asset], dt, 2, "1d", "price", ffill=True )[asset] return (hst.iloc[-1] - hst.iloc[0]) / hst.iloc[0] if bars is None: raise ValueError("bars cannot be None!") if data_frequency == "minute": freq_str = "1m" calculated_bar_count = self._get_minute_count_for_transform( dt, bars ) else: freq_str = "1d" calculated_bar_count = bars price_arr = self.get_history_window( [asset], dt, calculated_bar_count, freq_str, "price", ffill=True )[asset] if transform_name == "mavg": return nanmean(price_arr) elif transform_name == "stddev": return nanstd(price_arr, ddof=1) elif transform_name == "vwap": volume_arr = self.get_history_window( [asset], dt, calculated_bar_count, freq_str, "volume", ffill=True )[asset] vol_sum = nansum(volume_arr) try: ret = nansum(price_arr * volume_arr) / vol_sum except ZeroDivisionError: ret = np.nan return ret
apache-2.0
schets/scikit-learn
examples/mixture/plot_gmm_sin.py
248
2747
""" ================================= Gaussian Mixture Model Sine Curve ================================= This example highlights the advantages of the Dirichlet Process: complexity control and dealing with sparse data. The dataset is formed by 100 points loosely spaced following a noisy sine curve. The fit by the GMM class, using the expectation-maximization algorithm to fit a mixture of 10 Gaussian components, finds too-small components and very little structure. The fits by the Dirichlet process, however, show that the model can either learn a global structure for the data (small alpha) or easily interpolate to finding relevant local structure (large alpha), never falling into the problems shown by the GMM class. """ import itertools import numpy as np from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture from sklearn.externals.six.moves import xrange # Number of samples per component n_samples = 100 # Generate random sample following a sine curve np.random.seed(0) X = np.zeros((n_samples, 2)) step = 4 * np.pi / n_samples for i in xrange(X.shape[0]): x = i * step - 6 X[i, 0] = x + np.random.normal(0, 0.1) X[i, 1] = 3 * (np.sin(x) + np.random.normal(0, .2)) color_iter = itertools.cycle(['r', 'g', 'b', 'c', 'm']) for i, (clf, title) in enumerate([ (mixture.GMM(n_components=10, covariance_type='full', n_iter=100), "Expectation-maximization"), (mixture.DPGMM(n_components=10, covariance_type='full', alpha=0.01, n_iter=100), "Dirichlet Process,alpha=0.01"), (mixture.DPGMM(n_components=10, covariance_type='diag', alpha=100., n_iter=100), "Dirichlet Process,alpha=100.")]): clf.fit(X) splot = plt.subplot(3, 1, 1 + i) Y_ = clf.predict(X) for i, (mean, covar, color) in enumerate(zip( clf.means_, clf._get_covars(), color_iter)): v, w = linalg.eigh(covar) u = w[0] / linalg.norm(w[0]) # as the DP will not use every component it has access to # unless it needs it, we shouldn't plot the redundant # components. if not np.any(Y_ == i): continue plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component angle = np.arctan(u[1] / u[0]) angle = 180 * angle / np.pi # convert to degrees ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) plt.xlim(-6, 4 * np.pi - 6) plt.ylim(-5, 5) plt.title(title) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
waterponey/scikit-learn
examples/semi_supervised/plot_label_propagation_structure.py
55
2433
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Andreas Mueller <[email protected]> # License: BSD import numpy as np import matplotlib.pyplot as plt from sklearn.semi_supervised import label_propagation from sklearn.datasets import make_circles # generate ring with inner box n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = -np.ones(n_samples) labels[0] = outer labels[-1] = inner ############################################################################### # Learn with LabelSpreading label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=1.0) label_spread.fit(X, labels) ############################################################################### # Plot output labels output_labels = label_spread.transduction_ plt.figure(figsize=(8.5, 4)) plt.subplot(1, 2, 1) plt.scatter(X[labels == outer, 0], X[labels == outer, 1], color='navy', marker='s', lw=0, label="outer labeled", s=10) plt.scatter(X[labels == inner, 0], X[labels == inner, 1], color='c', marker='s', lw=0, label='inner labeled', s=10) plt.scatter(X[labels == -1, 0], X[labels == -1, 1], color='darkorange', marker='.', label='unlabeled') plt.legend(scatterpoints=1, shadow=False, loc='upper right') plt.title("Raw data (2 classes=outer and inner)") plt.subplot(1, 2, 2) output_label_array = np.asarray(output_labels) outer_numbers = np.where(output_label_array == outer)[0] inner_numbers = np.where(output_label_array == inner)[0] plt.scatter(X[outer_numbers, 0], X[outer_numbers, 1], color='navy', marker='s', lw=0, s=10, label="outer learned") plt.scatter(X[inner_numbers, 0], X[inner_numbers, 1], color='c', marker='s', lw=0, s=10, label="inner learned") plt.legend(scatterpoints=1, shadow=False, loc='upper right') plt.title("Labels learned with Label Spreading (KNN)") plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92) plt.show()
bsd-3-clause
shangwuhencc/scikit-learn
examples/cluster/plot_kmeans_assumptions.py
270
2040
""" ==================================== Demonstration of k-means assumptions ==================================== This example is meant to illustrate situations where k-means will produce unintuitive and possibly unexpected clusters. In the first three plots, the input data does not conform to some implicit assumption that k-means makes and undesirable clusters are produced as a result. In the last plot, k-means returns intuitive clusters despite unevenly sized blobs. """ print(__doc__) # Author: Phil Roth <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs plt.figure(figsize=(12, 12)) n_samples = 1500 random_state = 170 X, y = make_blobs(n_samples=n_samples, random_state=random_state) # Incorrect number of clusters y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X) plt.subplot(221) plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("Incorrect Number of Blobs") # Anisotropicly distributed data transformation = [[ 0.60834549, -0.63667341], [-0.40887718, 0.85253229]] X_aniso = np.dot(X, transformation) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso) plt.subplot(222) plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred) plt.title("Anisotropicly Distributed Blobs") # Different variance X_varied, y_varied = make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied) plt.subplot(223) plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred) plt.title("Unequal Variance") # Unevenly sized blobs X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10])) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_filtered) plt.subplot(224) plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred) plt.title("Unevenly Sized Blobs") plt.show()
bsd-3-clause
winklerand/pandas
pandas/tests/test_errors.py
9
1147
# -*- coding: utf-8 -*- import pytest from warnings import catch_warnings import pandas # noqa import pandas as pd @pytest.mark.parametrize( "exc", ['UnsupportedFunctionCall', 'UnsortedIndexError', 'OutOfBoundsDatetime', 'ParserError', 'PerformanceWarning', 'DtypeWarning', 'EmptyDataError', 'ParserWarning', 'MergeError']) def test_exception_importable(exc): from pandas import errors e = getattr(errors, exc) assert e is not None # check that we can raise on them with pytest.raises(e): raise e() def test_catch_oob(): from pandas import errors try: pd.Timestamp('15000101') except errors.OutOfBoundsDatetime: pass def test_error_rename(): # see gh-12665 from pandas.errors import ParserError from pandas.io.common import CParserError try: raise CParserError() except ParserError: pass try: raise ParserError() except CParserError: pass with catch_warnings(record=True): try: raise ParserError() except pd.parser.CParserError: pass
bsd-3-clause
samuel1208/scikit-learn
sklearn/metrics/scorer.py
211
13141
""" The :mod:`sklearn.metrics.scorer` submodule implements a flexible interface for model selection and evaluation using arbitrary score functions. A scorer object is a callable that can be passed to :class:`sklearn.grid_search.GridSearchCV` or :func:`sklearn.cross_validation.cross_val_score` as the ``scoring`` parameter, to specify how a model should be evaluated. The signature of the call is ``(estimator, X, y)`` where ``estimator`` is the model to be evaluated, ``X`` is the test data and ``y`` is the ground truth labeling (or ``None`` in the case of unsupervised models). """ # Authors: Andreas Mueller <[email protected]> # Lars Buitinck <[email protected]> # Arnaud Joly <[email protected]> # License: Simplified BSD from abc import ABCMeta, abstractmethod from functools import partial import numpy as np from . import (r2_score, median_absolute_error, mean_absolute_error, mean_squared_error, accuracy_score, f1_score, roc_auc_score, average_precision_score, precision_score, recall_score, log_loss) from .cluster import adjusted_rand_score from ..utils.multiclass import type_of_target from ..externals import six from ..base import is_regressor class _BaseScorer(six.with_metaclass(ABCMeta, object)): def __init__(self, score_func, sign, kwargs): self._kwargs = kwargs self._score_func = score_func self._sign = sign @abstractmethod def __call__(self, estimator, X, y, sample_weight=None): pass def __repr__(self): kwargs_string = "".join([", %s=%s" % (str(k), str(v)) for k, v in self._kwargs.items()]) return ("make_scorer(%s%s%s%s)" % (self._score_func.__name__, "" if self._sign > 0 else ", greater_is_better=False", self._factory_args(), kwargs_string)) def _factory_args(self): """Return non-default make_scorer arguments for repr.""" return "" class _PredictScorer(_BaseScorer): def __call__(self, estimator, X, y_true, sample_weight=None): """Evaluate predicted target values for X relative to y_true. Parameters ---------- estimator : object Trained estimator to use for scoring. Must have a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to estimator.predict. y_true : array-like Gold standard target values for X. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_pred = estimator.predict(X) if sample_weight is not None: return self._sign * self._score_func(y_true, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y_true, y_pred, **self._kwargs) class _ProbaScorer(_BaseScorer): def __call__(self, clf, X, y, sample_weight=None): """Evaluate predicted probabilities for X relative to y_true. Parameters ---------- clf : object Trained classifier to use for scoring. Must have a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to clf.predict_proba. y : array-like Gold standard target values for X. These must be class labels, not probabilities. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_pred = clf.predict_proba(X) if sample_weight is not None: return self._sign * self._score_func(y, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y, y_pred, **self._kwargs) def _factory_args(self): return ", needs_proba=True" class _ThresholdScorer(_BaseScorer): def __call__(self, clf, X, y, sample_weight=None): """Evaluate decision function output for X relative to y_true. Parameters ---------- clf : object Trained classifier to use for scoring. Must have either a decision_function method or a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to clf.decision_function or clf.predict_proba. y : array-like Gold standard target values for X. These must be class labels, not decision function values. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_type = type_of_target(y) if y_type not in ("binary", "multilabel-indicator"): raise ValueError("{0} format is not supported".format(y_type)) if is_regressor(clf): y_pred = clf.predict(X) else: try: y_pred = clf.decision_function(X) # For multi-output multi-class estimator if isinstance(y_pred, list): y_pred = np.vstack(p for p in y_pred).T except (NotImplementedError, AttributeError): y_pred = clf.predict_proba(X) if y_type == "binary": y_pred = y_pred[:, 1] elif isinstance(y_pred, list): y_pred = np.vstack([p[:, -1] for p in y_pred]).T if sample_weight is not None: return self._sign * self._score_func(y, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y, y_pred, **self._kwargs) def _factory_args(self): return ", needs_threshold=True" def get_scorer(scoring): if isinstance(scoring, six.string_types): try: scorer = SCORERS[scoring] except KeyError: raise ValueError('%r is not a valid scoring value. ' 'Valid options are %s' % (scoring, sorted(SCORERS.keys()))) else: scorer = scoring return scorer def _passthrough_scorer(estimator, *args, **kwargs): """Function that wraps estimator.score""" return estimator.score(*args, **kwargs) def check_scoring(estimator, scoring=None, allow_none=False): """Determine scorer from user options. A TypeError will be thrown if the estimator cannot be scored. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. allow_none : boolean, optional, default: False If no scoring is specified and the estimator has no score function, we can either return None or raise an exception. Returns ------- scoring : callable A scorer callable object / function with signature ``scorer(estimator, X, y)``. """ has_scoring = scoring is not None if not hasattr(estimator, 'fit'): raise TypeError("estimator should a be an estimator implementing " "'fit' method, %r was passed" % estimator) elif has_scoring: return get_scorer(scoring) elif hasattr(estimator, 'score'): return _passthrough_scorer elif allow_none: return None else: raise TypeError( "If no scoring is specified, the estimator passed should " "have a 'score' method. The estimator %r does not." % estimator) def make_scorer(score_func, greater_is_better=True, needs_proba=False, needs_threshold=False, **kwargs): """Make a scorer from a performance metric or loss function. This factory function wraps scoring functions for use in GridSearchCV and cross_val_score. It takes a score function, such as ``accuracy_score``, ``mean_squared_error``, ``adjusted_rand_index`` or ``average_precision`` and returns a callable that scores an estimator's output. Read more in the :ref:`User Guide <scoring>`. Parameters ---------- score_func : callable, Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. greater_is_better : boolean, default=True Whether score_func is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the score_func. needs_proba : boolean, default=False Whether score_func requires predict_proba to get probability estimates out of a classifier. needs_threshold : boolean, default=False Whether score_func takes a continuous decision certainty. This only works for binary classification using estimators that have either a decision_function or predict_proba method. For example ``average_precision`` or the area under the roc curve can not be computed using discrete predictions alone. **kwargs : additional arguments Additional parameters to be passed to score_func. Returns ------- scorer : callable Callable object that returns a scalar score; greater is better. Examples -------- >>> from sklearn.metrics import fbeta_score, make_scorer >>> ftwo_scorer = make_scorer(fbeta_score, beta=2) >>> ftwo_scorer make_scorer(fbeta_score, beta=2) >>> from sklearn.grid_search import GridSearchCV >>> from sklearn.svm import LinearSVC >>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, ... scoring=ftwo_scorer) """ sign = 1 if greater_is_better else -1 if needs_proba and needs_threshold: raise ValueError("Set either needs_proba or needs_threshold to True," " but not both.") if needs_proba: cls = _ProbaScorer elif needs_threshold: cls = _ThresholdScorer else: cls = _PredictScorer return cls(score_func, sign, kwargs) # Standard regression scores r2_scorer = make_scorer(r2_score) mean_squared_error_scorer = make_scorer(mean_squared_error, greater_is_better=False) mean_absolute_error_scorer = make_scorer(mean_absolute_error, greater_is_better=False) median_absolute_error_scorer = make_scorer(median_absolute_error, greater_is_better=False) # Standard Classification Scores accuracy_scorer = make_scorer(accuracy_score) f1_scorer = make_scorer(f1_score) # Score functions that need decision values roc_auc_scorer = make_scorer(roc_auc_score, greater_is_better=True, needs_threshold=True) average_precision_scorer = make_scorer(average_precision_score, needs_threshold=True) precision_scorer = make_scorer(precision_score) recall_scorer = make_scorer(recall_score) # Score function for probabilistic classification log_loss_scorer = make_scorer(log_loss, greater_is_better=False, needs_proba=True) # Clustering scores adjusted_rand_scorer = make_scorer(adjusted_rand_score) SCORERS = dict(r2=r2_scorer, median_absolute_error=median_absolute_error_scorer, mean_absolute_error=mean_absolute_error_scorer, mean_squared_error=mean_squared_error_scorer, accuracy=accuracy_scorer, roc_auc=roc_auc_scorer, average_precision=average_precision_scorer, log_loss=log_loss_scorer, adjusted_rand_score=adjusted_rand_scorer) for name, metric in [('precision', precision_score), ('recall', recall_score), ('f1', f1_score)]: SCORERS[name] = make_scorer(metric) for average in ['macro', 'micro', 'samples', 'weighted']: qualified_name = '{0}_{1}'.format(name, average) SCORERS[qualified_name] = make_scorer(partial(metric, pos_label=None, average=average))
bsd-3-clause
vigilv/scikit-learn
sklearn/datasets/base.py
196
18554
""" Base IO code for all datasets """ # Copyright (c) 2007 David Cournapeau <[email protected]> # 2010 Fabian Pedregosa <[email protected]> # 2010 Olivier Grisel <[email protected]> # License: BSD 3 clause import os import csv import shutil from os import environ from os.path import dirname from os.path import join from os.path import exists from os.path import expanduser from os.path import isdir from os import listdir from os import makedirs import numpy as np from ..utils import check_random_state class Bunch(dict): """Container object for datasets Dictionary-like object that exposes its keys as attributes. >>> b = Bunch(a=1, b=2) >>> b['b'] 2 >>> b.b 2 >>> b.a = 3 >>> b['a'] 3 >>> b.c = 6 >>> b['c'] 6 """ def __init__(self, **kwargs): dict.__init__(self, kwargs) def __setattr__(self, key, value): self[key] = value def __getattr__(self, key): try: return self[key] except KeyError: raise AttributeError(key) def __getstate__(self): return self.__dict__ def get_data_home(data_home=None): """Return the path of the scikit-learn data dir. This folder is used by some large dataset loaders to avoid downloading the data several times. By default the data dir is set to a folder named 'scikit_learn_data' in the user home folder. Alternatively, it can be set by the 'SCIKIT_LEARN_DATA' environment variable or programmatically by giving an explicit folder path. The '~' symbol is expanded to the user home folder. If the folder does not already exist, it is automatically created. """ if data_home is None: data_home = environ.get('SCIKIT_LEARN_DATA', join('~', 'scikit_learn_data')) data_home = expanduser(data_home) if not exists(data_home): makedirs(data_home) return data_home def clear_data_home(data_home=None): """Delete all the content of the data home cache.""" data_home = get_data_home(data_home) shutil.rmtree(data_home) def load_files(container_path, description=None, categories=None, load_content=True, shuffle=True, encoding=None, decode_error='strict', random_state=0): """Load text files with categories as subfolder names. Individual samples are assumed to be files stored a two levels folder structure such as the following: container_folder/ category_1_folder/ file_1.txt file_2.txt ... file_42.txt category_2_folder/ file_43.txt file_44.txt ... The folder names are used as supervised signal label names. The individual file names are not important. This function does not try to extract features into a numpy array or scipy sparse matrix. In addition, if load_content is false it does not try to load the files in memory. To use text files in a scikit-learn classification or clustering algorithm, you will need to use the `sklearn.feature_extraction.text` module to build a feature extraction transformer that suits your problem. If you set load_content=True, you should also specify the encoding of the text using the 'encoding' parameter. For many modern text files, 'utf-8' will be the correct encoding. If you leave encoding equal to None, then the content will be made of bytes instead of Unicode, and you will not be able to use most functions in `sklearn.feature_extraction.text`. Similar feature extractors should be built for other kind of unstructured data input such as images, audio, video, ... Read more in the :ref:`User Guide <datasets>`. Parameters ---------- container_path : string or unicode Path to the main folder holding one subfolder per category description: string or unicode, optional (default=None) A paragraph describing the characteristic of the dataset: its source, reference, etc. categories : A collection of strings or None, optional (default=None) If None (default), load all the categories. If not None, list of category names to load (other categories ignored). load_content : boolean, optional (default=True) Whether to load or not the content of the different files. If true a 'data' attribute containing the text information is present in the data structure returned. If not, a filenames attribute gives the path to the files. encoding : string or None (default is None) If None, do not try to decode the content of the files (e.g. for images or other non-text content). If not None, encoding to use to decode text files to Unicode if load_content is True. decode_error: {'strict', 'ignore', 'replace'}, optional Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. Passed as keyword argument 'errors' to bytes.decode. shuffle : bool, optional (default=True) Whether or not to shuffle the data: might be important for models that make the assumption that the samples are independent and identically distributed (i.i.d.), such as stochastic gradient descent. random_state : int, RandomState instance or None, optional (default=0) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: either data, the raw text data to learn, or 'filenames', the files holding it, 'target', the classification labels (integer index), 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. """ target = [] target_names = [] filenames = [] folders = [f for f in sorted(listdir(container_path)) if isdir(join(container_path, f))] if categories is not None: folders = [f for f in folders if f in categories] for label, folder in enumerate(folders): target_names.append(folder) folder_path = join(container_path, folder) documents = [join(folder_path, d) for d in sorted(listdir(folder_path))] target.extend(len(documents) * [label]) filenames.extend(documents) # convert to array for fancy indexing filenames = np.array(filenames) target = np.array(target) if shuffle: random_state = check_random_state(random_state) indices = np.arange(filenames.shape[0]) random_state.shuffle(indices) filenames = filenames[indices] target = target[indices] if load_content: data = [] for filename in filenames: with open(filename, 'rb') as f: data.append(f.read()) if encoding is not None: data = [d.decode(encoding, decode_error) for d in data] return Bunch(data=data, filenames=filenames, target_names=target_names, target=target, DESCR=description) return Bunch(filenames=filenames, target_names=target_names, target=target, DESCR=description) def load_iris(): """Load and return the iris dataset (classification). The iris dataset is a classic and very easy multi-class classification dataset. ================= ============== Classes 3 Samples per class 50 Samples total 150 Dimensionality 4 Features real, positive ================= ============== Read more in the :ref:`User Guide <datasets>`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'target_names', the meaning of the labels, 'feature_names', the meaning of the features, and 'DESCR', the full description of the dataset. Examples -------- Let's say you are interested in the samples 10, 25, and 50, and want to know their class name. >>> from sklearn.datasets import load_iris >>> data = load_iris() >>> data.target[[10, 25, 50]] array([0, 0, 1]) >>> list(data.target_names) ['setosa', 'versicolor', 'virginica'] """ module_path = dirname(__file__) with open(join(module_path, 'data', 'iris.csv')) as csv_file: data_file = csv.reader(csv_file) temp = next(data_file) n_samples = int(temp[0]) n_features = int(temp[1]) target_names = np.array(temp[2:]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,), dtype=np.int) for i, ir in enumerate(data_file): data[i] = np.asarray(ir[:-1], dtype=np.float) target[i] = np.asarray(ir[-1], dtype=np.int) with open(join(module_path, 'descr', 'iris.rst')) as rst_file: fdescr = rst_file.read() return Bunch(data=data, target=target, target_names=target_names, DESCR=fdescr, feature_names=['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']) def load_digits(n_class=10): """Load and return the digits dataset (classification). Each datapoint is a 8x8 image of a digit. ================= ============== Classes 10 Samples per class ~180 Samples total 1797 Dimensionality 64 Features integers 0-16 ================= ============== Read more in the :ref:`User Guide <datasets>`. Parameters ---------- n_class : integer, between 0 and 10, optional (default=10) The number of classes to return. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'images', the images corresponding to each sample, 'target', the classification labels for each sample, 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. Examples -------- To load the data and visualize the images:: >>> from sklearn.datasets import load_digits >>> digits = load_digits() >>> print(digits.data.shape) (1797, 64) >>> import pylab as pl #doctest: +SKIP >>> pl.gray() #doctest: +SKIP >>> pl.matshow(digits.images[0]) #doctest: +SKIP >>> pl.show() #doctest: +SKIP """ module_path = dirname(__file__) data = np.loadtxt(join(module_path, 'data', 'digits.csv.gz'), delimiter=',') with open(join(module_path, 'descr', 'digits.rst')) as f: descr = f.read() target = data[:, -1] flat_data = data[:, :-1] images = flat_data.view() images.shape = (-1, 8, 8) if n_class < 10: idx = target < n_class flat_data, target = flat_data[idx], target[idx] images = images[idx] return Bunch(data=flat_data, target=target.astype(np.int), target_names=np.arange(10), images=images, DESCR=descr) def load_diabetes(): """Load and return the diabetes dataset (regression). ============== ================== Samples total 442 Dimensionality 10 Features real, -.2 < x < .2 Targets integer 25 - 346 ============== ================== Read more in the :ref:`User Guide <datasets>`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn and 'target', the regression target for each sample. """ base_dir = join(dirname(__file__), 'data') data = np.loadtxt(join(base_dir, 'diabetes_data.csv.gz')) target = np.loadtxt(join(base_dir, 'diabetes_target.csv.gz')) return Bunch(data=data, target=target) def load_linnerud(): """Load and return the linnerud dataset (multivariate regression). Samples total: 20 Dimensionality: 3 for both data and targets Features: integer Targets: integer Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data' and 'targets', the two multivariate datasets, with 'data' corresponding to the exercise and 'targets' corresponding to the physiological measurements, as well as 'feature_names' and 'target_names'. """ base_dir = join(dirname(__file__), 'data/') # Read data data_exercise = np.loadtxt(base_dir + 'linnerud_exercise.csv', skiprows=1) data_physiological = np.loadtxt(base_dir + 'linnerud_physiological.csv', skiprows=1) # Read header with open(base_dir + 'linnerud_exercise.csv') as f: header_exercise = f.readline().split() with open(base_dir + 'linnerud_physiological.csv') as f: header_physiological = f.readline().split() with open(dirname(__file__) + '/descr/linnerud.rst') as f: descr = f.read() return Bunch(data=data_exercise, feature_names=header_exercise, target=data_physiological, target_names=header_physiological, DESCR=descr) def load_boston(): """Load and return the boston house-prices dataset (regression). ============== ============== Samples total 506 Dimensionality 13 Features real, positive Targets real 5. - 50. ============== ============== Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the regression targets, and 'DESCR', the full description of the dataset. Examples -------- >>> from sklearn.datasets import load_boston >>> boston = load_boston() >>> print(boston.data.shape) (506, 13) """ module_path = dirname(__file__) fdescr_name = join(module_path, 'descr', 'boston_house_prices.rst') with open(fdescr_name) as f: descr_text = f.read() data_file_name = join(module_path, 'data', 'boston_house_prices.csv') with open(data_file_name) as f: data_file = csv.reader(f) temp = next(data_file) n_samples = int(temp[0]) n_features = int(temp[1]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,)) temp = next(data_file) # names of features feature_names = np.array(temp) for i, d in enumerate(data_file): data[i] = np.asarray(d[:-1], dtype=np.float) target[i] = np.asarray(d[-1], dtype=np.float) return Bunch(data=data, target=target, # last column is target value feature_names=feature_names[:-1], DESCR=descr_text) def load_sample_images(): """Load sample images for image manipulation. Loads both, ``china`` and ``flower``. Returns ------- data : Bunch Dictionary-like object with the following attributes : 'images', the two sample images, 'filenames', the file names for the images, and 'DESCR' the full description of the dataset. Examples -------- To load the data and visualize the images: >>> from sklearn.datasets import load_sample_images >>> dataset = load_sample_images() #doctest: +SKIP >>> len(dataset.images) #doctest: +SKIP 2 >>> first_img_data = dataset.images[0] #doctest: +SKIP >>> first_img_data.shape #doctest: +SKIP (427, 640, 3) >>> first_img_data.dtype #doctest: +SKIP dtype('uint8') """ # Try to import imread from scipy. We do this lazily here to prevent # this module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread except ImportError: raise ImportError("The Python Imaging Library (PIL) " "is required to load data from jpeg files") module_path = join(dirname(__file__), "images") with open(join(module_path, 'README.txt')) as f: descr = f.read() filenames = [join(module_path, filename) for filename in os.listdir(module_path) if filename.endswith(".jpg")] # Load image data for each image in the source folder. images = [imread(filename) for filename in filenames] return Bunch(images=images, filenames=filenames, DESCR=descr) def load_sample_image(image_name): """Load the numpy array of a single sample image Parameters ----------- image_name: {`china.jpg`, `flower.jpg`} The name of the sample image loaded Returns ------- img: 3D array The image as a numpy array: height x width x color Examples --------- >>> from sklearn.datasets import load_sample_image >>> china = load_sample_image('china.jpg') # doctest: +SKIP >>> china.dtype # doctest: +SKIP dtype('uint8') >>> china.shape # doctest: +SKIP (427, 640, 3) >>> flower = load_sample_image('flower.jpg') # doctest: +SKIP >>> flower.dtype # doctest: +SKIP dtype('uint8') >>> flower.shape # doctest: +SKIP (427, 640, 3) """ images = load_sample_images() index = None for i, filename in enumerate(images.filenames): if filename.endswith(image_name): index = i break if index is None: raise AttributeError("Cannot find sample image: %s" % image_name) return images.images[index]
bsd-3-clause
refstudycentre/versification
util.py
1
11774
import numpy as np import unicodecsv import codecs import goslate import sqlite3 from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import linear_kernel def imp_load(filename): texts = [] books = [] chapters = [] verses = [] # Read in a whole bible with codecs.open(filename,encoding='utf-8') as f: bibletext = f.read() # Split by verse bible_verses = bibletext.split('$$$') # Process verses for verse in bible_verses: try: verse = verse.split('\n',1) ref = verse[0].strip() text = verse[1].strip() ref = ref.split('.') book = ref[0].strip() cnum = ref[1].strip() vnum = ref[2].strip() texts.append(text) books.append(book) chapters.append(cnum) verses.append(vnum) except IndexError: pass return books, chapters, verses, texts def calculate_similarity(texts, translations): # Train the tf-idf thingy on the translated texts tfidf = TfidfVectorizer().fit_transform(texts) # Build a matrix representation of the similarities between verses # This will yield a simmetrical matrix # TODO: For performance and logical reasons: Only calculate similarity for nearby verses, assume others 0 ? M = np.array([linear_kernel(tfidf[j:j+1], tfidf).flatten() for j in range(len(texts))]) # Hack(ish): Set similarity with verses of same translation to 0 for i in range(len(M)): for j in range(i+1): if translations[i] == translations[j]: M[i][j] = M[j][i] = 0 # print np.round(M*100,0) return M def find_best_couple(M,t): """ find best couple in similarity matrix M the translation(s) of each verse is given in t """ # assume values are 0 for verses in same translation i_max, j_max = np.unravel_index(M.argmax(), M.shape) P_max = M[i_max, j_max] return i_max, j_max, P_max def merge_nodes(M,a,b): """ merge indices a and b in similarity matrix M into one supernode, averaging similarity values between the supernode and other verses """ N = len(M) # calculate a new row (and column) for the supernode supernode_similarity = [np.average([M[k][a],M[k][b]]) for k in range(N)] # append the row (this will jumble the verse order...) newM = np.append(M, np.array(supernode_similarity)[None,:], axis=0) # append 0 (supernode's similarity with itself) to the row and add it as a column supernode_similarity.append(0.) newM = np.append(newM, np.array(supernode_similarity)[:,None], axis=1) # to preserve verse indices, don't delete # newM = np.delete(newM,[a,b],axis=0) # rather make rows a and b 0 # to preserve verse indices, don't delete # newM = np.delete(newM,[a,b],axis=1) # rather make columns a and b 0 newM[:,a] = np.zeros_like(newM[:,a]) newM[:,b] = np.zeros_like(newM[:,b]) newM[a,:] = np.zeros_like(newM[a,:]) newM[b,:] = np.zeros_like(newM[b,:]) return newM def group_verses(M, t, numT, P_min = 0.1): """ Automatically group verses t = the translation of each verse numT = max number of verses in a group = number of translations """ t = [[val] for val in t] N = len(M) groups = {} # keyed by supernode index iteration = 0 max_iteration = N while iteration < max_iteration: iteration += 1 #print "\t\tGrouping: iteration ",iteration i,j,P = find_best_couple(M, t) #print "\t\tbest couple: ",i,j,P # Stop iterating if similarity gets too low... if P < P_min: break; group = [] # merge supernodes if they exist, else merge nodes: if i in groups: group.extend(groups[i]) else: group.append(i) if j in groups: group.extend(groups[j]) else: group.append(j) # group now contains all of the verses for the new supernode if len(group) > numT: # this grouping is invalid # prevent it from happening again by making P 0 M[i][j] = 0 else: # valid grouping. save it. # Remove the previous supernode groups if i in groups: del groups[i] if j in groups: del groups[j] # Create the supernode M = merge_nodes(M,i,j) t.append(t[i] + t[j]) # Save the index of the new supernode supernode_index = len(M)-1 groups[supernode_index] = group print "\r\t\t",len(groups), print return groups def align(input_translations, input_filenames, output_filename): """ Load one csv file for each translation Group, align and sort the verses Export a csv file containing a column for each translation """ if len(input_translations) != len(input_filenames): raise ValueError("Number of translations and number of files must be the same") M = len(input_translations) # Load pre-translated data print "\tLoading data from files..." #translations,books,chapters,verses,texts_original,texts_en = load_translated_verses(input_translations, input_filenames) translations,chapters,verses,texts_original,texts_en = csv_import_translated_books(input_filenames, input_translations) # Calculate similarity between verses print "\tCalculating similarity matrix..." similarity = calculate_similarity(texts_en, translations) def canonical_group_cmp(a, b): """ Define sort order for groups of verses """ # find two verses from the same translation to compare their canonical order for i in a: for j in b: if translations[i] == translations[j]: return i - j # Group the verses print "\tGrouping verses..." groups = group_verses(similarity, translations, 3).values() # print groups # Put groups back into canonical order print "\tSorting verses..." groups.sort(canonical_group_cmp) # prepare data for csv export print "\tPreparing csv data..." csv_rows = [] csv_rows.append(input_translations) # headers for group in groups: # create a row in the csv file for every group if len(group) == M: # rows where all translations are present, are quick: group.sort() row = [u"{0}:{1}:{2}".format(chapters[verse],verses[verse],texts_original[verse]) for verse in group] else: # for other rows, we have to find the missing translation, and substitute it with a blank row = [] for translation in input_translations: found = False for verse in group: if translation == translations[verse]: # verse found for this translation row.append(u"{0}:{1}:{2}".format(chapters[verse],verses[verse],texts_original[verse])) found = True break if not found: # fill in a blank row.append("") csv_rows.append(row) # print csv_rows # Export to csv file print "\tWriting csv file..." with open(output_filename,'wb') as f: cw = unicodecsv.writer(f, encoding='utf-8') cw.writerows(csv_rows) print "\tDone!" def translate_csv(in_filename, language, out_filename): """ Load a bible book from csv file translate it save it as a new file """ # Create a translator object gs = goslate.Goslate(retry_times=100, timeout=100) # Load the bible book to be translated chapters,verses,texts_original = csv_import_book(in_filename) # Batch translate the verses if necessary if language != 'en': print "Batch translating {0} verses from '{1}' to 'en'".format(len(texts_original), language) texts_translated = gs.translate(texts_original, 'en', language) else: print "Not translating {0} verses already in 'en'".format(len(texts_original)) texts_translated = texts_original # Write to CSV file rows = zip(chapters, verses, texts_original, texts_translated) with open(out_filename,'wb') as f: cw = unicodecsv.writer(f, encoding='utf-8') cw.writerow(['chapter','verse','text_original','text_english']) cw.writerows(rows) def csv_import_book(filename): """ load bible book from csv file """ texts = [] chapters = [] verses = [] # Read in a whole file of verses with open(filename,'rb') as f: cr = unicodecsv.reader(f, encoding='utf-8') header = cr.next() # skip header # Process verses for cnum,vnum,text in cr: chapters.append(int(cnum)) # parse integer verses.append(int(vnum)) # parse integer texts.append(text.strip()) # remove surrounding whitespace # return results return chapters,verses,texts def csv_export_book(filename, rows=[], chapters=[], verses=[], texts=[]): if not len(rows) > 0: rows = zip(chapters, verses, texts) with open(filename,'wb') as f: cw = unicodecsv.writer(f,encoding='utf-8') cw.writerow(['chapter','verse','text']) cw.writerows(rows) def csv_import_translated_book(input_file): """ import a single translated book from a single translation from single csv file """ texts_en = [] texts_original = [] chapters = [] verses = [] # Read in a whole (Google translated) file of verses with open(input_file, 'rb') as f: cr = unicodecsv.reader(f, encoding='utf-8') header = cr.next() # skip header # Process verses for cnum,vnum,text_original,text_en in cr: chapters.append(int(cnum)) verses.append(int(vnum)) texts_original.append(text_original.strip()) texts_en.append(text_en.strip()) # return results return chapters,verses,texts_original,texts_en def csv_import_translated_books(input_files, input_translations): """ import a single book from M translations from M csv files """ if len(input_files) != len(input_translations): raise ValueError("Number of input files and translations are not the same") translations = [] chapters = [] verses = [] texts_original = [] texts_en = [] for in_file,translation in zip(input_files,input_translations): c,v,o,e = csv_import_translated_book(in_file) chapters.extend(c) verses.extend(v) texts_original.extend(o) texts_en.extend(e) translations.extend([translation]*len(e)) return translations,chapters,verses,texts_original,texts_en def csv_import_aligned_book(input_file): """ Import a single aligned book (e.g. after it is checked by humans) """ groups = [] with open(input_file, 'rb') as f: cr = unicodecsv.reader(f, encoding='utf-8') translations = cr.next() # header contains translation names for row in cr: group = {} for i in range(len(translations)): verse = row[i].split(':',3) group[translations[i]] = { 'chapternum':int(verse[0]), 'versenum':int(verse[1]), 'text':verse[2].strip() } groups.append(group) return groups
gpl-2.0
oesteban/mriqc
mriqc/qc/anatomical.py
1
21553
#!/usr/bin/env python # -*- coding: utf-8 -*- # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: # pylint: disable=no-member r""" Measures based on noise measurements ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. _iqms_cjv: - :py:func:`~mriqc.qc.anatomical.cjv` -- **coefficient of joint variation** (:abbr:`CJV (coefficient of joint variation)`): The ``cjv`` of GM and WM was proposed as objective function by [Ganzetti2016]_ for the optimization of :abbr:`INU (intensity non-uniformity)` correction algorithms. Higher values are related to the presence of heavy head motion and large :abbr:`INU (intensity non-uniformity)` artifacts. Lower values are better. .. _iqms_cnr: - :py:func:`~mriqc.qc.anatomical.cnr` -- **contrast-to-noise ratio** (:abbr:`CNR (contrast-to-noise ratio)`): The ``cnr`` [Magnota2006]_, is an extension of the :abbr:`SNR (signal-to-noise Ratio)` calculation to evaluate how separated the tissue distributions of GM and WM are. Higher values indicate better quality. .. _iqms_snr: - :py:func:`~mriqc.qc.anatomical.snr` -- **signal-to-noise ratio** (:abbr:`SNR (signal-to-noise ratio)`): calculated within the tissue mask. .. _iqms_snrd: - :py:func:`~mriqc.qc.anatomical.snr_dietrich`: **Dietrich's SNR** (:abbr:`SNRd (signal-to-noise ratio, Dietrich 2007)`) as proposed by [Dietrich2007]_, using the air background as reference. .. _iqms_qi2: - :py:func:`~mriqc.qc.anatomical.art_qi2`: **Mortamet's quality index 2** (:abbr:`QI2 (quality index 2)`) is a calculation of the goodness-of-fit of a :math:`\chi^2` distribution on the air mask, once the artifactual intensities detected for computing the :abbr:`QI1 (quality index 1)` index have been removed [Mortamet2009]_. Measures based on information theory ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. _iqms_efc: - :py:func:`~mriqc.qc.anatomical.efc`: The :abbr:`EFC (Entropy Focus Criterion)` [Atkinson1997]_ uses the Shannon entropy of voxel intensities as an indication of ghosting and blurring induced by head motion. Lower values are better. The original equation is normalized by the maximum entropy, so that the :abbr:`EFC (Entropy Focus Criterion)` can be compared across images with different dimensions. .. _iqms_fber: - :py:func:`~mriqc.qc.anatomical.fber`: The :abbr:`FBER (Foreground-Background Energy Ratio)` [Shehzad2015]_, defined as the mean energy of image values within the head relative to outside the head [QAP-measures]_. Higher values are better. Measures targeting specific artifacts ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. _iqms_inu: - **inu_\*** (*nipype interface to N4ITK*): summary statistics (max, min and median) of the :abbr:`INU (intensity non-uniformity)` field as extracted by the N4ITK algorithm [Tustison2010]_. Values closer to 1.0 are better. .. _iqms_qi: - :py:func:`~mriqc.qc.anatomical.art_qi1`: Detect artifacts in the image using the method described in [Mortamet2009]_. The :abbr:`QI1 (quality index 1)` is the proportion of voxels with intensity corrupted by artifacts normalized by the number of voxels in the background. Lower values are better. .. figure:: ../resources/mortamet-mrm2009.png The workflow to compute the artifact detection from [Mortamet2009]_. .. _iqms_wm2max: - :py:func:`~mriqc.qc.anatomical.wm2max`: The white-matter to maximum intensity ratio is the median intensity within the WM mask over the 95% percentile of the full intensity distribution, that captures the existence of long tails due to hyper-intensity of the carotid vessels and fat. Values should be around the interval [0.6, 0.8]. Other measures ^^^^^^^^^^^^^^ .. _iqms_fwhm: - **fwhm** (*nipype interface to AFNI*): The :abbr:`FWHM (full-width half maximum)` of the spatial distribution of the image intensity values in units of voxels [Forman1995]_. Lower values are better. Uses the gaussian width estimator filter implemented in AFNI's ``3dFWHMx``: .. math :: \text{FWHM} = \sqrt{-{\left[4 \ln{(1-\frac{\sigma^2_{X^m_{i+1,j}-X^m_{i,j}}} {2\sigma^2_{X^m_{i,j}}}})\right]}^{-1}} .. _iqms_icvs: - :py:func:`~mriqc.qc.anatomical.volume_fraction` (**icvs_\***): the :abbr:`ICV (intracranial volume)` fractions of :abbr:`CSF (cerebrospinal fluid)`, :abbr:`GM (gray-matter)` and :abbr:`WM (white-matter)`. They should move within a normative range. .. _iqms_rpve: - :py:func:`~mriqc.qc.anatomical.rpve` (**rpve_\***): the :abbr:`rPVe (residual partial voluming error)` of :abbr:`CSF (cerebrospinal fluid)`, :abbr:`GM (gray-matter)` and :abbr:`WM (white-matter)`. Lower values are better. .. _iqms_summary: - :py:func:`~mriqc.qc.anatomical.summary_stats` (**summary_\*_\***): Mean, standard deviation, 5% percentile and 95% percentile of the distribution of background, :abbr:`CSF (cerebrospinal fluid)`, :abbr:`GM (gray-matter)` and :abbr:`WM (white-matter)`. .. _iqms_tpm: - **overlap_\*_\***: The overlap of the :abbr:`TPMs (tissue probability maps)` estimated from the image and the corresponding maps from the ICBM nonlinear-asymmetric 2009c template. .. math :: \text{JI}^k = \frac{\sum_i \min{(\text{TPM}^k_i, \text{MNI}^k_i)}} {\sum_i \max{(\text{TPM}^k_i, \text{MNI}^k_i)}} .. topic:: References .. [Dietrich2007] Dietrich et al., *Measurement of SNRs in MR images: influence of multichannel coils, parallel imaging and reconstruction filters*, JMRI 26(2):375--385. 2007. doi:`10.1002/jmri.20969 <http://dx.doi.org/10.1002/jmri.20969>`_. .. [Ganzetti2016] Ganzetti et al., *Intensity inhomogeneity correction of structural MR images: a data-driven approach to define input algorithm parameters*. Front Neuroinform 10:10. 2016. doi:`10.3389/finf.201600010 <http://dx.doi.org/10.3389/finf.201600010>`_. .. [Magnota2006] Magnotta, VA., & Friedman, L., *Measurement of signal-to-noise and contrast-to-noise in the fBIRN multicenter imaging study*. J Dig Imag 19(2):140-147, 2006. doi:`10.1007/s10278-006-0264-x <http://dx.doi.org/10.1007/s10278-006-0264-x>`_. .. [Mortamet2009] Mortamet B et al., *Automatic quality assessment in structural brain magnetic resonance imaging*, Mag Res Med 62(2):365-372, 2009. doi:`10.1002/mrm.21992 <http://dx.doi.org/10.1002/mrm.21992>`_. .. [Tustison2010] Tustison NJ et al., *N4ITK: improved N3 bias correction*, IEEE Trans Med Imag, 29(6):1310-20, 2010. doi:`10.1109/TMI.2010.2046908 <http://dx.doi.org/10.1109/TMI.2010.2046908>`_. .. [Shehzad2015] Shehzad Z et al., *The Preprocessed Connectomes Project Quality Assessment Protocol - a resource for measuring the quality of MRI data*, Front. Neurosci. Conference Abstract: Neuroinformatics 2015. doi:`10.3389/conf.fnins.2015.91.00047 <https://doi.org/10.3389/conf.fnins.2015.91.00047>`_. .. [Forman1995] Forman SD et al., *Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold*, Magn. Reson. Med. 33 (5), 636–647, 1995. doi:`10.1002/mrm.1910330508 <https://doi.org/10.1002/mrm.1910330508>`_. mriqc.qc.anatomical module ^^^^^^^^^^^^^^^^^^^^^^^^^^ """ import os.path as op from sys import version_info from math import pi, sqrt import numpy as np import scipy.ndimage as nd from scipy.stats import kurtosis # pylint: disable=E0611 from io import open # pylint: disable=W0622 from builtins import zip, range # pylint: disable=W0622 from six import string_types DIETRICH_FACTOR = 1.0 / sqrt(2 / (4 - pi)) FSL_FAST_LABELS = {'csf': 1, 'gm': 2, 'wm': 3, 'bg': 0} PY3 = version_info[0] > 2 def snr(mu_fg, sigma_fg, n): r""" Calculate the :abbr:`SNR (Signal-to-Noise Ratio)`. The estimation may be provided with only one foreground region in which the noise is computed as follows: .. math:: \text{SNR} = \frac{\mu_F}{\sigma_F\sqrt{n/(n-1)}}, where :math:`\mu_F` is the mean intensity of the foreground and :math:`\sigma_F` is the standard deviation of the same region. :param float mu_fg: mean of foreground. :param float sigma_fg: standard deviation of foreground. :param int n: number of voxels in foreground mask. :return: the computed SNR """ return float(mu_fg / (sigma_fg * sqrt(n / (n - 1)))) def snr_dietrich(mu_fg, sigma_air): r""" Calculate the :abbr:`SNR (Signal-to-Noise Ratio)`. This must be an air mask around the head, and it should not contain artifacts. The computation is done following the eq. A.12 of [Dietrich2007]_, which includes a correction factor in the estimation of the standard deviation of air and its Rayleigh distribution: .. math:: \text{SNR} = \frac{\mu_F}{\sqrt{\frac{2}{4-\pi}}\,\sigma_\text{air}}. :param float mu_fg: mean of foreground. :param float sigma_air: standard deviation of the air surrounding the head ("hat" mask). :return: the computed SNR for the foreground segmentation """ if sigma_air < 1.0: from .. import MRIQC_LOG MRIQC_LOG.warning('SNRd - background sigma is too small (%f)', sigma_air) sigma_air += 1.0 return float(DIETRICH_FACTOR * mu_fg / sigma_air) def cnr(mu_wm, mu_gm, sigma_air): r""" Calculate the :abbr:`CNR (Contrast-to-Noise Ratio)` [Magnota2006]_. Higher values are better. .. math:: \text{CNR} = \frac{|\mu_\text{GM} - \mu_\text{WM} |}{\sqrt{\sigma_B^2 + \sigma_\text{WM}^2 + \sigma_\text{GM}^2}}, where :math:`\sigma_B` is the standard deviation of the noise distribution within the air (background) mask. :param float mu_wm: mean of signal within white-matter mask. :param float mu_gm: mean of signal within gray-matter mask. :param float sigma_air: standard deviation of the air surrounding the head ("hat" mask). :return: the computed CNR """ return float(abs(mu_wm - mu_gm) / sigma_air) def cjv(mu_wm, mu_gm, sigma_wm, sigma_gm): r""" Calculate the :abbr:`CJV (coefficient of joint variation)`, a measure related to :abbr:`SNR (Signal-to-Noise Ratio)` and :abbr:`CNR (Contrast-to-Noise Ratio)` that is presented as a proxy for the :abbr:`INU (intensity non-uniformity)` artifact [Ganzetti2016]_. Lower is better. .. math:: \text{CJV} = \frac{\sigma_\text{WM} + \sigma_\text{GM}}{|\mu_\text{WM} - \mu_\text{GM}|}. :param float mu_wm: mean of signal within white-matter mask. :param float mu_gm: mean of signal within gray-matter mask. :param float sigma_wm: standard deviation of signal within white-matter mask. :param float sigma_gm: standard deviation of signal within gray-matter mask. :return: the computed CJV """ return float((sigma_wm + sigma_gm) / abs(mu_wm - mu_gm)) def fber(img, headmask, rotmask=None): r""" Calculate the :abbr:`FBER (Foreground-Background Energy Ratio)` [Shehzad2015]_, defined as the mean energy of image values within the head relative to outside the head. Higher values are better. .. math:: \text{FBER} = \frac{E[|F|^2]}{E[|B|^2]} :param numpy.ndarray img: input data :param numpy.ndarray headmask: a mask of the head (including skull, skin, etc.) :param numpy.ndarray rotmask: a mask of empty voxels inserted after a rotation of data """ fg_mu = np.median(np.abs(img[headmask > 0]) ** 2) airmask = np.ones_like(headmask, dtype=np.uint8) airmask[headmask > 0] = 0 if rotmask is not None: airmask[rotmask > 0] = 0 bg_mu = np.median(np.abs(img[airmask == 1]) ** 2) if bg_mu < 1.0e-3: return 0 return float(fg_mu / bg_mu) def efc(img, framemask=None): r""" Calculate the :abbr:`EFC (Entropy Focus Criterion)` [Atkinson1997]_. Uses the Shannon entropy of voxel intensities as an indication of ghosting and blurring induced by head motion. A range of low values is better, with EFC = 0 for all the energy concentrated in one pixel. .. math:: \text{E} = - \sum_{j=1}^N \frac{x_j}{x_\text{max}} \ln \left[\frac{x_j}{x_\text{max}}\right] with :math:`x_\text{max} = \sqrt{\sum_{j=1}^N x^2_j}`. The original equation is normalized by the maximum entropy, so that the :abbr:`EFC (Entropy Focus Criterion)` can be compared across images with different dimensions: .. math:: \text{EFC} = \left( \frac{N}{\sqrt{N}} \, \log{\sqrt{N}^{-1}} \right) \text{E} :param numpy.ndarray img: input data :param numpy.ndarray framemask: a mask of empty voxels inserted after a rotation of data """ if framemask is None: framemask = np.zeros_like(img, dtype=np.uint8) n_vox = np.sum(1 - framemask) # Calculate the maximum value of the EFC (which occurs any time all # voxels have the same value) efc_max = 1.0 * n_vox * (1.0 / np.sqrt(n_vox)) * \ np.log(1.0 / np.sqrt(n_vox)) # Calculate the total image energy b_max = np.sqrt((img[framemask == 0]**2).sum()) # Calculate EFC (add 1e-16 to the image data to keep log happy) return float((1.0 / efc_max) * np.sum((img[framemask == 0] / b_max) * np.log( (img[framemask == 0] + 1e-16) / b_max))) def wm2max(img, mu_wm): r""" Calculate the :abbr:`WM2MAX (white-matter-to-max ratio)`, defined as the maximum intensity found in the volume w.r.t. the mean value of the white matter tissue. Values close to 1.0 are better: .. math :: \text{WM2MAX} = \frac{\mu_\text{WM}}{P_{99.95}(X)} """ return float(mu_wm / np.percentile(img.reshape(-1), 99.95)) def art_qi1(airmask, artmask): r""" Detect artifacts in the image using the method described in [Mortamet2009]_. Caculates :math:`\text{QI}_1`, as the proportion of voxels with intensity corrupted by artifacts normalized by the number of voxels in the background: .. math :: \text{QI}_1 = \frac{1}{N} \sum\limits_{x\in X_\text{art}} 1 Lower values are better. :param numpy.ndarray airmask: input air mask, without artifacts :param numpy.ndarray artmask: input artifacts mask """ # Count the number of voxels that remain after the opening operation. # These are artifacts. return float(artmask.sum() / (airmask.sum() + artmask.sum())) def art_qi2(img, airmask, min_voxels=int(1e3), max_voxels=int(3e5), save_plot=True): r""" Calculates :math:`\text{QI}_2`, based on the goodness-of-fit of a centered :math:`\chi^2` distribution onto the intensity distribution of non-artifactual background (within the "hat" mask): .. math :: \chi^2_n = \frac{2}{(\sigma \sqrt{2})^{2n} \, (n - 1)!}x^{2n - 1}\, e^{-\frac{x}{2}} where :math:`n` is the number of coil elements. :param numpy.ndarray img: input data :param numpy.ndarray airmask: input air mask without artifacts """ from sklearn.neighbors import KernelDensity from scipy.stats import chi2 from mriqc.viz.misc import plot_qi2 # S. Ogawa was born np.random.seed(1191935) data = img[airmask > 0] data = data[data > 0] # Write out figure of the fitting out_file = op.abspath('error.svg') with open(out_file, 'w') as ofh: ofh.write('<p>Background noise fitting could not be plotted.</p>') if len(data) < min_voxels: return 0.0, out_file modelx = data if len(data) < max_voxels else np.random.choice( data, size=max_voxels) x_grid = np.linspace(0.0, np.percentile(data, 99), 1000) # Estimate data pdf with KDE on a random subsample kde_skl = KernelDensity(bandwidth=0.05 * np.percentile(data, 98), kernel='gaussian').fit(modelx[:, np.newaxis]) kde = np.exp(kde_skl.score_samples(x_grid[:, np.newaxis])) # Find cutoff kdethi = np.argmax(kde[::-1] > kde.max() * 0.5) # Fit X^2 param = chi2.fit(modelx[modelx < np.percentile(data, 95)], 32) chi_pdf = chi2.pdf(x_grid, *param[:-2], loc=param[-2], scale=param[-1]) # Compute goodness-of-fit (gof) gof = float(np.abs(kde[-kdethi:] - chi_pdf[-kdethi:]).mean()) if save_plot: out_file = plot_qi2(x_grid, kde, chi_pdf, modelx, kdethi) return gof, out_file def volume_fraction(pvms): r""" Computes the :abbr:`ICV (intracranial volume)` fractions corresponding to the (partial volume maps). .. math :: \text{ICV}^k = \frac{\sum_i p^k_i}{\sum\limits_{x \in X_\text{brain}} 1} :param list pvms: list of :code:`numpy.ndarray` of partial volume maps. """ tissue_vfs = {} total = 0 for k, lid in list(FSL_FAST_LABELS.items()): if lid == 0: continue tissue_vfs[k] = pvms[lid - 1].sum() total += tissue_vfs[k] for k in list(tissue_vfs.keys()): tissue_vfs[k] /= total return {k: float(v) for k, v in list(tissue_vfs.items())} def rpve(pvms, seg): """ Computes the :abbr:`rPVe (residual partial voluming error)` of each tissue class. .. math :: \\text{rPVE}^k = \\frac{1}{N} \\left[ \\sum\\limits_{p^k_i \ \\in [0.5, P_{98}]} p^k_i + \\sum\\limits_{p^k_i \\in [P_{2}, 0.5)} 1 - p^k_i \\right] """ pvfs = {} for k, lid in list(FSL_FAST_LABELS.items()): if lid == 0: continue pvmap = pvms[lid - 1] pvmap[pvmap < 0.] = 0. pvmap[pvmap >= 1.] = 1. totalvol = np.sum(pvmap > 0.0) upth = np.percentile(pvmap[pvmap > 0], 98) loth = np.percentile(pvmap[pvmap > 0], 2) pvmap[pvmap < loth] = 0 pvmap[pvmap > upth] = 0 pvfs[k] = (pvmap[pvmap > 0.5].sum() + (1.0 - pvmap[pvmap <= 0.5]).sum()) / totalvol return {k: float(v) for k, v in list(pvfs.items())} def summary_stats(img, pvms, airmask=None, erode=True): r""" Estimates the mean, the standard deviation, the 95\% and the 5\% percentiles of each tissue distribution. .. warning :: Sometimes (with datasets that have been partially processed), the air mask will be empty. In those cases, the background stats will be zero for the mean, median, percentiles and kurtosis, the sum of voxels in the other remaining labels for ``n``, and finally the MAD and the :math:`\sigma` will be calculated as: .. math :: \sigma_\text{BG} = \sqrt{\sum \sigma_\text{i}^2} """ from .. import MRIQC_LOG from statsmodels.robust.scale import mad # Check type of input masks dims = np.squeeze(np.array(pvms)).ndim if dims == 4: # If pvms is from FSL FAST, create the bg mask stats_pvms = [np.zeros_like(img)] + pvms elif dims == 3: stats_pvms = [np.ones_like(pvms) - pvms, pvms] else: raise RuntimeError('Incorrect image dimensions ({0:d})'.format( np.array(pvms).ndim)) if airmask is not None: stats_pvms[0] = airmask labels = list(FSL_FAST_LABELS.items()) if len(stats_pvms) == 2: labels = list(zip(['bg', 'fg'], list(range(2)))) output = {} for k, lid in labels: mask = np.zeros_like(img, dtype=np.uint8) mask[stats_pvms[lid] > 0.85] = 1 if erode: struc = nd.generate_binary_structure(3, 2) mask = nd.binary_erosion( mask, structure=struc).astype(np.uint8) nvox = float(mask.sum()) if nvox < 1e3: MRIQC_LOG.warning('calculating summary stats of label "%s" in a very small ' 'mask (%d voxels)', k, int(nvox)) if k == 'bg': continue output[k] = { 'mean': float(img[mask == 1].mean()), 'stdv': float(img[mask == 1].std()), 'median': float(np.median(img[mask == 1])), 'mad': float(mad(img[mask == 1])), 'p95': float(np.percentile(img[mask == 1], 95)), 'p05': float(np.percentile(img[mask == 1], 5)), 'k': float(kurtosis(img[mask == 1])), 'n': nvox, } if 'bg' not in output: output['bg'] = { 'mean': 0., 'median': 0., 'p95': 0., 'p05': 0., 'k': 0., 'stdv': sqrt(sum(val['stdv']**2 for _, val in list(output.items()))), 'mad': sqrt(sum(val['mad']**2 for _, val in list(output.items()))), 'n': sum(val['n'] for _, val in list(output.items())) } if 'bg' in output and output['bg']['mad'] == 0.0 and output['bg']['stdv'] > 1.0: MRIQC_LOG.warning('estimated MAD in the background was too small (' 'MAD=%f)', output['bg']['mad']) output['bg']['mad'] = output['bg']['stdv'] / DIETRICH_FACTOR return output def _prepare_mask(mask, label, erode=True): fgmask = mask.copy() if np.issubdtype(fgmask.dtype, np.integer): if isinstance(label, string_types): label = FSL_FAST_LABELS[label] fgmask[fgmask != label] = 0 fgmask[fgmask == label] = 1 else: fgmask[fgmask > .95] = 1. fgmask[fgmask < 1.] = 0 if erode: # Create a structural element to be used in an opening operation. struc = nd.generate_binary_structure(3, 2) # Perform an opening operation on the background data. fgmask = nd.binary_opening(fgmask, structure=struc).astype(np.uint8) return fgmask
bsd-3-clause
analogdevicesinc/gnuradio
gr-analog/examples/fmtest.py
40
7941
#!/usr/bin/env python # # Copyright 2009,2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr from gnuradio import blocks from gnuradio import filter from gnuradio import analog from gnuradio import channels import sys, math, time try: import scipy from scipy import fftpack except ImportError: print "Error: Program requires scipy (see: www.scipy.org)." sys.exit(1) try: import pylab except ImportError: print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)." sys.exit(1) class fmtx(gr.hier_block2): def __init__(self, lo_freq, audio_rate, if_rate): gr.hier_block2.__init__(self, "build_fm", gr.io_signature(1, 1, gr.sizeof_float), gr.io_signature(1, 1, gr.sizeof_gr_complex)) fmtx = analog.nbfm_tx(audio_rate, if_rate, max_dev=5e3, tau=75e-6) # Local oscillator lo = analog.sig_source_c(if_rate, # sample rate analog.GR_SIN_WAVE, # waveform type lo_freq, # frequency 1.0, # amplitude 0) # DC Offset mixer = blocks.multiply_cc() self.connect(self, fmtx, (mixer, 0)) self.connect(lo, (mixer, 1)) self.connect(mixer, self) class fmtest(gr.top_block): def __init__(self): gr.top_block.__init__(self) self._nsamples = 1000000 self._audio_rate = 8000 # Set up N channels with their own baseband and IF frequencies self._N = 5 chspacing = 16000 freq = [10, 20, 30, 40, 50] f_lo = [0, 1*chspacing, -1*chspacing, 2*chspacing, -2*chspacing] self._if_rate = 4*self._N*self._audio_rate # Create a signal source and frequency modulate it self.sum = blocks.add_cc() for n in xrange(self._N): sig = analog.sig_source_f(self._audio_rate, analog.GR_SIN_WAVE, freq[n], 0.5) fm = fmtx(f_lo[n], self._audio_rate, self._if_rate) self.connect(sig, fm) self.connect(fm, (self.sum, n)) self.head = blocks.head(gr.sizeof_gr_complex, self._nsamples) self.snk_tx = blocks.vector_sink_c() self.channel = channels.channel_model(0.1) self.connect(self.sum, self.head, self.channel, self.snk_tx) # Design the channlizer self._M = 10 bw = chspacing/2.0 t_bw = chspacing/10.0 self._chan_rate = self._if_rate / self._M self._taps = filter.firdes.low_pass_2(1, self._if_rate, bw, t_bw, attenuation_dB=100, window=filter.firdes.WIN_BLACKMAN_hARRIS) tpc = math.ceil(float(len(self._taps)) / float(self._M)) print "Number of taps: ", len(self._taps) print "Number of channels: ", self._M print "Taps per channel: ", tpc self.pfb = filter.pfb.channelizer_ccf(self._M, self._taps) self.connect(self.channel, self.pfb) # Create a file sink for each of M output channels of the filter and connect it self.fmdet = list() self.squelch = list() self.snks = list() for i in xrange(self._M): self.fmdet.append(analog.nbfm_rx(self._audio_rate, self._chan_rate)) self.squelch.append(analog.standard_squelch(self._audio_rate*10)) self.snks.append(blocks.vector_sink_f()) self.connect((self.pfb, i), self.fmdet[i], self.squelch[i], self.snks[i]) def num_tx_channels(self): return self._N def num_rx_channels(self): return self._M def main(): fm = fmtest() tstart = time.time() fm.run() tend = time.time() if 1: fig1 = pylab.figure(1, figsize=(12,10), facecolor="w") fig2 = pylab.figure(2, figsize=(12,10), facecolor="w") fig3 = pylab.figure(3, figsize=(12,10), facecolor="w") Ns = 10000 Ne = 100000 fftlen = 8192 winfunc = scipy.blackman # Plot transmitted signal fs = fm._if_rate d = fm.snk_tx.data()[Ns:Ns+Ne] sp1_f = fig1.add_subplot(2, 1, 1) X,freq = sp1_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, window = lambda d: d*winfunc(fftlen), visible=False) X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X))) f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size)) p1_f = sp1_f.plot(f_in, X_in, "b") sp1_f.set_xlim([min(f_in), max(f_in)+1]) sp1_f.set_ylim([-120.0, 20.0]) sp1_f.set_title("Input Signal", weight="bold") sp1_f.set_xlabel("Frequency (Hz)") sp1_f.set_ylabel("Power (dBW)") Ts = 1.0/fs Tmax = len(d)*Ts t_in = scipy.arange(0, Tmax, Ts) x_in = scipy.array(d) sp1_t = fig1.add_subplot(2, 1, 2) p1_t = sp1_t.plot(t_in, x_in.real, "b-o") #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o") sp1_t.set_ylim([-5, 5]) # Set up the number of rows and columns for plotting the subfigures Ncols = int(scipy.floor(scipy.sqrt(fm.num_rx_channels()))) Nrows = int(scipy.floor(fm.num_rx_channels() / Ncols)) if(fm.num_rx_channels() % Ncols != 0): Nrows += 1 # Plot each of the channels outputs. Frequencies on Figure 2 and # time signals on Figure 3 fs_o = fm._audio_rate for i in xrange(len(fm.snks)): # remove issues with the transients at the beginning # also remove some corruption at the end of the stream # this is a bug, probably due to the corner cases d = fm.snks[i].data()[Ns:Ne] sp2_f = fig2.add_subplot(Nrows, Ncols, 1+i) X,freq = sp2_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o, window = lambda d: d*winfunc(fftlen), visible=False) #X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X))) X_o = 10.0*scipy.log10(abs(X)) #f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size)) f_o = scipy.arange(0, fs_o/2.0, fs_o/2.0/float(X_o.size)) p2_f = sp2_f.plot(f_o, X_o, "b") sp2_f.set_xlim([min(f_o), max(f_o)+0.1]) sp2_f.set_ylim([-120.0, 20.0]) sp2_f.grid(True) sp2_f.set_title(("Channel %d" % i), weight="bold") sp2_f.set_xlabel("Frequency (kHz)") sp2_f.set_ylabel("Power (dBW)") Ts = 1.0/fs_o Tmax = len(d)*Ts t_o = scipy.arange(0, Tmax, Ts) x_t = scipy.array(d) sp2_t = fig3.add_subplot(Nrows, Ncols, 1+i) p2_t = sp2_t.plot(t_o, x_t.real, "b") p2_t = sp2_t.plot(t_o, x_t.imag, "r") sp2_t.set_xlim([min(t_o), max(t_o)+1]) sp2_t.set_ylim([-1, 1]) sp2_t.set_xlabel("Time (s)") sp2_t.set_ylabel("Amplitude") pylab.show() if __name__ == "__main__": main()
gpl-3.0
ghchinoy/tensorflow
tensorflow/contrib/timeseries/examples/known_anomaly.py
24
7880
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Example of using an exogenous feature to ignore a known anomaly.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv from os import path import numpy as np import tensorflow as tf try: import matplotlib # pylint: disable=g-import-not-at-top matplotlib.use("TkAgg") # Need Tk for interactive plots. from matplotlib import pyplot # pylint: disable=g-import-not-at-top HAS_MATPLOTLIB = True except ImportError: # Plotting requires matplotlib, but the unit test running this code may # execute in an environment without it (i.e. matplotlib is not a build # dependency). We'd still like to test the TensorFlow-dependent parts of this # example, namely train_and_predict. HAS_MATPLOTLIB = False _MODULE_PATH = path.dirname(__file__) _DATA_FILE = path.join(_MODULE_PATH, "data/changepoints.csv") def state_space_estimator(exogenous_feature_columns): """Constructs a StructuralEnsembleRegressor.""" def _exogenous_update_condition(times, features): del times # unused # Make exogenous updates sparse by setting an update condition. This in # effect allows missing exogenous features: if the condition evaluates to # False, no update is performed. Otherwise we sometimes end up with "leaky" # updates which add unnecessary uncertainty to the model even when there is # no changepoint. return tf.equal(tf.squeeze(features["is_changepoint"], axis=-1), "yes") return ( tf.contrib.timeseries.StructuralEnsembleRegressor( periodicities=12, # Extract a smooth period by constraining the number of latent values # being cycled between. cycle_num_latent_values=3, num_features=1, exogenous_feature_columns=exogenous_feature_columns, exogenous_update_condition=_exogenous_update_condition), # Use truncated backpropagation with a window size of 64, batching # together 4 of these windows (random offsets) per training step. Training # with exogenous features often requires somewhat larger windows. 4, 64) def autoregressive_estimator(exogenous_feature_columns): input_window_size = 8 output_window_size = 2 return ( tf.contrib.timeseries.ARRegressor( periodicities=12, num_features=1, input_window_size=input_window_size, output_window_size=output_window_size, exogenous_feature_columns=exogenous_feature_columns), 64, input_window_size + output_window_size) def train_and_evaluate_exogenous( estimator_fn, csv_file_name=_DATA_FILE, train_steps=300): """Training, evaluating, and predicting on a series with changepoints.""" # Indicate the format of our exogenous feature, in this case a string # representing a boolean value. string_feature = tf.feature_column.categorical_column_with_vocabulary_list( key="is_changepoint", vocabulary_list=["no", "yes"]) # Specify the way this feature is presented to the model, here using a one-hot # encoding. one_hot_feature = tf.feature_column.indicator_column( categorical_column=string_feature) estimator, batch_size, window_size = estimator_fn( exogenous_feature_columns=[one_hot_feature]) reader = tf.contrib.timeseries.CSVReader( csv_file_name, # Indicate the format of our CSV file. First we have two standard columns, # one for times and one for values. The third column is a custom exogenous # feature indicating whether each timestep is a changepoint. The # changepoint feature name must match the string_feature column name # above. column_names=(tf.contrib.timeseries.TrainEvalFeatures.TIMES, tf.contrib.timeseries.TrainEvalFeatures.VALUES, "is_changepoint"), # Indicate dtypes for our features. column_dtypes=(tf.int64, tf.float32, tf.string), # This CSV has a header line; here we just ignore it. skip_header_lines=1) train_input_fn = tf.contrib.timeseries.RandomWindowInputFn( reader, batch_size=batch_size, window_size=window_size) estimator.train(input_fn=train_input_fn, steps=train_steps) evaluation_input_fn = tf.contrib.timeseries.WholeDatasetInputFn(reader) evaluation = estimator.evaluate(input_fn=evaluation_input_fn, steps=1) # Create an input_fn for prediction, with a simulated changepoint. Since all # of the anomalies in the training data are explained by the exogenous # feature, we should get relatively confident predictions before the indicated # changepoint (since we are telling the model that no changepoint exists at # those times) and relatively uncertain predictions after. (predictions,) = tuple(estimator.predict( input_fn=tf.contrib.timeseries.predict_continuation_input_fn( evaluation, steps=100, exogenous_features={ "is_changepoint": [["no"] * 49 + ["yes"] + ["no"] * 50]}))) times = evaluation["times"][0] observed = evaluation["observed"][0, :, 0] mean = np.squeeze(np.concatenate( [evaluation["mean"][0], predictions["mean"]], axis=0)) variance = np.squeeze(np.concatenate( [evaluation["covariance"][0], predictions["covariance"]], axis=0)) all_times = np.concatenate([times, predictions["times"]], axis=0) upper_limit = mean + np.sqrt(variance) lower_limit = mean - np.sqrt(variance) # Indicate the locations of the changepoints for plotting vertical lines. anomaly_locations = [] with open(csv_file_name, "r") as csv_file: csv_reader = csv.DictReader(csv_file) for row in csv_reader: if row["is_changepoint"] == "yes": anomaly_locations.append(int(row["time"])) anomaly_locations.append(predictions["times"][49]) return (times, observed, all_times, mean, upper_limit, lower_limit, anomaly_locations) def make_plot(name, training_times, observed, all_times, mean, upper_limit, lower_limit, anomaly_locations): """Plot the time series and anomalies in a new figure.""" pyplot.figure() pyplot.plot(training_times, observed, "b", label="training series") pyplot.plot(all_times, mean, "r", label="forecast") pyplot.axvline(anomaly_locations[0], linestyle="dotted", label="changepoints") for anomaly_location in anomaly_locations[1:]: pyplot.axvline(anomaly_location, linestyle="dotted") pyplot.fill_between(all_times, lower_limit, upper_limit, color="grey", alpha="0.2") pyplot.axvline(training_times[-1], color="k", linestyle="--") pyplot.xlabel("time") pyplot.ylabel("observations") pyplot.legend(loc=0) pyplot.title(name) def main(unused_argv): if not HAS_MATPLOTLIB: raise ImportError( "Please install matplotlib to generate a plot from this example.") make_plot("Ignoring a known anomaly (state space)", *train_and_evaluate_exogenous( estimator_fn=state_space_estimator)) make_plot("Ignoring a known anomaly (autoregressive)", *train_and_evaluate_exogenous( estimator_fn=autoregressive_estimator, train_steps=3000)) pyplot.show() if __name__ == "__main__": tf.app.run(main=main)
apache-2.0
leesavide/pythonista-docs
Documentation/matplotlib/mpl_examples/api/custom_scale_example.py
9
6401
from __future__ import unicode_literals import numpy as np from numpy import ma from matplotlib import scale as mscale from matplotlib import transforms as mtransforms from matplotlib.ticker import Formatter, FixedLocator class MercatorLatitudeScale(mscale.ScaleBase): """ Scales data in range -pi/2 to pi/2 (-90 to 90 degrees) using the system used to scale latitudes in a Mercator projection. The scale function: ln(tan(y) + sec(y)) The inverse scale function: atan(sinh(y)) Since the Mercator scale tends to infinity at +/- 90 degrees, there is user-defined threshold, above and below which nothing will be plotted. This defaults to +/- 85 degrees. source: http://en.wikipedia.org/wiki/Mercator_projection """ # The scale class must have a member ``name`` that defines the # string used to select the scale. For example, # ``gca().set_yscale("mercator")`` would be used to select this # scale. name = 'mercator' def __init__(self, axis, **kwargs): """ Any keyword arguments passed to ``set_xscale`` and ``set_yscale`` will be passed along to the scale's constructor. thresh: The degree above which to crop the data. """ mscale.ScaleBase.__init__(self) thresh = kwargs.pop("thresh", (85 / 180.0) * np.pi) if thresh >= np.pi / 2.0: raise ValueError("thresh must be less than pi/2") self.thresh = thresh def get_transform(self): """ Override this method to return a new instance that does the actual transformation of the data. The MercatorLatitudeTransform class is defined below as a nested class of this one. """ return self.MercatorLatitudeTransform(self.thresh) def set_default_locators_and_formatters(self, axis): """ Override to set up the locators and formatters to use with the scale. This is only required if the scale requires custom locators and formatters. Writing custom locators and formatters is rather outside the scope of this example, but there are many helpful examples in ``ticker.py``. In our case, the Mercator example uses a fixed locator from -90 to 90 degrees and a custom formatter class to put convert the radians to degrees and put a degree symbol after the value:: """ class DegreeFormatter(Formatter): def __call__(self, x, pos=None): # \u00b0 : degree symbol return "%d\u00b0" % ((x / np.pi) * 180.0) deg2rad = np.pi / 180.0 axis.set_major_locator(FixedLocator( np.arange(-90, 90, 10) * deg2rad)) axis.set_major_formatter(DegreeFormatter()) axis.set_minor_formatter(DegreeFormatter()) def limit_range_for_scale(self, vmin, vmax, minpos): """ Override to limit the bounds of the axis to the domain of the transform. In the case of Mercator, the bounds should be limited to the threshold that was passed in. Unlike the autoscaling provided by the tick locators, this range limiting will always be adhered to, whether the axis range is set manually, determined automatically or changed through panning and zooming. """ return max(vmin, -self.thresh), min(vmax, self.thresh) class MercatorLatitudeTransform(mtransforms.Transform): # There are two value members that must be defined. # ``input_dims`` and ``output_dims`` specify number of input # dimensions and output dimensions to the transformation. # These are used by the transformation framework to do some # error checking and prevent incompatible transformations from # being connected together. When defining transforms for a # scale, which are, by definition, separable and have only one # dimension, these members should always be set to 1. input_dims = 1 output_dims = 1 is_separable = True def __init__(self, thresh): mtransforms.Transform.__init__(self) self.thresh = thresh def transform_non_affine(self, a): """ This transform takes an Nx1 ``numpy`` array and returns a transformed copy. Since the range of the Mercator scale is limited by the user-specified threshold, the input array must be masked to contain only valid values. ``matplotlib`` will handle masked arrays and remove the out-of-range data from the plot. Importantly, the ``transform`` method *must* return an array that is the same shape as the input array, since these values need to remain synchronized with values in the other dimension. """ masked = ma.masked_where((a < -self.thresh) | (a > self.thresh), a) if masked.mask.any(): return ma.log(np.abs(ma.tan(masked) + 1.0 / ma.cos(masked))) else: return np.log(np.abs(np.tan(a) + 1.0 / np.cos(a))) def inverted(self): """ Override this method so matplotlib knows how to get the inverse transform for this transform. """ return MercatorLatitudeScale.InvertedMercatorLatitudeTransform(self.thresh) class InvertedMercatorLatitudeTransform(mtransforms.Transform): input_dims = 1 output_dims = 1 is_separable = True def __init__(self, thresh): mtransforms.Transform.__init__(self) self.thresh = thresh def transform_non_affine(self, a): return np.arctan(np.sinh(a)) def inverted(self): return MercatorLatitudeScale.MercatorLatitudeTransform(self.thresh) # Now that the Scale class has been defined, it must be registered so # that ``matplotlib`` can find it. mscale.register_scale(MercatorLatitudeScale) if __name__ == '__main__': import matplotlib.pyplot as plt t = np.arange(-180.0, 180.0, 0.1) s = t / 360.0 * np.pi plt.plot(t, s, '-', lw=2) plt.gca().set_yscale('mercator') plt.xlabel('Longitude') plt.ylabel('Latitude') plt.title('Mercator: Projection of the Oppressor') plt.grid(True) plt.show()
apache-2.0
SCP-028/UGA
protein_pka/mcce/mcce.py
1
17127
#!python3 """ Predict protein pKa based on MCCE method. http://pka.engr.ccny.cuny.edu/ Require MCCE 3.0 to work: https://anaconda.org/SalahSalah/mcce/files """ import asyncio import glob import gzip import locale import logging import math import os import re import shutil import subprocess import sys import time from multiprocessing import Pool from urllib.request import urlopen import aioftp import pandas as pd import uvloop # Sapelo Locale is broken, quick fix locale.setlocale(locale.LC_ALL, "en_US.UTF-8") # Set working directory ROOTPATH = os.path.dirname(os.path.realpath(sys.argv[0])) os.chdir(ROOTPATH) # Log settings logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) handler = logging.FileHandler(f"./pKa_calculation_{__file__}.log") handler.setLevel(logging.INFO) formatter = logging.Formatter( "%(asctime)s\t%(levelname)s\t" "[%(filename)s:%(lineno)s -%(funcName)12s()]\t%(message)s" ) handler.setFormatter(formatter) logger.addHandler(handler) class pdb: def __init__(self): self.all_ids = [] self.download_ids = [] # Download -> Unzip -> Preprocess -> Calculate self.unzip_ids = [] # Unzip -> Preprocess -> Calculate self.preprocess_ids = [] # Preprocess -> Calculate self.ready_ids = [] # Calculate self.finished_ids = [] # Successfully calculated IDs self.error_ids = [] # Error in download, unzip, or calculation # IDs this script will work on (messy queue implementation) self.working_ids = [] def load_id(self): """ First try to get existing pKa values, then get the list of PDB files to download. """ for folder in ["./pdb", "./annotation", "./results"]: try: os.makedirs(folder) except OSError: pass self.finished_ids = [id[-8:-4] for id in glob.glob("./results/*.pka")] logger.debug(f"{len(self.finished_ids)} finished files.") # Create file even at first run so that the results folder doesn't get deleted with open("./results/finished_ids.list", "a") as f: f.write("\n".join(self.finished_ids)) self.ready_ids = list(set( [id[-12:-8].upper() for id in glob.glob("./pdb/*/*.pdb.bak")]) - set(self.finished_ids)) logger.debug(f"{len(self.ready_ids)} files ready to be calculated.") self.preprocess_ids = list(set([id[-8:-4].upper() for id in glob.glob( "./pdb/*/*.pdb") if "out" not in id]) - set(self.finished_ids) - set(self.ready_ids)) logger.debug( f"{len(self.preprocess_ids)} files ready to be preprocessed.") self.unzip_ids = [id[-11:-7].upper() for id in glob.glob("./*.ent.gz")] logger.debug(f"{len(self.unzip_ids)} files ready to be unzipped.") if not os.path.exists("./annotation/uniprot_id_mapping.dat"): with urlopen("ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/by_organism/HUMAN_9606_idmapping.dat.gz") as remotefile: logger.debug( "Saving UniProt ID mapping data since it doesn't exist...") with open("./annotation/uniprot_id_mapping.dat.gz", "wb") as f: f.write(remotefile.read()) with gzip.open( "./annotation/uniprot_id_mapping.dat.gz", "rb") as inFile, open( "./annotation/uniprot_id_mapping.dat", "wb") as outFile: shutil.copyfileobj(inFile, outFile) os.remove("./annotation/uniprot_id_mapping.dat.gz") else: logger.debug("UniProt ID mapping data exists.") logger.debug("Reading all possible PDB IDs...") annot = pd.read_csv("./annotation/uniprot_id_mapping.dat", sep="\t", header=None, names=["uniprot", "id", "value"]) self.all_ids = annot.loc[annot.id == "PDB", "value"].tolist() self.download_ids = list(set(self.all_ids) - set(self.unzip_ids) - set( self.preprocess_ids) - set(self.ready_ids) - set(self.finished_ids)) logger.info( f"{len(self.download_ids)} PDB files need to be downloaded.") def get_link(self, ids): """ Get PDB file links from: ftp://ftp.wwpdb.org/pub/pdb/data/structures/divided/pdb/ , and create folders to store the files. Parameters ---------- ids: list The PDB IDs to download. Returns ------- Links to download. """ if isinstance(ids, list): ids = [id[:4].lower() for id in ids] # pdb file IDs pdb_names = [f"{id}.ent.gz" for id in ids] # pdb filenames # subdirectory of the pdb files pdbDirs = [id[1:3].lower() for id in ids] remoteaddr = [ f"ftp://ftp.wwpdb.org/pub/pdb/data/structures/divided/pdb/{pdbDir}/pdb{pdb_name}" for pdbDir, pdb_name in zip(pdbDirs, pdb_names)] else: raise TypeError(f"{id} is not a string or list.") return remoteaddr def make_dirs(self, ids): """Make sure the download directory exists.""" for id in ids: try: os.makedirs(os.path.join(ROOTPATH, "pdb", id.upper())) except OSError: pass async def download_worker(self, session, url): """Download the given url to working directory.""" url = url[len("ftp://ftp.wwpdb.org"):] logger.debug(f"Downloading {url}") try: await session.download(url) self.unzip_ids.append(url[-11:-7].upper()) except Exception as e: self.error_ids.append(url[-11:-7].upper()) logger.warning(f"Error when downloading {url}: {e}") async def download_session(self, sem, work_queue): """ Get urls from the queue and pass to worker. Parameters ---------- sem: asyncio.Semaphore object work_queue: asyncio.Queue object """ while not work_queue.empty(): url = await work_queue.get() logger.debug(f"Got url from queue: {url}") async with sem: async with aioftp.ClientSession("ftp.wwpdb.org") as session: await self.download_worker(session, url) def download_queue(self, urls): """ Create a queue to download all the given urls. Parameters ---------- urls: list A list of urls to download. Returns ------- Downloaded "*.ent.gz" files in working directory. """ logger.debug(f"{len(urls)} urls to download.") loop = uvloop.new_event_loop() asyncio.set_event_loop(loop) q = asyncio.Queue() sem = asyncio.Semaphore(10) [q.put_nowait(url) for url in urls] tasks = [asyncio.ensure_future(self.download_session(sem, q)) for _ in range(len(urls))] loop.run_until_complete(asyncio.gather(*tasks)) # Zero-sleep to allow underlying connections to close loop.run_until_complete(asyncio.sleep(0)) loop.close() def check_mcce(self): """Check if MCCE 3.0 exists.""" if not os.path.exists(os.path.join(ROOTPATH, "mcce3.0")): if not os.path.exists(os.path.join(ROOTPATH, "mcce3.0.tar.bz2")): logger.debug("MCCE isn't downloaded yet. Retrieving...") with urlopen("https://anaconda.org/SalahSalah/mcce/3.0/download/linux-64/mcce-3.0-0.tar.bz2") as remotefile: with open("./mcce-3.0-0.tar.bz2", 'wb') as f: f.write(remotefile.read()) subprocess.run(["tar", "-xjf", "mcce-3.0-0.tar.bz2"]) shutil.move("./info/recipe/mcce3.0", "./mcce3.0") shutil.rmtree(os.path.join(ROOTPATH, "info"), ignore_errors=True) shutil.rmtree(os.path.join(ROOTPATH, "bin"), ignore_errors=True) else: logger.info("MCCE 3.0 exists, proceeding to calculation...") def unzip(self, id): """Unzip downloaded *.ent.gz file.""" try: saved_pdb = os.path.join(ROOTPATH, "pdb", id, f"{id}.pdb") with gzip.open(f"pdb{id.lower()}.ent.gz", "rb") as inFile, open(saved_pdb, "wb") as outFile: shutil.copyfileobj(inFile, outFile) os.remove(f"pdb{id.lower()}.ent.gz") self.preprocess_ids.append(id) except Exception as e: self.error_ids.append(id) logger.warning(f"Unzip of {id} unsuccessful: {e}") def preprocess(self, id, backup=True): """ This program will: 1) strip lines other than ATOM and HETATM records 2) keep the first model of an NMR structure 3) delete H and D atoms 4) MSE to MET residue 5) keep only one atom alternate position 6) keep defined chains, if chain ID(s) are given in command 7) remove some cofactors and salt ions Parameters ---------- id: str The PDB ID to find the file. backup: bool, optional Whether to backup the original file or not. Default is True, and save to "original.bak". Returns ------- Nothing, modify the file in place. """ removable_res = [ " ZN", "PCA", "XYP", " NA", " CL", " CA", " MG", " MN", "HOH" ] model_start = False newlines = [] ID = id.upper() filepath = os.path.join(ROOTPATH, "pdb", ID, f"{ID}.pdb") if backup: shutil.copy2(filepath, f"{filepath}.bak") with open(filepath) as f: for line in f: if line[:5] == "MODEL": model_start = True if model_start and line[:6] == "ENDMDL": break if line[:6] != "ATOM " and line[:6] != "HETATM": continue # discard non ATOM records if line[13] == "H" or line[12] == "H": continue if line[16] == "A": line = f"{line[:16]} {line[17:]}" elif line[16] != " ": continue # delete this line, alternative posion is not A or empty if line[:6] == "HETATM" and line[17:20] == "MSE": if line[12:15] == "SE ": line = f"ATOM {line[6:12]} SD{line[15:17]}MET{line[20:]}" else: line = f"ATOM {line[6:17]}MET{line[20:]}" res = line[17:20] if res in removable_res: continue newlines.append(line.rstrip()) with open(filepath, "w") as f: f.write("\n".join(newlines)) logger.debug(f"{ID} preprocessing complete.") def set_params(self, id, quickrun=True): """ Set the parameters for MCCE. Parameters ---------- id: str The PDB ID of the file. quickrun: bool, optional Use "run.prm.quick" or "run.prm.default". Returns ------- run.prm: a file describing the parameters that points to the PDB file. """ pkgpath = os.path.join(ROOTPATH, "mcce3.0") ID = id.upper() filepath = os.path.join(ROOTPATH, "pdb", ID) newlines = [] if quickrun: shutil.copy2( os.path.join(pkgpath, "run.prm.quick"), os.path.join(filepath, "run.prm") ) else: shutil.copy2([ os.path.join(pkgpath, "run.prm.default"), os.path.join(filepath, "run.prm") ]) with open(os.path.join(filepath, "run.prm")) as f: for line in f: line = line.rstrip() if line.endswith("(INPDB)"): line = re.sub(r"^[^\s]+", fr"{id}.pdb", line) if line.endswith(("(DO_PREMCCE)", "(DO_ROTAMERS)", "(DO_ENERGY)", "(DO_MONTE)")): line = re.sub(r"^f", r"t", line) if line.endswith("(EPSILON_PROT)"): line = re.sub(r"^[\d\.]+", r"8.0", line) if line.startswith("/home/mcce/mcce3.0"): line = re.sub(r"^/.*3\.0", pkgpath, line) newlines.append(line) with open(os.path.join(filepath, "run.prm"), "w") as f: f.write("\n".join(newlines)) self.ready_ids.append(ID) logger.debug(f"Parameters set for {ID}.") def split_ready_ids(self, num): """ A naive queue implementation for multiple scripts. Parameters ---------- num: int Which part of the IDs to work on. Returns ------- A list of the actual IDs to work on, and save the lists of IDs for other scripts to work with if this is the first instance. """ if os.path.isfile(os.path.join(ROOTPATH, "results", "working_ids.list")): with open(os.path.join(ROOTPATH, "results", f"working_ids.list{num}"), "r") as f: self.working_ids = [line.strip() for line in f] else: n = math.ceil(len(self.ready_ids) / 10) self.working_ids = [self.ready_ids[i:i + n] for i in range(0, len(self.ready_ids), n)] metafile = [] for i, ids in enumerate(self.working_ids): metafile.append(os.path.join( ROOTPATH, "results", f"working_ids.list{i}")) with open(os.path.join(ROOTPATH, "results", f"working_ids.list{i}"), "w") as f: f.write("\n".join(ids)) logger.debug( f"Saved {len(ids)} IDs to file working_ids.list{i} .") with open(os.path.join(ROOTPATH, "results", "working_ids.list"), "w") as f: f.write("\n".join(metafile)) self.working_ids = self.working_ids[num] def calc_pka(self, id, clean=True): """ Calculate protein pKa values using MCCE. https://sites.google.com/site/mccewiki/home Parameters ---------- id: str The PDB ID of the protein calculated. clean: bool, optional Only keep the PDB file, run log and pKa output. Returns ------- A set of files in a subdirectory named after the ID. See user manual for detail. """ id = id.upper() os.chdir(os.path.realpath(os.path.join(ROOTPATH, "pdb", id))) logger.info(f"{id} calculation started.") start = time.time() with open(f"{id}.run.log", "w") as f: subprocess.run(f"{ROOTPATH}/mcce3.0/mcce", stdout=f) with open(f"{id}.run.log", "rb") as f: last = f.readlines()[-1].decode().lstrip() if last.startswith(("Fatal", "FATAL", "WARNING", "STOP")): self.error_ids.append(id) logger.warning( f"{id} calculation aborted after {time.time() - start}s, due to {last}") else: self.finished_ids.append(id) logger.info( f"{id} calculation finished, used {time.time() - start}s.") shutil.move("pK.out", os.path.join( ROOTPATH, "results", f"{id}.pka")) if clean: del_list = [i for i in os.listdir() if i not in ( "pK.out", f"{id}.run.log", f"{id}.pdb.bak")] [os.remove(item) for item in del_list] if __name__ == "__main__": x = pdb() x.load_id() urls = x.get_link(x.download_ids) x.make_dirs(x.all_ids) x.download_queue(urls) x.check_mcce() for id in x.unzip_ids: x.unzip(id) for id in x.preprocess_ids: try: x.preprocess(id) x.set_params(id) except Exception as e: x.error_ids.append(id) logger.warning(f"Preprocess of {id}: {e}") # subprocess.run(["find", ".", "-type", "d", "-empty", "-delete"]) x.split_ready_ids(0) # 0 - 9, run 0 first to generate other lists with Pool(os.cpu_count()) as p: p.map(x.calc_pka, x.working_ids) with open("./results/finished_ids.list", "a") as f: f.write("\n".join(x.working_ids)) with open("./results/error_ids.list", "a") as f: f.write("\n".join(x.error_ids))
apache-2.0
smsolivier/VEF
code/hlimit.py
1
2247
#!/usr/bin/env python3 import numpy as np import matplotlib.pyplot as plt import ld as LD import dd as DD from hidespines import * import sys ''' compares difference between Sn and moment equations as cell width --> 0 ''' if (len(sys.argv) > 1): outfile = sys.argv[1] else: outfile = None def getDiff(sol, tol=1e-6): diff = np.zeros(len(sol)) for i in range(len(sol)): x, phi, it = sol[i].sourceIteration(tol) # diff[i] = np.linalg.norm(phi - sol[i].phi_SN, 2)/np.linalg.norm(sol[i].phi_SN, 2) diff[i] = np.linalg.norm(phi - sol[i].phi_SN, 2)/np.linalg.norm(sol[i].phi_SN, 2) return diff N = 100 n = 8 xb = 1 Sigmaa = lambda x: .1 Sigmat = lambda x: 1 q = lambda x, mu: 1 tol = 1e-10 N = np.logspace(1, 3, 5) N = np.array([int(x) for x in N]) ed00 = [LD.Eddington(np.linspace(0, xb, x+1), n, Sigmaa, Sigmat, q, OPT=0, GAUSS=0) for x in N] ed01 = [LD.Eddington(np.linspace(0, xb, x+1), n, Sigmaa, Sigmat, q, OPT=0, GAUSS=1) for x in N] ed10 = [LD.Eddington(np.linspace(0, xb, x+1), n, Sigmaa, Sigmat, q, OPT=1, GAUSS=0) for x in N] ed11 = [LD.Eddington(np.linspace(0, xb, x+1), n, Sigmaa, Sigmat, q, OPT=1, GAUSS=1) for x in N] ed20 = [LD.Eddington(np.linspace(0, xb, x+1), n, Sigmaa, Sigmat, q, OPT=2, GAUSS=0) for x in N] ed21 = [LD.Eddington(np.linspace(0, xb, x+1), n, Sigmaa, Sigmat, q, OPT=2, GAUSS=1) for x in N] diff00 = getDiff(ed00, tol) diff01 = getDiff(ed01, tol) diff10 = getDiff(ed10, tol) diff11 = getDiff(ed11, tol) diff20 = getDiff(ed20, tol) diff21 = getDiff(ed21, tol) fontsize=16 plt.loglog(xb/N, diff00, '-o', clip_on=False, label='MHFEM Edges, No Gauss') plt.loglog(xb/N, diff01, '-o', clip_on=False, label='Maintain Slopes, No Gauss') plt.loglog(xb/N, diff10, '-o', clip_on=False, label='MHFEM Edges, Gauss') plt.loglog(xb/N, diff11, '-o', clip_on=False, label='Maintain Slopes, Gauss') plt.loglog(xb/N, diff20, '-o', clip_on=False, label='vanLeer, No Gauss') plt.loglog(xb/N, diff21, '-o', clip_on=False, label='vanLeer, Gauss') plt.xlabel(r'$h$', fontsize=fontsize) plt.ylabel('SN/MHFEM Convergence', fontsize=fontsize) plt.legend(loc='best', frameon=False) hidespines(plt.gca()) if (outfile != None): plt.savefig(outfile, transparent=True) else: plt.show()
mit
phobson/wqio
wqio/tests/test_datacollections.py
2
28761
from distutils.version import LooseVersion from textwrap import dedent from io import StringIO import numpy import scipy from scipy import stats import pandas from unittest import mock import pytest import pandas.testing as pdtest from wqio.tests import helpers from wqio.features import Location, Dataset from wqio.datacollections import DataCollection, _dist_compare OLD_SCIPY = LooseVersion(scipy.version.version) < LooseVersion("0.19") def check_stat(expected_csv, result, comp=False): index_col = [0] if comp: index_col += [1] file_obj = StringIO(dedent(expected_csv)) expected = pandas.read_csv(file_obj, header=[0, 1], index_col=index_col) if comp: expected = expected.stack(level=-1) pdtest.assert_frame_equal( expected.sort_index(axis="columns"), result.sort_index(axis="columns").round(6), atol=1e-5, ) def remove_g_and_h(group): return group.name[1] not in ["G", "H"] @pytest.fixture def dc(): df = helpers.make_dc_data_complex() dc = DataCollection( df, rescol="res", qualcol="qual", stationcol="loc", paramcol="param", ndval="<", othergroups=None, pairgroups=["state", "bmp"], useros=True, filterfxn=remove_g_and_h, bsiter=10000, ) return dc @pytest.fixture def dc_noNDs(): df = helpers.make_dc_data_complex() dc = DataCollection( df, rescol="res", qualcol="qual", stationcol="loc", paramcol="param", ndval="junk", othergroups=None, pairgroups=["state", "bmp"], useros=True, filterfxn=remove_g_and_h, bsiter=10000, ) return dc def test_basic_attr(dc): assert dc._raw_rescol == "res" assert isinstance(dc.data, pandas.DataFrame) assert dc.roscol == "ros_res" assert dc.rescol == "ros_res" assert dc.qualcol == "qual" assert dc.stationcol == "loc" assert dc.paramcol == "param" assert dc.ndval == ["<"] assert dc.bsiter == 10000 assert dc.groupcols == ["loc", "param"] assert dc.tidy_columns == ["loc", "param", "res", "__censorship"] assert hasattr(dc, "filterfxn") def test_data(dc): assert isinstance(dc.data, pandas.DataFrame) assert dc.data.shape == (519, 8) assert "G" in dc.data["param"].unique() assert "H" in dc.data["param"].unique() @pytest.mark.parametrize("useros", [True, False]) def test_tidy(dc, useros): assert isinstance(dc.tidy, pandas.DataFrame) assert dc.tidy.shape == (388, 5) assert "G" not in dc.tidy["param"].unique() assert "H" not in dc.tidy["param"].unique() collist = ["loc", "param", "res", "__censorship", "ros_res"] assert dc.tidy.columns.tolist() == collist def test_paired(dc): assert isinstance(dc.paired, pandas.DataFrame) assert dc.paired.shape == (164, 6) assert "G" not in dc.paired.index.get_level_values("param").unique() assert "H" not in dc.paired.index.get_level_values("param").unique() dc.paired.columns.tolist() == [ ("res", "Inflow"), ("res", "Outflow"), ("res", "Reference"), ("__censorship", "Inflow"), ("__censorship", "Outflow"), ("__censorship", "Reference"), ] def test_count(dc): known_csv = """\ station,Inflow,Outflow,Reference result,Count,Count,Count param,,, A,21,22,20 B,24,22,19 C,24,24,25 D,24,25,21 E,19,16,20 F,21,24,17 """ check_stat(known_csv, dc.count) def test_n_unique(dc): known_csv = """\ loc,Inflow,Outflow,Reference result,bmp,bmp,bmp param,,, A,7,7,7 B,7,7,7 C,7,7,7 D,7,7,7 E,7,7,7 F,7,7,7 G,7,7,7 H,7,7,7 """ check_stat(known_csv, dc.n_unique("bmp")) @helpers.seed def test_median(dc): known_csv = """\ station,Inflow,Inflow,Inflow,Outflow,Outflow,Outflow,Reference,Reference,Reference result,lower,median,upper,lower,median,upper,lower,median,upper param,,,,,,,,, A,0.334506,1.197251,2.013994,0.860493,2.231058,2.626023,1.073386,1.639472,1.717293 B,1.366948,2.773989,3.297147,0.23201,1.546499,2.579206,0.204164,1.565076,2.196367 C,0.17351,0.525957,0.68024,0.247769,0.396984,0.540742,0.136462,0.412693,0.559458 D,0.374122,1.201892,2.098846,0.516989,1.362759,1.827087,0.314655,0.882695,1.24545 E,0.276095,1.070858,1.152887,0.287914,0.516746,1.456859,0.366824,0.80716,2.040739 F,0.05667,0.832488,1.310575,0.425237,1.510942,2.193997,0.162327,0.745993,1.992513 """ check_stat(known_csv, dc.median) @helpers.seed def test_mean(dc): known_csv = """\ station,Inflow,Inflow,Inflow,Outflow,Outflow,Outflow,Reference,Reference,Reference result,lower,mean,upper,lower,mean,upper,lower,mean,upper param,,,,,,,,, A,1.231607,2.646682,4.204054,1.930601,5.249281,9.081952,1.540167,3.777974,6.389439 B,2.99031,7.647175,12.810844,1.545539,6.863835,12.705913,1.010374,4.504255,9.592572 C,0.37496,0.513248,0.65948,0.411501,1.004637,1.706317,0.35779,0.541962,0.734751 D,1.29141,3.021235,4.987855,1.285899,2.318808,3.451824,1.008364,1.945828,2.924812 E,0.818641,1.914696,3.049554,0.584826,1.098241,1.640807,1.113589,2.283292,3.581946 F,0.8379,9.825404,25.289933,1.497825,3.450184,5.61929,0.939917,2.491708,4.094258 """ check_stat(known_csv, dc.mean) @helpers.seed def test_std_dev(dc): known_csv = """\ station,Inflow,Outflow,Reference result,std. dev.,std. dev.,std. dev. param,,, A,3.58649,8.719371,5.527633 B,12.360099,13.60243,10.759285 C,0.353755,1.691208,0.493325 D,4.811938,2.849393,2.248178 E,2.55038,1.096698,2.789238 F,34.447565,5.361033,3.398367 """ check_stat(known_csv, dc.std_dev) @helpers.seed def test_percentile_25(dc): known_csv = """\ station,Inflow,Outflow,Reference result,pctl 25,pctl 25,pctl 25 param,,, A,0.522601,0.906029,1.094721 B,1.472541,0.251126,0.314226 C,0.164015,0.267521,0.136462 D,0.35688,0.516989,0.383895 E,0.364748,0.311508,0.394658 F,0.120068,0.406132,0.224429 """ check_stat(known_csv, dc.percentile(25)) @helpers.seed def test_percentile_75(dc): known_csv = """\ station,Inflow,Outflow,Reference result,pctl 75,pctl 75,pctl 75 param,,, A,2.563541,3.838021,2.650648 B,4.728871,2.849948,2.261847 C,0.776388,0.853535,0.792612 D,3.04268,2.79341,3.611793 E,1.532775,1.59183,3.201534 F,1.792985,2.80979,2.742249 """ check_stat(known_csv, dc.percentile(75)) @helpers.seed def test_logmean(dc): known_csv = """\ station,Inflow,Inflow,Inflow,Outflow,Outflow,Outflow,Reference,Reference,Reference result,Log-mean,lower,upper,Log-mean,lower,upper,Log-mean,lower,upper param,,,,,,,,, A,0.140559,-0.55112,0.644202,0.733004,0.047053,1.22099,0.545205,-0.057683,1.029948 B,1.026473,0.368659,1.541241,0.105106,-0.939789,0.860244,0.068638,-0.932357,0.661203 C,-0.963004,-1.304115,-0.638446,-0.83221,-1.464092,-0.414379,-1.088377,-1.556795,-0.720706 D,0.062317,-0.663241,0.58349,0.185757,-0.325074,0.598432,-0.063507,-0.670456,0.434214 E,-0.103655,-0.751075,0.385909,-0.456202,-1.08692,0.029967,-0.068135,-0.787007,0.51226 F,-0.442721,-1.874677,0.344704,0.211658,-0.504166,0.734283,-0.253352,-1.175917,0.467231 """ check_stat(known_csv, dc.logmean) @helpers.seed def test_logstd_dev(dc): known_csv = """\ station,Inflow,Outflow,Reference result,Log-std. dev.,Log-std. dev.,Log-std. dev. param,,, A,1.374026,1.343662,1.225352 B,1.430381,2.07646,1.662001 C,0.818504,1.263631,1.057177 D,1.530871,1.187246,1.277927 E,1.264403,1.121038,1.474431 F,2.324063,1.516331,1.701596 """ check_stat(known_csv, dc.logstd_dev) @helpers.seed def test_geomean(dc): known_csv = """\ station,Inflow,Inflow,Inflow,Outflow,Outflow,Outflow,Reference,Reference,Reference Geo-mean,Log-mean,lower,upper,Log-mean,lower,upper,Log-mean,lower,upper param,,,,,,,,, A,1.150917,0.576304,1.904467,2.081323,1.048178,3.390543,1.724962,0.943949,2.800919 B,2.791205,1.445795,4.670381,1.110829,0.39071,2.363737,1.071049,0.393625,1.937121 C,0.381744,0.271413,0.528113,0.435087,0.231288,0.66075,0.336763,0.210811,0.486409 D,1.064299,0.515179,1.792283,1.204129,0.722474,1.819264,0.938467,0.511475,1.543749 E,0.901536,0.471859,1.470951,0.633686,0.337254,1.03042,0.934134,0.455205,1.66906 F,0.642286,0.153405,1.411572,1.235726,0.604009,2.083988,0.776195,0.308536,1.595571 """ check_stat(known_csv, dc.geomean) @helpers.seed def test_geostd_dev(dc): known_csv = """\ station,Inflow,Outflow,Reference Geo-std. dev.,Log-std. dev.,Log-std. dev.,Log-std. dev. param,,, A,3.951225,3.833055,3.405365 B,4.180294,7.976181,5.269843 C,2.267105,3.538244,2.878234 D,4.622199,3.278041,3.589191 E,3.540977,3.068036,4.368548 F,10.217099,4.55548,5.48269 """ check_stat(known_csv, dc.geostd_dev) @helpers.seed def test_shapiro(dc): known_csv = """\ station,Inflow,Inflow,Outflow,Outflow,Reference,Reference result,pvalue,statistic,pvalue,statistic,pvalue,statistic param,,,,,, A,1.8e-05,0.685783,1e-06,0.576069,4e-06,0.61735 B,1e-06,0.594411,0.0,0.530962,0.0,0.41471 C,0.028774,0.905906,0.0,0.546626,0.00279,0.860373 D,1e-06,0.622915,1.5e-05,0.722374,0.000202,0.76518 E,1.7e-05,0.654137,0.004896,0.818813,0.000165,0.74917 F,0.0,0.292916,2e-06,0.634671,0.000167,0.713968 """ check_stat(known_csv, dc.shapiro) @helpers.seed def test_shapiro_log(dc): known_csv = """\ station,Inflow,Inflow,Outflow,Outflow,Reference,Reference result,statistic,pvalue,statistic,pvalue,statistic,pvalue param,,,,,, A,0.983521938,0.96662426,0.979861856,0.913820148,0.939460814,0.234214202 B,0.957531095,0.390856266,0.97048676,0.722278714,0.967978418,0.735424638 C,0.906479359,0.029602444,0.974698305,0.78197974,0.967106879,0.572929323 D,0.989704251,0.995502174,0.990663111,0.997093379,0.964812279,0.617747009 E,0.955088913,0.479993254,0.95211035,0.523841977,0.963425279,0.61430341 F,0.97542423,0.847370088,0.982230783,0.933124721,0.966197193,0.749036908 """ check_stat(known_csv, dc.shapiro_log) @helpers.seed def test_lilliefors(dc): known_csv = """\ station,Inflow,Inflow,Outflow,Outflow,Reference,Reference result,lilliefors,pvalue,lilliefors,pvalue,lilliefors,pvalue param,,,,,, A,0.308131,1.4e-05,0.340594,0.0,0.364453,0.0 B,0.36764,0.0,0.420343,0.0,0.417165,0.0 C,0.166799,0.082737,0.324733,0.0,0.161753,0.090455 D,0.273012,6.7e-05,0.240311,0.000665,0.296919,3.7e-05 E,0.341398,3e-06,0.239314,0.014862,0.233773,0.005474 F,0.419545,0.0,0.331315,0.0,0.284249,0.000741 """ check_stat(known_csv, dc.lilliefors) @helpers.seed def test_lilliefors_log(dc): known_csv = """\ station,Inflow,Inflow,Outflow,Outflow,Reference,Reference result,log-lilliefors,pvalue,log-lilliefors,pvalue,log-lilliefors,pvalue param,,,,,, A,0.08548109,0.95458004,0.15443943,0.19715747,0.20141389,0.03268737 B,0.16162839,0.10505016,0.12447902,0.49697902,0.15934334,0.22969362 C,0.16957278,0.07248915,0.12388174,0.44379732,0.11746642,0.48915671 D,0.06885549,0.99,0.06067356,0.99,0.13401954,0.41967483 E,0.13506577,0.47186822,0.14552341,0.47797919,0.09164876,0.92860794 F,0.14420794,0.30694533,0.08463267,0.92741885,0.08586933,0.9800294 """ check_stat(known_csv, dc.lilliefors_log) @helpers.seed def test_anderson_darling(dc): with helpers.raises(NotImplementedError): _ = dc.anderson_darling @helpers.seed def test_anderson_darling_log(dc): with helpers.raises(NotImplementedError): _ = dc.anderson_darling_log @helpers.seed def test_mann_whitney(dc): known_csv = """\ ,,mann_whitney,mann_whitney,mann_whitney,pvalue,pvalue,pvalue loc_2,,Inflow,Outflow,Reference,Inflow,Outflow,Reference param,loc_1,,,,,, A,Inflow,,180.0,179.0,,0.2198330905,0.4263216587 A,Outflow,282.0,,248.0,0.2198330905,,0.488580368 A,Reference,241.0,192.0,,0.4263216587,0.488580368, B,Inflow,,345.0,317.0,,0.0766949991,0.0304383994 B,Outflow,183.0,,216.0,0.0766949991,,0.8650586835 B,Reference,139.0,202.0,,0.0304383994,0.8650586835, C,Inflow,,282.0,323.0,,0.9097070273,0.6527104406 C,Outflow,294.0,,323.0,0.9097070273,,0.6527104406 C,Reference,277.0,277.0,,0.6527104406,0.6527104406, D,Inflow,,285.0,263.0,,0.7718162376,0.8111960975 D,Outflow,315.0,,293.0,0.7718162376,,0.5082395211 D,Reference,241.0,232.0,,0.8111960975,0.5082395211, E,Inflow,,164.0,188.0,,0.7033493939,0.9663820218 E,Outflow,140.0,,132.0,0.7033493939,,0.3813114322 E,Reference,192.0,188.0,,0.9663820218,0.3813114322, F,Inflow,,201.0,172.0,,0.2505911218,0.8601783903 F,Outflow,303.0,,236.0,0.2505911218,,0.4045186043 F,Reference,185.0,172.0,,0.8601783903,0.4045186043 """ check_stat(known_csv, dc.mann_whitney, comp=True) @helpers.seed def test_t_test(dc): known_csv = """\ ,,pvalue,pvalue,pvalue,t_test,t_test,t_test loc_2,,Inflow,Outflow,Reference,Inflow,Outflow,Reference param,loc_1,,,,,, A,Inflow,,0.2178424157,0.4563196599,,-1.2604458127,-0.7539785777 A,Outflow,0.2178424157,,0.5240147979,1.2604458127,,0.643450194 A,Reference,0.4563196599,0.5240147979,,0.7539785777,-0.643450194, B,Inflow,,0.8430007638,0.3898358794,,0.1992705833,0.869235357 B,Outflow,0.8430007638,,0.5491097882,-0.1992705833,,0.6043850808 B,Reference,0.3898358794,0.5491097882,,-0.869235357,-0.6043850808, C,Inflow,,0.1847386316,0.8191392537,,-1.3639360123,-0.2300373632 C,Outflow,0.1847386316,,0.2179907667,1.3639360123,,1.2615982727 C,Reference,0.8191392537,0.2179907667,,0.2300373632,-1.2615982727, D,Inflow,,0.5484265023,0.344783812,,0.6056706932,0.9582600001 D,Outflow,0.5484265023,,0.6299742693,-0.6056706932,,0.4851636024 D,Reference,0.344783812,0.6299742693,,-0.9582600001,-0.4851636024, E,Inflow,,0.2304569921,0.6770414622,,1.2287029977,-0.4198288251 E,Outflow,0.2304569921,,0.1023435465,-1.2287029977,,-1.6935358498 E,Reference,0.6770414622,0.1023435465,,0.4198288251,1.6935358498, F,Inflow,,0.422008391,0.3549979666,,0.8190789273,0.9463539528 F,Outflow,0.422008391,,0.4988994144,-0.8190789273,,0.6826435968 F,Reference,0.3549979666,0.4988994144,,-0.9463539528,-0.6826435968 """ check_stat(known_csv, dc.t_test, comp=True) @helpers.seed def test_levene(dc): known_csv = """\ ,,levene,levene,levene,pvalue,pvalue,pvalue loc_2,,Inflow,Outflow,Reference,Inflow,Outflow,Reference param,loc_1,,,,,, A,Inflow,,1.176282059,0.293152155,,0.284450688,0.591287419 A,Outflow,1.176282059,,0.397705309,0.284450688,,0.531863542 A,Reference,0.293152155,0.397705309,,0.591287419,0.531863542, B,Inflow,,0.003559637,0.402002411,,0.952694449,0.529578712 B,Outflow,0.003559637,,0.408938588,0.952694449,,0.526247443 B,Reference,0.402002411,0.408938588,,0.529578712,0.526247443, C,Inflow,,1.965613561,0.679535532,,0.167626459,0.413910674 C,Outflow,1.965613561,,1.462364363,0.167626459,,0.232602352 C,Reference,0.679535532,1.462364363,,0.413910674,0.232602352, D,Inflow,,0.643364813,0.983777911,,0.426532092,0.32681669 D,Outflow,0.643364813,,0.116830634,0.426532092,,0.734124856 D,Reference,0.983777911,0.116830634,,0.32681669,0.734124856, E,Inflow,,0.961616536,0.410491665,,0.333914902,0.525668596 E,Outflow,0.961616536,,2.726351564,0.333914902,,0.107912818 E,Reference,0.410491665,2.726351564,,0.525668596,0.107912818, F,Inflow,,0.841984453,0.734809611,,0.363948105,0.396999375 F,Outflow,0.841984453,,0.25881357,0.363948105,,0.613802541 F,Reference,0.734809611,0.25881357,,0.396999375,0.613802541, """ check_stat(known_csv, dc.levene, comp=True) @helpers.seed def test_wilcoxon(dc): known_csv = """\ ,,wilcoxon,wilcoxon,wilcoxon,pvalue,pvalue,pvalue loc_2,,Inflow,Outflow,Reference,Inflow,Outflow,Reference param,loc_1,,,,,, A,Inflow,,32.0,59.0,,0.03479,0.430679 A,Outflow,32.0,,46.0,0.03479,,0.274445 A,Reference,59.0,46.0,,0.430679,0.274445, B,Inflow,,38.0,22.0,,0.600179,0.182338 B,Outflow,38.0,,31.0,0.600179,,0.858863 B,Reference,22.0,31.0,,0.182338,0.858863, C,Inflow,,75.0,120.0,,0.167807,0.601046 C,Outflow,75.0,,113.0,0.167807,,0.463381 C,Reference,120.0,113.0,,0.601046,0.463381, D,Inflow,,44.0,31.0,,0.593618,0.530285 D,Outflow,44.0,,45.0,0.593618,,0.972125 D,Reference,31.0,45.0,,0.530285,0.972125, E,Inflow,,21.0,19.0,,0.910156,0.386271 E,Outflow,21.0,,16.0,0.910156,,0.077148 E,Reference,19.0,16.0,,0.386271,0.077148, F,Inflow,,62.0,22.0,,0.492459,0.952765 F,Outflow,62.0,,28.0,0.492459,,0.656642 F,Reference,22.0,28.0,,0.952765,0.656642, """ with pytest.warns(UserWarning): check_stat(known_csv, dc.wilcoxon, comp=True) @helpers.seed def test_ranksums(dc): known_csv = """\ ,,pvalue,pvalue,pvalue,rank_sums,rank_sums,rank_sums loc_2,,Inflow,Outflow,Reference,Inflow,Outflow,Reference param,loc_1,,,,,, A,Inflow,,0.2153009,0.4187782,,-1.2391203,-0.8085428 A,Outflow,0.2153009,,0.4807102,1.2391203,,0.7051607 A,Reference,0.4187782,0.4807102,,0.8085428,-0.7051607, B,Inflow,,0.0748817,0.029513,,1.781188,2.1765661 B,Outflow,0.0748817,,0.8547898,-1.781188,,0.1830104 B,Reference,0.029513,0.8547898,,-2.1765661,-0.1830104, C,Inflow,,0.9015386,0.6455162,,-0.1237179,0.46 C,Outflow,0.9015386,,0.6455162,0.1237179,,0.46 C,Reference,0.6455162,0.6455162,,-0.46,-0.46, D,Inflow,,0.7641772,0.8023873,,-0.3,0.2502587 D,Outflow,0.7641772,,0.5011969,0.3,,0.6726078 D,Reference,0.8023873,0.5011969,,-0.2502587,-0.6726078, E,Inflow,,0.6911022,0.9551863,,0.3973597,-0.0561951 E,Outflow,0.6911022,,0.3727144,-0.3973597,,-0.8914004 E,Reference,0.9551863,0.3727144,,0.0561951,0.8914004, F,Inflow,,0.2459307,0.8486619,,-1.1602902,-0.190826 F,Outflow,0.2459307,,0.3971011,1.1602902,,0.8468098 F,Reference,0.8486619,0.3971011,,0.190826,-0.8468098, """ check_stat(known_csv, dc.ranksums, comp=True) @helpers.seed @pytest.mark.xfail(OLD_SCIPY, reason="Scipy < 0.19") def test_kendall(dc): known_csv = """\ ,,kendalltau,kendalltau,kendalltau,pvalue,pvalue,pvalue loc_2,,Inflow,Outflow,Reference,Inflow,Outflow,Reference param,loc_1,,,,,, A,Inflow,,-0.051661,-0.00738,,0.772893,0.967114 A,Outflow,-0.051661,,-0.083333,0.772893,,0.690095 A,Reference,-0.00738,-0.083333,,0.967114,0.690095, B,Inflow,,0.441351,0.298246,,0.015267,0.119265 B,Outflow,0.441351,,0.559855,0.015267,,0.004202 B,Reference,0.298246,0.559855,,0.119265,0.004202, C,Inflow,,0.280223,0.084006,,0.078682,0.578003 C,Outflow,0.280223,,-0.1417,0.078682,,0.352394 C,Reference,0.084006,-0.1417,,0.578003,0.352394, D,Inflow,,0.403469,0.095299,,0.020143,0.634826 D,Outflow,0.403469,,0.318337,0.020143,,0.094723 D,Reference,0.095299,0.318337,,0.634826,0.094723, E,Inflow,,0.114286,0.640703,,0.673337,0.004476 E,Outflow,0.114286,,0.167944,0.673337,,0.449603 E,Reference,0.640703,0.167944,,0.004476,0.449603, F,Inflow,,0.0,0.07231,,1.0,0.763851 F,Outflow,0.0,,0.388889,1.0,,0.063 F,Reference,0.07231,0.388889,,0.763851,0.063, """ check_stat(known_csv, dc.kendall, comp=True) @helpers.seed def test_spearman(dc): known_csv = """\ ,,pvalue,pvalue,pvalue,spearmanrho,spearmanrho,spearmanrho loc_2,,Inflow,Outflow,Reference,Inflow,Outflow,Reference param,loc_1,,,,,, A,Inflow,,0.7574884491,0.9627447553,,-0.0809319588,0.012262418 A,Outflow,0.7574884491,,0.7617330788,-0.0809319588,,-0.0823529412 A,Reference,0.9627447553,0.7617330788,,0.012262418,-0.0823529412, B,Inflow,,0.0110829791,0.0775159774,,0.5831305575,0.4537313433 B,Outflow,0.0110829791,,0.0024069317,0.5831305575,,0.6850916941 B,Reference,0.0775159774,0.0024069317,,0.4537313433,0.6850916941, C,Inflow,,0.1330504059,0.6063501968,,0.3387640122,0.1134228342 C,Outflow,0.1330504059,,0.3431640379,0.3387640122,,-0.2070506455 C,Reference,0.6063501968,0.3431640379,,0.1134228342,-0.2070506455, D,Inflow,,0.0195715066,0.4751861062,,0.4935814032,0.1858231711 D,Outflow,0.0195715066,,0.1263974782,0.4935814032,,0.363209462 D,Reference,0.4751861062,0.1263974782,,0.1858231711,0.363209462, E,Inflow,,0.9828818202,0.0013596162,,0.0084033613,0.8112988341 E,Outflow,0.9828818202,,0.3413722947,0.0084033613,,0.3012263814 E,Reference,0.0013596162,0.3413722947,,0.8112988341,0.3012263814, F,Inflow,,0.9645303744,0.6759971848,,-0.0106277141,0.1348767061 F,Outflow,0.9645303744,,0.0560590794,-0.0106277141,,0.5028571429 F,Reference,0.6759971848,0.0560590794,,0.1348767061,0.5028571429 """ check_stat(known_csv, dc.spearman, comp=True) @helpers.seed def test_theilslopes(dc): with helpers.raises(NotImplementedError): _ = dc.theilslopes def test_inventory(dc): known_csv = StringIO( dedent( """\ loc,param,Count,Non-Detect Inflow,A,21,3 Inflow,B,24,6 Inflow,C,24,0 Inflow,D,24,11 Inflow,E,19,4 Inflow,F,21,8 Outflow,A,22,1 Outflow,B,22,9 Outflow,C,24,4 Outflow,D,25,12 Outflow,E,16,2 Outflow,F,24,8 Reference,A,20,2 Reference,B,19,6 Reference,C,25,4 Reference,D,21,12 Reference,E,20,3 Reference,F,17,7 """ ) ) expected = pandas.read_csv(known_csv, index_col=[0, 1]).astype(int) pdtest.assert_frame_equal(expected, dc.inventory.astype(int), check_names=False) def test_inventory_noNDs(dc_noNDs): known_csv = StringIO( dedent( """\ loc,param,Count,Non-Detect Inflow,A,21,0 Inflow,B,24,0 Inflow,C,24,0 Inflow,D,24,0 Inflow,E,19,0 Inflow,F,21,0 Outflow,A,22,0 Outflow,B,22,0 Outflow,C,24,0 Outflow,D,25,0 Outflow,E,16,0 Outflow,F,24,0 Reference,A,20,0 Reference,B,19,0 Reference,C,25,0 Reference,D,21,0 Reference,E,20,0 Reference,F,17,0 """ ) ) expected = pandas.read_csv(known_csv, index_col=[0, 1]).astype(int) pdtest.assert_frame_equal( expected, dc_noNDs.inventory.astype(int), check_names=False, ) @helpers.seed def test_stat_summary(dc): known_csv = StringIO( dedent( """\ ros_res,loc,A,B,C,D,E,F Count,Inflow,21,24,24,24,19,21 Count,Outflow,22,22,24,25,16,24 Count,Reference,20,19,25,21,20,17 Non-Detect,Inflow,3.0,6.0,0.0,11.0,4.0,8.0 Non-Detect,Outflow,1.0,9.0,4.0,12.0,2.0,8.0 Non-Detect,Reference,2.0,6.0,4.0,12.0,3.0,7.0 mean,Inflow,2.64668,7.64717,0.51325,3.02124,1.9147,9.8254 mean,Outflow,5.24928,6.86384,1.00464,2.31881,1.09824,3.45018 mean,Reference,3.77797,4.50425,0.54196,1.94583,2.28329,2.49171 std,Inflow,3.67506,12.62594,0.36136,4.91543,2.62027,35.29825 std,Outflow,8.92456,13.92253,1.72758,2.90815,1.13267,5.47634 std,Reference,5.67123,11.05411,0.5035,2.3037,2.8617,3.50296 min,Inflow,0.0756,0.17404,0.10213,0.05365,0.08312,0.00803 min,Outflow,0.11177,0.02106,0.03578,0.11678,0.07425,0.06377 min,Reference,0.15575,0.04909,0.04046,0.08437,0.05237,0.03445 10%,Inflow,0.1772,0.45233,0.13467,0.15495,0.1763,0.03548 10%,Outflow,0.44852,0.08297,0.08222,0.26949,0.19903,0.18008 10%,Reference,0.38448,0.13467,0.08241,0.19355,0.12777,0.09457 25%,Inflow,0.5226,1.47254,0.16401,0.35688,0.36475,0.12007 25%,Outflow,0.90603,0.25113,0.26752,0.51699,0.31151,0.40613 25%,Reference,1.09472,0.31423,0.13646,0.3839,0.39466,0.22443 50%,Inflow,1.19725,2.77399,0.52596,1.20189,1.07086,0.83249 50%,Outflow,2.23106,1.5465,0.39698,1.36276,0.51675,1.51094 50%,Reference,1.63947,1.56508,0.41269,0.8827,0.80716,0.74599 75%,Inflow,2.56354,4.72887,0.77639,3.04268,1.53278,1.79299 75%,Outflow,3.83802,2.84995,0.85354,2.79341,1.59183,2.80979 75%,Reference,2.65065,2.26185,0.79261,3.61179,3.20153,2.74225 90%,Inflow,6.02835,24.40655,0.99293,8.00691,6.28345,8.51706 90%,Outflow,12.43052,23.90022,2.43829,5.66731,2.30348,10.32829 90%,Reference,12.58278,6.67125,1.2205,4.78255,7.72012,8.57303 max,Inflow,13.87664,45.97893,1.26657,21.75505,8.88365,163.01001 max,Outflow,36.58941,47.49381,8.04948,12.39894,4.19118,23.29367 max,Reference,21.22363,48.23615,1.94442,7.67751,8.75609,10.5095 """ ) ) expected = pandas.read_csv(known_csv, index_col=[0, 1]).T pdtest.assert_frame_equal( expected.round(5), dc.stat_summary().round(5), check_names=False, check_dtype=False, rtol=1e-4, ) def test_locations(dc): for loc in dc.locations: assert isinstance(loc, Location) assert len(dc.locations) == 18 assert dc.locations[0].definition == {"loc": "Inflow", "param": "A"} assert dc.locations[1].definition == {"loc": "Inflow", "param": "B"} def test_datasets(dc): _ds = [] for d in dc.datasets("Inflow", "Outflow"): assert isinstance(d, Dataset) _ds.append(d) assert len(_ds) == 6 assert _ds[0].definition == {"param": "A"} assert _ds[1].definition == {"param": "B"} # this sufficiently tests dc._filter_collection def test_selectLocations(dc): locs = dc.selectLocations(param="A", loc=["Inflow", "Outflow"]) assert len(locs) == 2 for n, (loc, loctype) in enumerate(zip(locs, ["Inflow", "Outflow"])): assert isinstance(loc, Location) assert loc.definition["param"] == "A" assert loc.definition["loc"] == loctype def test_selectLocations_squeeze_False(dc): locs = dc.selectLocations(param="A", loc=["Inflow"], squeeze=False) assert len(locs) == 1 for n, loc in enumerate(locs): assert isinstance(loc, Location) assert loc.definition["param"] == "A" assert loc.definition["loc"] == "Inflow" def test_selectLocations_squeeze_True(dc): loc = dc.selectLocations(param="A", loc=["Inflow"], squeeze=True) assert isinstance(loc, Location) assert loc.definition["param"] == "A" assert loc.definition["loc"] == "Inflow" def test_selectLocations_squeeze_True_None(dc): loc = dc.selectLocations(param="A", loc=["Junk"], squeeze=True) assert loc is None # since the test_selectLocations* tests stress _filter_collection # enough, we'll mock it out for datasets: def test_selectDatasets(dc): with mock.patch.object(dc, "_filter_collection") as _fc: with mock.patch.object(dc, "datasets", return_value=["A", "B"]) as _ds: dc.selectDatasets("Inflow", "Reference", foo="A", bar="C") _ds.assert_called_once_with("Inflow", "Reference") _fc.assert_called_once_with(["A", "B"], foo="A", bar="C", squeeze=False) @pytest.mark.parametrize("func", [stats.mannwhitneyu, stats.wilcoxon]) @pytest.mark.parametrize( ("x", "all_same"), [([5, 5, 5, 5, 5], True), ([5, 6, 7, 7, 8], False)] ) def test_dist_compare_wrapper(x, all_same, func): y = [5, 5, 5, 5, 5] with mock.patch.object(stats, func.__name__) as _test: result = _dist_compare(x, y, _test) if all_same: assert numpy.isnan(result.stat) assert numpy.isnan(result.pvalue) assert _test.call_count == 0 else: # assert result == (0, 0) _test.assert_called_once_with(x, y, alternative="two-sided")
bsd-3-clause
legacysurvey/rapala
ninetyprime/linearitycheck.py
2
17953
#!/usr/bin/env python import os import glob import numpy as np import fitsio import matplotlib.pyplot as plt from matplotlib import ticker from matplotlib.backends.backend_pdf import PdfPages from astropy.table import Table from bokpipe import * from bokpipe.bokoscan import _convertfitsreg def init_data_map(datadir,outdir,expTimes=None,files=None): dataMap = {} if not os.path.exists(outdir): os.mkdir(outdir) dataMap['outdir'] = outdir if files is None: dataMap['files'] = sorted(glob.glob(datadir+'*.fits') + glob.glob(datadir+'*.fits.gz') + glob.glob(datadir+'*.fits.fz')) else: dataMap['files'] = files dataMap['rawFiles'] = dataMap['files'] dataMap['oscan'] = bokio.FileNameMap(outdir) dataMap['proc'] = bokio.FileNameMap(outdir,'_p') dataMap['files'] = [ dataMap['oscan'](f) for f in dataMap['files'] ] if expTimes is None: dataMap['expTime'] = np.array([fitsio.read_header(f)['EXPTIME'] for f in dataMap['files']]) else: dataMap['expTime'] = expTimes try: # assume they are all the same dataMap['dataSec'] = \ _convertfitsreg(fitsio.read_header( dataMap['files'][0],'IM4')['DATASEC']) except IOError: pass return dataMap def process_data(dataMap,redo=True,withvar=True,oscanims=False,bias2d=False): oscanSubtract = BokOverscanSubtract(output_map=dataMap['oscan'], overwrite=redo, write_overscan_image=oscanims, oscan_cols_file=dataMap['outdir']+'oscan_cols', oscan_rows_file=dataMap['outdir']+'oscan_rows', verbose=10)#method='median_value') oscanSubtract.process_files(dataMap['rawFiles']) if bias2d: biasname = 'bias' biasStack = bokproc.BokBiasStack(#reject=None, overwrite=redo, with_variance=withvar) bias2dFile = os.path.join(dataMap['outdir'],biasname+'.fits') biasStack.stack(dataMap['biasFiles'],bias2dFile) #imProcess = bokproc.BokCCDProcess(bias2dFile, # output_map=dataMap['proc']) #imProcess.process_files(flatFrames) def imstat(dataMap,outfn='stats'): from astropy.stats import sigma_clip from scipy.stats import mode,scoreatpercentile array_stats = bokutil.array_stats fnlen = len(os.path.basename(dataMap['files'][0])) st = np.zeros(len(dataMap['flatSequence']), dtype=[('file','S%d'%fnlen), ('expTime','f4'), ('median','16f4'), ('mean','16f4'), ('mode','16f4'), ('iqr25','16f4'), ('iqr75','16f4'), ('iqr10','16f4'), ('iqr90','16f4')]) for _i,i in enumerate(dataMap['flatSequence']): expTime = dataMap['expTime'][i] fn = os.path.basename(dataMap['files'][i]) fits = fitsio.FITS(dataMap['files'][i]) print '%s %4.1f ' % (fn,expTime), st['file'][_i] = fn st['expTime'][_i] = expTime for j,extn in enumerate(['IM%d' % n for n in range(1,17)]): modeVal,pix = array_stats(fits[extn].read()[dataMap['statsPix']], method='mode',retArray=True) st['mode'][_i,j] = modeVal st['mean'][_i,j] = pix.mean() st['median'][_i,j] = np.ma.median(pix) st['iqr25'][_i,j] = scoreatpercentile(pix,25) st['iqr75'][_i,j] = scoreatpercentile(pix,75) st['iqr10'][_i,j] = scoreatpercentile(pix,10) st['iqr90'][_i,j] = scoreatpercentile(pix,90) print '%5d ' % (modeVal), print fitsio.write(outfn+'.fits',st,clobber=True) def scaled_histograms(dataMap,nims=None,outfn='pixhist'): pdf = PdfPages(outfn+'.pdf') for _i,i in enumerate(dataMap['flatSequence']): if nims is not None and _i==nims: break expTime = dataMap['expTime'][i] expScale = dataMap['refExpTime'] / expTime print dataMap['files'][i] fn = os.path.basename(dataMap['files'][i]) fits = fitsio.FITS(dataMap['files'][i]) fig = plt.figure(figsize=(8.0,10)) plt.subplots_adjust(0.08,0.08,0.92,0.92,0.3,0.35) for j,extn in enumerate(['IM%d' % n for n in range(1,17)]): ax = plt.subplot(8,2,j+1) pix = fits[extn].read()[dataMap['statsPix']] ax.hist(expScale*pix.flatten(),100,(0,40000),edgecolor='none') ax.text(0.05,0.9,extn,va='top',size=9,transform=ax.transAxes) ax.set_xlim(0,40000) ax.xaxis.set_major_locator(ticker.MultipleLocator(10000)) ax.xaxis.set_minor_locator(ticker.MultipleLocator(2000)) ax.yaxis.set_major_locator(ticker.MultipleLocator(50000)) plt.figtext(0.5,0.99,fn+' exp=%.1f' % expTime,ha='center',va='top') pdf.savefig(fig) plt.close(fig) pdf.close() def plot_sequence(dataMap,st,imNum,which='median'): expScale = dataMap['refExpTime']/st['expTime'] seqno = 1 + np.arange(len(st)) ref = np.isclose(expScale,1.0) j = imNum - 1 plt.figure(figsize=(8,6)) plt.subplots_adjust(0.11,0.08,0.96,0.95) plt.errorbar(seqno[ref],expScale[ref]*st[which][ref,j], [expScale[ref]*(st[which]-st['iqr10'])[ref,j], expScale[ref]*(st['iqr90']-st[which])[ref,j]], fmt='bs-') plt.errorbar(seqno[~ref],expScale[~ref]*st[which][~ref,j], [expScale[~ref]*(st[which]-st['iqr10'])[~ref,j], expScale[~ref]*(st['iqr90']-st[which])[~ref,j]], fmt='cs-') #plt.scatter(seqno,expScale*st['mode'][:,j],marker='+',c='r') #plt.scatter(seqno,expScale*st['mean'][:,j],marker='x',c='g') plt.xlabel('sequence number') plt.ylabel('counts scaled by exp time') plt.title('IM%d'%imNum) plt.xlim(0.5,len(st)+0.5) def fit_ref_exposures(dataMap,st,imNum, which='median',method='spline',doplot=False): from scipy.interpolate import UnivariateSpline seqno = 1 + np.arange(len(st)) t = st['expTime'] ref = np.isclose(t,dataMap['refExpTime']) j = imNum - 1 refCounts = st[which][ref,j][0] if method=='linear': _fit = np.polyfit(seqno[ref],refCounts/st[which][ref,j],1) fit = lambda x: np.polyval(_fit,x) elif method=='spline': fit = UnivariateSpline(seqno[ref],refCounts/st[which][ref,j], s=1e-5,k=3) else: raise ValueError if doplot: plt.figure() plt.subplot(211) plt.plot(seqno[ref],st[which][ref,j],'bs-') plt.plot(seqno,refCounts/fit(seqno),c='r') plt.subplot(212) plt.plot(seqno[ref],(st[which][ref,j]-refCounts/fit(seqno[ref])) /st[which][ref,j],'bs-') plt.axhline(0,c='r') return fit def plot_linearity_curves(dataMap,st,which='median',correct=True,isPTC=False, refCor=None,fitmethod='spline',outfn='linearity', onlyim=None): seqno = 1 + np.arange(len(st)) t = st['expTime'] print seqno,t refExpTime = dataMap['refExpTime'] ref = np.isclose(t,refExpTime) refCorFit = None ii = np.arange(len(st)) # only use the increasing sequence, not the reference exposures ii = ii[~ref] if isPTC: # for PTCs skip every other image since they are done in pairs ii = ii[::2] # only fit to unsaturated frames try: firstsat = np.where(np.any(st[which][ii,:] > 55000,axis=1))[0][0] except IndexError: firstsat = -1 if onlyim is None: pdf = PdfPages(outfn+'.pdf') for imNum in range(1,17): if onlyim is not None and imNum != onlyim: continue j = imNum - 1 # correct lamp variation if correct: if refCor is None: fscl_fit = fit_ref_exposures(dataMap,st,imNum,which, method=fitmethod) else: if refCorFit is None: refCorFit = fit_ref_exposures(dataMap,st,imNum,which) fscl_fit = refCorFit fscl = fscl_fit(seqno) else: fscl = np.ones_like(seqno) fit = np.polyfit(t[ii[:firstsat]], fscl[ii[:firstsat]]*st[which][ii[:firstsat],j],1) fitv = np.polyval(fit,t) slope = fit[0] / (st[which][ref,j][0]/refExpTime) # pltindex = imNum % 4 if onlyim is None: if pltindex == 1: fig = plt.figure(figsize=(8,10)) plt.subplots_adjust(0.11,0.08,0.96,0.95,0.25,0.2) ax = plt.subplot(4,2,2*(j%4)+1) else: fig = plt.figure(figsize=(6,2.5)) plt.subplots_adjust(0.11,0.23,0.99,0.98,0.35,0.2) ax = plt.subplot(1,2,1) plt.plot(t[ii],fscl[ii]*st[which][ii,j],'bs-') plt.xlim(0.9*t.min(),t.max()+0.5) plt.xscale('log') plt.ylim(1e2,9e4) plt.yscale('log') plt.ylabel('counts [%s]' % which) tt = np.logspace(-1,np.log10(1.3*t.max()),100) plt.plot(tt,np.polyval(fit,tt),c='r') plt.text(0.05,0.9,'IM%d'%imNum,va='top',transform=ax.transAxes) plt.text(0.95,0.18,r'y = %.1f $\times$ t + %.1f' % tuple(fit), ha='right',va='top',size=9,transform=ax.transAxes) plt.text(0.95,0.10,r'y = %.3f $\times$ counts + %.1f' % (slope,fit[1]), ha='right',va='top',size=9,transform=ax.transAxes) if pltindex==0 or onlyim is not None: plt.xlabel('exptime (s)') # if onlyim is None: ax = plt.subplot(4,2,2*(j%4)+2) else: ax = plt.subplot(1,2,2) plt.plot(t[ii],100*(fscl[ii]*st[which][ii,j]-fitv[ii])/fitv[ii],'bs-') plt.axhline(0,c='r') #ax.xaxis.set_major_locator(ticker.MultipleLocator(10)) #ax.xaxis.set_minor_locator(ticker.MultipleLocator(2)) ax.yaxis.set_major_locator(ticker.MultipleLocator(2)) ax.yaxis.set_minor_locator(ticker.MultipleLocator(0.5)) plt.ylim(-5,5) plt.xlim(0.9*t.min(),t.max()+0.5) plt.xscale('log') if pltindex==0 or onlyim is not None: plt.xlabel('exptime (s)') plt.ylabel('residual \%') if onlyim is None: if pltindex == 0: pdf.savefig(fig) plt.close(fig) if onlyim is None: pdf.close() def rel_gain(dataMap,st,which='median',correct=True,fitmethod='spline', nskip=0): seqno = 1 + np.arange(len(st)) t = st['expTime'] refExpTime = dataMap['refExpTime'] ref = np.isclose(t,refExpTime) refCorFit = None ii = np.arange(len(st)) ii = ii[~ref] ii = ii[nskip:] sky4 = st[which][ii,3] fit_ii = ii[np.where((sky4>5000)&(sky4<25000))[0]] plt.figure() for imNum in range(1,17): j = imNum - 1 # correct lamp variation if correct: if True: #refCor is None: fscl_fit = fit_ref_exposures(dataMap,st,imNum,which, method=fitmethod) else: if refCorFit is None: refCorFit = fit_ref_exposures(dataMap,st,imNum,which) fscl_fit = refCorFit fscl = fscl_fit(seqno) else: fscl = np.ones_like(seqno) fit = np.polyfit(t[fit_ii],fscl[fit_ii]*st[which][fit_ii,j],1) fitv = np.polyval(fit,t) # slope = fit[0] / (st[which][ref,j][0]/refExpTime) xx = np.array(0,1.1*t.max()) plt.subplot(4,4,imNum) if False: plt.scatter(t[ii],fscl[ii]*st[which][ii,j]) plt.plot(xx,np.polyval(fit,xx),c='r') else: plt.scatter(t[ii],fscl[ii]*st[which][ii,j]/fitv[ii]) plt.axhline(1,c='r') plt.ylim(0.7,1.3) if True: plt.xscale('log') plt.xlim(0.9*t.min(),1.1*t.max()) def get_first_saturated_frame(seq): try: firstsat = np.where(seq > 55000)[0][0] except IndexError: firstsat = -1 return firstsat def compare_oscan_levels(dataMap,st): files = [ dataMap['files'][i] for i in dataMap['flatSequence'] ] oscans = np.zeros((len(files),16)) for j in range(16): oscans[:,j] = [ fitsio.read_header(f,'IM%d'%(j+1))['OSCANMED'] for f in files ] seqno = 1 + np.arange(len(st)) plt.figure() for j in range(8,16): ax = plt.subplot(8,2,2*(j%8)+1) i1 = get_first_saturated_frame(st['median'][:,j]) plt.scatter(st['median'][:i1,j],oscans[:i1,j],c='b') plt.ylabel('IM%d'%(j+1)) ax = plt.subplot(8,2,2*(j%8)+2) plt.scatter(seqno[:i1],oscans[:i1,j],c='b') def init_sep09bss_data_map(): datadir = os.environ.get('BASSDATA')+'/20150909/bss/20150908/' exptimes = np.loadtxt(datadir+'../bss.20150909.log',usecols=(3,)) exptimes = exptimes[50:] print exptimes rdxdir = os.environ.get('GSCRATCH','tmp_sep')+'/bss_sep09/' if not os.path.exists(rdxdir): os.makedirs(rdxdir) dataMap = init_data_map(datadir,rdxdir, expTimes=exptimes,files=None) dataMap['rawFiles'] = dataMap['rawFiles'][50:] dataMap['files'] = dataMap['files'][50:] dataMap['biasFiles'] = dataMap['files'][-5:] #dataMap['flatSequence'] = range(50,68) dataMap['flatSequence'] = range(18) dataMap['statsPix'] = bokutil.stats_region('amp_corner_ccdcenter_small') dataMap['refExpTime'] = 40.0 return dataMap def init_sep29ptc_data_map(): dataMap = init_data_map( "/home/ian/dev/rapala/bokpipe/scratch/sep29ptcs/ptc/",'sep29ptcs/') dataMap['biasFiles'] = [dataMap['files'][0],] dataMap['flatSequence'] = range(1,len(dataMap['files'])) dataMap['statsPix'] = np.s_[20:-20,100:-100] dataMap['refExpTime'] = 10.0 return dataMap def init_oct02ptc_data_map(): dataMap = init_data_map(os.environ.get('GSCRATCH')+'/02oct15/ptc/', os.environ.get('GSCRATCH')+'/02oct15/ptc_proc/') dataMap['biasFiles'] = [dataMap['files'][0],] dataMap['flatSequence'] = range(1,len(dataMap['files'])) dataMap['statsPix'] = bokutil.stats_region('amp_corner_ccdcenter_small') dataMap['refExpTime'] = 10.0 return dataMap def init_oct20_data_map(): datadir = os.environ.get('BASSDATA')+'/20151020/' exptimes = np.loadtxt(datadir+'images.log',usecols=(6,)) nuse = 53 exptimes = exptimes[:nuse] print exptimes dataMap = init_data_map(datadir,'tmp_oct20',expTimes=exptimes) dataMap['rawFiles'] = dataMap['rawFiles'][:nuse] dataMap['files'] = [ dataMap['oscan'](f) for f in dataMap['files'][:nuse] ] dataMap['biasFiles'] = dataMap['files'][:20] dataMap['flatSequence'] = range(20,nuse) dataMap['statsPix'] = bokutil.stats_region('amp_corner_ccdcenter_small') dataMap['refExpTime'] = 3.0 return dataMap def init_nov11g_data_map(): datadir = os.environ.get('BASSDATA')+'/Nov2015/' log = Table.read(datadir+'bassLog_Nov2015.fits') exptimes = log['expTime'][111:150] files = [ datadir+f['utDir']+'/'+f['fileName']+'.fits' for f in log[111:150] ] dataMap = init_data_map(datadir,'tmp_nov11g', expTimes=exptimes,files=files) dataMap['biasFiles'] = dataMap['files'][-10:] dataMap['flatSequence'] = np.arange(len(dataMap['files'])-10) dataMap['statsPix'] = bokutil.stats_region('amp_corner_ccdcenter_small') dataMap['refExpTime'] = 3.0 return dataMap def init_nov14_data_map(filt): datadir = os.environ.get('BASSDATA')+'/Nov2015/' log = Table.read(datadir+'bassLog_Nov2015.fits') if filt=='g': frames = np.r_[np.s_[297:345],np.s_[247:257]] else: frames = np.r_[np.s_[345:393],np.s_[247:257]] exptimes = log['expTime'][frames] files = [ datadir+f['utDir']+'/'+f['fileName']+'.fits' for f in log[frames] ] dataMap = init_data_map(datadir,'tmp_nov14'+filt, expTimes=exptimes,files=files) dataMap['biasFiles'] = dataMap['files'][-10:] dataMap['flatSequence'] = np.arange(len(dataMap['files'])-10) dataMap['statsPix'] = bokutil.stats_region('amp_corner_ccdcenter_small') dataMap['refExpTime'] = {'Ha':10.0,'g':3.0}[filt] return dataMap def init_jan3_data_map(filt): datadir = os.environ.get('BASSDATA') log = Table.read('basslogs/log_ut20160103.fits') if filt=='g': frames = np.r_[np.s_[57:105],np.s_[160:170]] else: frames = np.r_[np.s_[105:160],np.s_[160:170]] exptimes = log['expTime'][frames] files = [ datadir+'/'+f['utDir'].strip()+'/'+f['fileName'].strip()+'.fits' for f in log[frames] ] dataMap = init_data_map(datadir,'tmp_jan3'+filt, expTimes=exptimes,files=files) dataMap['biasFiles'] = dataMap['files'][-10:] dataMap['flatSequence'] = np.arange(len(dataMap['files'])-10) dataMap['statsPix'] = bokutil.stats_region('amp_corner_ccdcenter_small') dataMap['refExpTime'] = {'Ha':10.0,'g':3.0}[filt] return dataMap def init_data_map_fromfile(filename,outdir='tmp',nersc=True): datadir = os.environ.get('BASSDATA') if nersc: datadir = os.path.join(datadir,'BOK_Raw') log = np.loadtxt(filename,dtype=[('frameNum','i4'),('utDir','S8'), ('fileName','S35'), ('imType','S10'),('filter','S8'), ('expTime','f4')],skiprows=1) exptimes = log['expTime'] files = [ datadir+'/'+f['utDir'].strip()+'/'+f['fileName'].strip()+'.fits' for f in log ] if nersc: files = [ f+'.fz' for f in files ] dataMap = init_data_map(datadir,outdir, expTimes=exptimes,files=files) dataMap['biasFiles'] = np.array(dataMap['files'])[log['imType']=='zero'] dataMap['flatSequence'] = np.where(log['imType']=='flat')[0] dataMap['statsPix'] = bokutil.stats_region('amp_corner_ccdcenter_small') # assume it starts with reference dataMap['refExpTime'] = exptimes[dataMap['flatSequence'][0]] return dataMap if __name__=='__main__': import sys dataset = sys.argv[1] if dataset == 'sep09bss': dataMap = init_sep09bss_data_map() elif dataset == 'oct02': dataMap = init_oct02ptc_data_map() elif dataset == 'oct20': dataMap = init_oct20_data_map() elif dataset == 'nov11g': dataMap = init_nov11g_data_map() elif dataset == 'nov14g': dataMap = init_nov14_data_map('g') elif dataset == 'nov14Ha': dataMap = init_nov14_data_map('Ha') elif dataset == 'jan3g': dataMap = init_jan3_data_map('g') elif dataset == 'jan3Ha': dataMap = init_jan3_data_map('Ha') else: dataMap = init_data_map_fromfile(sys.argv[2],dataset) print 'processing ',dataset if not os.path.exists('stats_'+dataset+'.fits'): process_data(dataMap,bias2d=True) imstat(dataMap,outfn='stats_'+dataset) st = fitsio.read('stats_'+dataset+'.fits') plot_linearity_curves(dataMap,st,outfn='linearity_'+dataset) if True: plot_linearity_curves(dataMap,st,outfn='linearity_'+dataset, onlyim=4) plt.savefig('linearity_IM4_%s.png'%dataset) plot_sequence(dataMap,st,4) plt.savefig('linsequence_IM4_%s.png'%dataset)
bsd-3-clause
Jailander/COSMOS
kriging_exploration/scripts/explorator.py
1
34183
#!/usr/bin/env python import cv2 import sys import yaml import signal import numpy as np #import utm import matplotlib as mpl import matplotlib.cm as cm import rospy import argparse import actionlib from cosmos_msgs.msg import KrigInfo from cosmos_msgs.srv import CompareModels import kriging_exploration.map_coords import std_msgs.msg import open_nav.msg from kriging_exploration.data_grid import DataGrid from kriging_exploration.map_coords import MapCoords from kriging_exploration.visualiser import KrigingVisualiser from kriging_exploration.canvas import ViewerCanvas from kriging_exploration.topological_map import TopoMap from kriging_exploration.exploration import ExplorationPlan from sensor_msgs.msg import NavSatFix def overlay_image_alpha(img, img_overlay): """Overlay img_overlay on top of img at the position specified by pos and blend using alpha_mask. """ show_image = img.copy() alpha = img_overlay[:, :, 3] / 255.0 # Alpha mask must contain values # within the range [0, 1] # and be the same size as img_overlay. # Image ranges y1, y2 = 0, img.shape[0] x1, x2 = 0, img.shape[1] channels = img.shape[2] alpha_inv = 1.0 - alpha for c in range(channels): show_image[y1:y2, x1:x2, c] = (alpha * img_overlay[y1:y2, x1:x2, c] + alpha_inv * img[y1:y2, x1:x2, c]) return show_image class Explorator(KrigingVisualiser): #_w_shape=[(0, 16), (1, 17), (3, 17), (5, 16), (8, 15), (10, 15), (12, 14), (14, 13), (12, 12), (10, 11), (8, 11), (5, 10), (8, 9), (10, 9), (12, 8), (14, 7), (12, 6), (10, 5), (8, 5), (6, 4), (4, 3), (3, 2), (4, 1), (5, 0), (7, 0)] #_w_shape=[(17, 0), (17, 1), (17, 3), (16, 5), (15, 8), (15, 10), (14, 12), (13, 14), (12, 12), (11, 10), (11, 8), (10, 5), (9, 8), (9, 10), (8, 12), (7, 14), (6, 12), (5, 10), (5, 8), (4, 6), (3, 4), (2, 3), (1, 4), (0, 5), (0, 7)] #_w_shape=[(17, 0), (17,1), (17, 2), (17, 4), (16, 4), (16, 6), (16, 8), (15, 8), (15, 10), (14, 10), (14, 12), (13, 12), (13, 14), (12, 14), (12, 12), (11, 12), (11, 10), (10, 10), (10, 8), (10, 6), (10, 4), (9, 4), (9, 6), (9, 8), (9, 10), (8, 10), (8, 12), (7, 12), (7, 14), (6, 14), (6, 12), (5, 12), (5, 10), (4, 10), (4, 8), (4, 6), (4, 4), (3, 4), (3, 3), (2, 3), (2, 4), (1,4), (1, 6), (0,6), (1, 8), (0,8), (1, 10), (0, 10), (0, 12), (0, 14)] _w_shape=[(17, 0), (16, 1), (14, 6), (12, 11), (10, 14), (8, 9), (5, 14), (3, 11), (2, 6), (0, 3)] def __init__(self, lat_deg, lon_deg, zoom, size, args): self.targets = [] self.results =[] self.result_counter=0 self.explodist=0 self.running = True self.last_coord=None signal.signal(signal.SIGINT, self.signal_handler) self.expid=args.experiment_name print "Creating visualiser object" super(Explorator, self).__init__(lat_deg, lon_deg, zoom, size) cv2.namedWindow('explorator') cv2.setMouseCallback('explorator', self.click_callback) self.current_model=-1 self.draw_mode = 'none' self.grid = DataGrid(args.limits_file, args.cell_size) self.topo_map= TopoMap(self.grid) self.visited_wp=[] explo_type = args.area_coverage_type self.define_exploration_type(explo_type) self.navigating = False self.pause_exp = False self.exploring = 0 self.n_inputs = 0 print "NUMBER OF TARGETS:" print len(self.explo_plan.targets) self.limits_canvas = ViewerCanvas(self.base_image.shape, self.satellite.centre, self.satellite.res) self.grid_canvas = ViewerCanvas(self.base_image.shape, self.satellite.centre, self.satellite.res) self.exploration_canvas = ViewerCanvas(self.base_image.shape, self.satellite.centre, self.satellite.res) self.gps_canvas = ViewerCanvas(self.base_image.shape, self.satellite.centre, self.satellite.res) self.limits_canvas.draw_polygon(self.grid.limits, (0,0,255,128), thickness=1) self.grid_canvas.draw_grid(self.grid.cells, args.cell_size, (128,128,128,2), thickness=1) self.redraw() self.redraw_kriged=True self.redraw_var=True self.redraw_devi=True self.model_canvas=[] self.model_legend=[] self.kriging_canvas=[] self.klegend_canvas=[] self.klegend2_canvas=[] self.klegend3_canvas=[] self.sigma_canvas=[] self.sigma2_canvas=[] self.model_canvas_names=[] self.mean_out_canvas = ViewerCanvas(self.base_image.shape, self.satellite.centre, self.satellite.res) self.mean_out_legend_canvas = ViewerCanvas(self.base_image.shape, self.satellite.centre, self.satellite.res) self.mean_var_canvas = ViewerCanvas(self.base_image.shape, self.satellite.centre, self.satellite.res) self.mean_var_legend_canvas = ViewerCanvas(self.base_image.shape, self.satellite.centre, self.satellite.res) self.mean_dev_canvas = ViewerCanvas(self.base_image.shape, self.satellite.centre, self.satellite.res) self.mean_dev_legend_canvas = ViewerCanvas(self.base_image.shape, self.satellite.centre, self.satellite.res) rospy.loginfo("Subscribing to Krig Info") rospy.Subscriber("/kriging_data", KrigInfo, self.data_callback) rospy.Subscriber("/fix", NavSatFix, self.gps_callback) rospy.Subscriber('/penetrometer_scan', std_msgs.msg.String, self.scan_callback) self.req_data_pub = rospy.Publisher('/request_scan', std_msgs.msg.String, latch=False, queue_size=1) rospy.loginfo(" ... Connecting to Open_nav") self.open_nav_client = actionlib.SimpleActionClient('/open_nav', open_nav.msg.OpenNavAction) self.open_nav_client.wait_for_server() rospy.loginfo(" ... done") tim1 = rospy.Timer(rospy.Duration(0.2), self.drawing_timer_callback) tim2 = rospy.Timer(rospy.Duration(0.1), self.control_timer_callback) self.refresh() while(self.running): cv2.imshow('explorator', self.show_image) k = cv2.waitKey(20) & 0xFF self._change_mode(k) tim1.shutdown() tim2.shutdown() cv2.destroyAllWindows() sys.exit(0) # EXPLORATION PARAMS HERE!!!! def define_exploration_type(self, explo_type): self.exploration_strategy=explo_type self.n_goals=10 if explo_type=='area_split': self.grid._split_area(3,3) sb=[] for i in self.grid.area_splits_coords: (y, x) = self.grid.get_cell_inds_from_coords(i) sb.append((x,y)) self.explo_plan = ExplorationPlan(self.topo_map, args.initial_waypoint, args.initial_percent, ac_model=explo_type, ac_coords=sb) elif explo_type=='random': self.explo_plan = ExplorationPlan(self.topo_map, args.initial_waypoint, args.initial_percent) elif explo_type=='w_shape': self.explo_plan = ExplorationPlan(self.topo_map, args.initial_waypoint, args.initial_percent, ac_model=explo_type, ac_coords=self._w_shape) else: #greedy self.explo_plan = ExplorationPlan(self.topo_map, args.initial_waypoint, args.initial_percent, exploration_type='greedy', ac_model=explo_type) def drawing_timer_callback(self, event): self.refresh() def control_timer_callback(self, event): if self.navigating: if self.open_nav_client.simple_state ==2: print "DONE NAVIGATING" self.navigating = False if self.exploring==1: self.exploring=2 elif self.exploring==2: if not self.pause_exp: self.explo_plan.explored_wp.append(self.explo_plan.route.pop(0)) info_str='Do_reading' self.req_data_pub.publish(info_str) self.exploring=3 elif self.exploring==4: if not self.pause_exp: if len(self.explo_plan.route) >0: gg=self.explo_plan.route[0] self.open_nav_client.cancel_goal() targ = open_nav.msg.OpenNavActionGoal() targ.goal.coords.header.stamp=rospy.Time.now() targ.goal.coords.latitude=gg.coord.lat targ.goal.coords.longitude=gg.coord.lon print "Going TO: ", gg self.exploring=1 self.navigating=True self.open_nav_client.send_goal(targ.goal) else: print "Done Exploring" self.exploring = 0 # else: # if self.exploring: # print "waiting for new goal" def gps_callback(self, data): if not np.isnan(data.latitude): self.gps_canvas.clear_image() gps_coord = MapCoords(data.latitude,data.longitude) self.gps_canvas.draw_coordinate(gps_coord,'black',size=2, thickness=2, alpha=255) if self.last_coord: dist = gps_coord - self.last_coord self.explodist+= dist[0] self.last_coord=gps_coord def data_callback(self, msg): point_coord = kriging_exploration.map_coords.coord_from_satnav_fix(msg.coordinates) for i in msg.data: self.grid.add_data_point(i.model_name, point_coord, i.measurement) self.vmin, self.vmax = self.grid.get_max_min_vals() self.n_models=len(self.grid.models) for i in self.grid.models: if i.name not in self.model_canvas_names: print i.name self.model_canvas_names.append(i.name) self.model_canvas.append(ViewerCanvas(self.base_image.shape, self.satellite.centre, self.satellite.res)) self.model_legend.append(ViewerCanvas(self.base_image.shape, self.satellite.centre, self.satellite.res)) self.kriging_canvas.append(ViewerCanvas(self.base_image.shape, self.satellite.centre, self.satellite.res)) self.klegend_canvas.append(ViewerCanvas(self.base_image.shape, self.satellite.centre, self.satellite.res)) self.klegend2_canvas.append(ViewerCanvas(self.base_image.shape, self.satellite.centre, self.satellite.res)) self.klegend3_canvas.append(ViewerCanvas(self.base_image.shape, self.satellite.centre, self.satellite.res)) self.sigma_canvas.append(ViewerCanvas(self.base_image.shape, self.satellite.centre, self.satellite.res)) self.sigma2_canvas.append(ViewerCanvas(self.base_image.shape, self.satellite.centre, self.satellite.res)) self.draw_inputs(self.model_canvas_names.index(i.name)) self.n_inputs+=1 if self.exploring==3: if self.n_inputs>3: self.krieg_all_mmodels() rospy.sleep(0.1) self.grid.calculate_mean_grid() rospy.sleep(0.1) self.draw_means() self.draw_mode="means" resp = self.get_errors() self.result_counter+=1 d={} d['step']=self.result_counter d['id']=self.expid d['ns']=len(self.explo_plan.targets) d['coord']={} d['coord']['lat']=self.last_coord.lat d['coord']['lon']=self.last_coord.lon d['dist']=float(self.explodist) d['results']={} d['results']['groundtruth']=resp d['results']['var']={} d['results']['var']['mean']={} d['results']['var']['mean']['mean']= float(np.mean(self.grid.mean_variance)) d['results']['var']['mean']['max']= float(np.max(self.grid.mean_variance)) d['results']['var']['mean']['min']= float(np.min(self.grid.mean_variance)) # d['results']['var']['std']['mean']= np.mean(self.grid.mean_deviation) # d['results']['var']['std']['max']= np.max(self.grid.mean_deviation) # d['results']['var']['std']['min']= np.min(self.grid.mean_deviation) means=[] maxs=[] mins=[] for i in range(self.n_models): means.append(float(np.mean(self.grid.models[i].variance))) maxs.append(float(np.max(self.grid.models[i].variance))) mins.append(float(np.min(self.grid.models[i].variance))) d['results']['models']={} d['results']['models']['means']=means d['results']['models']['maxs']=maxs d['results']['models']['mins']=mins rospy.sleep(0.1) self.results.append(d) if self.exploration_strategy == 'greedy': nwp = len(self.explo_plan.route) + len(self.explo_plan.explored_wp) print nwp, " nodes in plan" if nwp <= self.n_goals: #THIS IS the ONE #self.explo_plan.add_limited_greedy_goal(self.grid.mean_variance, self.last_coord) self.explo_plan.add_greedy_goal(self.grid.mean_variance) #self.explo_plan.add_montecarlo_goal(self.grid.mean_variance, self.last_coord) #self.draw_mode="deviation" # self.current_model=0 # if self.redraw_devi: # self.draw_all_devs() self.redraw() rospy.sleep(0.1) self.exploring=4 def scan_callback(self, msg): if msg.data == 'Reading': print "GOT READING!!!" cx, cy = self.grid.get_cell_inds_from_coords(self.last_coord) if cx <0 or cy<0: print "Reading outside the grid" else: print 'Reading at: ', cx, cy for i in self.topo_map.waypoints: if (cy,cx) == i.ind: print 'Setting: ', i.name, i.coord, "as Visited" i.visited= True self.visited_wp.append(i) self.grid_canvas.draw_waypoints(self.topo_map.waypoints, (0,255,0,2), thickness=1) self.grid_canvas.draw_waypoints(self.visited_wp, (0,0,255,2), thickness=1) self.redraw() def refresh(self): #self.show_image = self.image.copy() #self.show_image = cv2.addWeighted(self.gps_canvas.image, 0.7, self.image, 1.0, 0) #self.show_image = transparentOverlay(self.image, self.gps_canvas.image) self.show_image = overlay_image_alpha(self.image,self.gps_canvas.image) def redraw(self): self.image = cv2.addWeighted(self.grid_canvas.image, 0.5, self.base_image, 1.0, 0) self.image = cv2.addWeighted(self.limits_canvas.image, 0.75, self.image, 1.0, 0) self.image = cv2.addWeighted(self.exploration_canvas.image, 0.75, self.image, 1.0, 0) if self.draw_mode == "inputs" and self.current_model>=0 : self.image = cv2.addWeighted(self.model_canvas[self.current_model].image, 0.75, self.image, 1.0, 0) self.image = overlay_image_alpha(self.image, self.model_legend[self.current_model].image) if self.draw_mode == "kriging":# and self.current_model>=0 : self.image = cv2.addWeighted(self.kriging_canvas[self.current_model].image, 0.75, self.image, 1.0, 0) #self.image = cv2.addWeighted(self.klegend_canvas[self.current_model].image, 1.0, self.image, 1.0, 0) self.image = overlay_image_alpha(self.image, self.klegend_canvas[self.current_model].image) if self.draw_mode == "deviation":# and self.current_model>=0 : self.image = cv2.addWeighted(self.sigma_canvas[self.current_model].image, 0.75, self.image, 1.0, 0) #self.image = cv2.addWeighted(self.klegend3_canvas[self.current_model].image, 1.0, self.image, 1.0, 0) self.image = overlay_image_alpha(self.image, self.klegend3_canvas[self.current_model].image) if self.draw_mode == "variance":# and self.current_model>=0 : self.image = cv2.addWeighted(self.sigma2_canvas[self.current_model].image, 0.75, self.image, 1.0, 0) #self.image = cv2.addWeighted(self.klegend2_canvas[self.current_model].image, 1.0, self.image, 1.0, 0) self.image = overlay_image_alpha(self.image, self.klegend2_canvas[self.current_model].image) if self.draw_mode == "means": self.image = cv2.addWeighted(self.mean_dev_canvas.image, 0.75, self.image, 1.0, 0) #self.image = cv2.addWeighted(self.klegend2_canvas[self.current_model].image, 1.0, self.image, 1.0, 0) self.image = overlay_image_alpha(self.image, self.mean_dev_legend_canvas.image) self.show_image = self.image.copy() def click_callback(self, event, x, y, flags, param): if event == cv2.EVENT_RBUTTONDOWN: click_coord = self.satellite._pix2coord(x,y) cx, cy = self.grid.get_cell_inds_from_coords(click_coord) if cx <0 or cy<0: print "click outside the grid" else: print cx, cy for i in self.topo_map.waypoints: if (cy,cx) == i.ind: print i.name, i.coord.easting, i.coord.northing i.visited= True self.visited_wp.append(i) self.grid_canvas.draw_waypoints(self.topo_map.waypoints, (0,255,0,2), thickness=1) self.grid_canvas.draw_waypoints(self.visited_wp, (0,0,255,2), thickness=1) self.redraw() if event == cv2.EVENT_LBUTTONDOWN: click_coord = self.satellite._pix2coord(x,y) cx, cy = self.grid.get_cell_inds_from_coords(click_coord) if cx <0 or cy<0: print "click outside the grid" else: print cx, cy for i in self.topo_map.waypoints: if (cy,cx) == i.ind: self.open_nav_client.cancel_goal() targ = open_nav.msg.OpenNavActionGoal() #goal.goal.goal.header. targ.goal.coords.header.stamp=rospy.Time.now() targ.goal.coords.latitude=i.coord.lat targ.goal.coords.longitude=i.coord.lon print targ self.navigating=True self.open_nav_client.send_goal(targ.goal) #self.client.wait_for_result() # Prints out the result of executing the action #ps = self.client.get_result() #print ps def draw_inputs(self, nm): minv = self.grid.models[nm].lims[0] maxv = self.grid.models[nm].lims[1] if (maxv-minv) <=1: maxv = maxv + 50 minv = minv - 50 norm = mpl.colors.Normalize(vmin=minv, vmax=maxv) cmap = cm.jet colmap = cm.ScalarMappable(norm=norm, cmap=cmap) self.model_canvas[nm].clear_image() self.model_legend[nm].clear_image() for i in self.grid.models[nm].orig_data: cell = self.grid.cells[i.y][i.x] a= colmap.to_rgba(int(i.value)) b= (int(a[2]*255), int(a[1]*255), int(a[0]*255), int(a[3]*50)) self.model_canvas[nm].draw_cell(cell, self.grid.cell_size, b, thickness=-1) self.model_canvas[nm].put_text(self.grid.models[nm].name) self.model_legend[nm].put_text(self.grid.models[nm].name) self.model_legend[nm].draw_legend(minv, maxv, colmap, title="Kriging") def draw_krigged(self, nm): print "drawing kriging" + str(nm) minv = self.grid.models[nm].min_val maxv = self.grid.models[nm].max_val if (maxv-minv) <=1: maxv = maxv + 50 minv = minv - 50 norm = mpl.colors.Normalize(vmin=minv, vmax=maxv) cmap = cm.jet colmap = cm.ScalarMappable(norm=norm, cmap=cmap) self.kriging_canvas[nm].clear_image() self.klegend_canvas[nm].clear_image() for i in range(self.grid.models[nm].shape[0]): for j in range(self.grid.models[nm].shape[1]): cell = self.grid.cells[i][j] a= colmap.to_rgba(int(self.grid.models[nm].output[i][j])) b= (int(a[2]*255), int(a[1]*255), int(a[0]*255), int(a[3]*50)) self.kriging_canvas[nm].draw_cell(cell, self.grid.cell_size, b, thickness=-1) self.klegend_canvas[nm].put_text(self.grid.models[nm].name) self.klegend_canvas[nm].draw_legend(minv, maxv, colmap, title="Kriging") self.redraw() def draw_variance(self, nm): print "drawing variance" + str(nm) minv = self.grid.models[nm].min_var maxv = self.grid.models[nm].max_var if (maxv-minv) <=1: maxv = maxv + 50 minv = minv - 50 norm = mpl.colors.Normalize(vmin=minv, vmax= maxv) cmap = cm.jet colmap = cm.ScalarMappable(norm=norm, cmap=cmap) self.sigma_canvas[nm].clear_image() self.klegend2_canvas[nm].clear_image() for i in range(self.grid.models[nm].shape[0]): for j in range(self.grid.models[nm].shape[1]): cell = self.grid.cells[i][j] a= colmap.to_rgba(int(self.grid.models[nm].variance[i][j])) b= (int(a[2]*255), int(a[1]*255), int(a[0]*255), int(a[3]*50)) self.sigma2_canvas[nm].draw_cell(cell, self.grid.cell_size, b, thickness=-1) self.klegend2_canvas[nm].put_text(self.grid.models[nm].name) self.klegend2_canvas[nm].draw_legend(minv, maxv, colmap, title="Variance") self.redraw() def draw_means(self): print "drawing mean deviation ..." minv = self.grid.min_mean_deviation maxv = self.grid.max_mean_deviation if (maxv-minv) <=1: maxv = maxv + 50 minv = minv - 50 norm = mpl.colors.Normalize(vmin=minv, vmax=maxv) cmap = cm.jet colmap = cm.ScalarMappable(norm=norm, cmap=cmap) self.mean_dev_canvas.clear_image() self.mean_dev_legend_canvas.clear_image() for i in range(self.grid.shape[0]): for j in range(self.grid.shape[1]): cell = self.grid.cells[i][j] a= colmap.to_rgba(int(self.grid.mean_deviation[i][j])) b= (int(a[2]*255), int(a[1]*255), int(a[0]*255), int(a[3]*50)) self.mean_dev_canvas.draw_cell(cell, self.grid.cell_size, b, thickness=-1) #self.mean_dev_legend_canvas.put_text(self.grid.models[nm].name) self.mean_dev_legend_canvas.draw_legend(minv, maxv, colmap, title="Mean Deviation") #self.draw_mode="means" self.redraw() def draw_deviation(self, nm): print "drawing deviation" + str(nm) minv = self.grid.models[nm].min_dev maxv = self.grid.models[nm].max_dev if (maxv-minv) <=1: maxv = maxv + 50 minv = minv - 50 norm = mpl.colors.Normalize(vmin=minv, vmax=maxv) cmap = cm.jet colmap = cm.ScalarMappable(norm=norm, cmap=cmap) self.sigma_canvas[nm].clear_image() self.klegend3_canvas[nm].clear_image() for i in range(self.grid.models[nm].shape[0]): for j in range(self.grid.models[nm].shape[1]): cell = self.grid.cells[i][j] a= colmap.to_rgba(int(self.grid.models[nm].deviation[i][j])) b= (int(a[2]*255), int(a[1]*255), int(a[0]*255), int(a[3]*50)) self.sigma_canvas[nm].draw_cell(cell, self.grid.cell_size, b, thickness=-1) self.klegend3_canvas[nm].put_text(self.grid.models[nm].name) self.klegend3_canvas[nm].draw_legend(minv, maxv, colmap, title="Deviation") self.redraw() def krieg_all_mmodels(self): for i in self.grid.models: i.do_krigging() self.redraw_kriged=True self.redraw_var=True self.redraw_devi=True def draw_all_outputs(self): for i in self.grid.models: self.draw_krigged(self.model_canvas_names.index(i.name)) self.redraw_kriged=False def draw_all_vars(self): for i in self.grid.models: self.draw_variance(self.model_canvas_names.index(i.name)) self.redraw_var=False def draw_all_devs(self): for i in self.grid.models: self.draw_deviation(self.model_canvas_names.index(i.name)) self.redraw_devi=False def _change_mode(self, k): if k == 27: self.running = False elif k == ord('q'): self.running = False elif k == ord('n'): print len(self.grid.models) elif k == ord('i'): if self.n_models > 0: self.draw_mode="inputs" self.current_model=0 self.redraw() elif k == ord('d'): if self.n_models > 0: self.draw_mode="deviation" self.current_model=0 if self.redraw_devi: self.draw_all_devs() self.redraw() elif k == ord('v'): if self.n_models > 0: self.draw_mode="variance" self.current_model=0 if self.redraw_var: self.draw_all_vars() self.redraw() elif k == ord('t'): self.krieg_all_mmodels() self.grid.calculate_mean_grid() if self.n_models > 0: self.draw_all_outputs() self.draw_mode="kriging" self.current_model=0 self.redraw() elif k == ord('k'): if self.n_models > 0: self.draw_mode="kriging" self.current_model=0 if self.redraw_kriged: self.draw_all_outputs() self.redraw() elif k == ord('>'): self.current_model+=1 if self.current_model >= self.n_models: self.current_model=0 self.redraw() elif k == ord('<'): self.current_model-=1 if self.current_model < 0: self.current_model=self.n_models-1 self.redraw() elif k == ord('w'): self.grid_canvas.draw_waypoints(self.topo_map.waypoints, (0,255,0,2), thickness=1) self.grid_canvas.draw_waypoints(self.visited_wp, (0,0,255,2), thickness=1) self.redraw() elif k == ord('e'): self.exploration_canvas.draw_waypoints(self.explo_plan.targets, (255,200,128,255), thickness=3) self.exploration_canvas.draw_plan(self.explo_plan.route, 'cyan', thickness=1) self.redraw() #xnames = [x.name for x in self.explo_plan.route] #print xnames elif k == ord('g'): if len(self.explo_plan.route) >0: gg=self.explo_plan.route[0] self.open_nav_client.cancel_goal() targ = open_nav.msg.OpenNavActionGoal() targ.goal.coords.header.stamp=rospy.Time.now() targ.goal.coords.latitude=gg.coord.lat targ.goal.coords.longitude=gg.coord.lon print "Going TO: ", gg self.exploring=1 self.navigating=True self.open_nav_client.send_goal(targ.goal) self.result_counter=0 self.explodist=0 else: print "Done Exploring" self.exploring = 0 elif k == ord('y'): vwp = [] for i in self.visited_wp: vwp.append(i.name) yml = yaml.safe_dump(vwp, default_flow_style=False) fh = open("visited.yaml", "w") s_output = str(yml) fh.write(s_output) fh.close elif k == ord('l'): print "loading visited" with open("visited.yaml", 'r') as f: visited = yaml.load(f) for i in visited: for l in self.topo_map.waypoints: if i == l.name: self.visited_wp.append(l) break elif k == ord('a'): self.grid.calculate_mean_grid() self.draw_means() self.draw_mode="means" elif k == ord('p'): self.pause_exp= not self.pause_exp elif k == ord('c'): print self.grid.limits print "Area: ", self.grid.calculate_area(self.grid.limits) print "Area of Area: ", self.grid.area.area_size colours=['magenta','cyan', 'grey','white','red','yellow','green','blue'] nc=0 for j in self.grid.area_splits: print j.area_size #self.limits_canvas.draw_coordinate(j.centre, 'crimson', size=3, thickness=2) for i in j.limit_lines: #self.limits_canvas.draw_line(i, colours[nc], thickness=1) self.limits_canvas.draw_line(i, 'white', thickness=1) if nc < len(colours)-1: nc+=1 else: nc=0 self.redraw() elif k== ord('r'): #diff = (self.grid.models[1].output - self.grid.models[0].output) #print np.mean(diff), np.std(diff), diff.dtype print self.get_errors() elif k== ord('o'): print self.results outfile = self.expid + '.yaml' #print self.data_out yml = yaml.safe_dump(self.results, default_flow_style=False) fh = open(outfile, "w") s_output = str(yml) #print s_output fh.write(s_output) fh.close def get_errors(self): error_chain=[] shapeo = self.grid.models[0].output.shape #print vals print "Waiting for Service" rospy.wait_for_service('/compare_model') compare_serv = rospy.ServiceProxy('/compare_model', CompareModels) for i in range(self.n_models): try: d={} print "going for it ", i vals = np.reshape(self.grid.models[i].output, -1) resp1 = compare_serv('kriging', i, shapeo[0], shapeo[1], vals.tolist()) d['name']= self.grid.models[i].name d['type']= 'kriging' d['errors']={} d['errors']['error']=resp1.error d['errors']['mse']=resp1.mse d['errors']['std']=resp1.std d['errors']['var']=resp1.var #print resp1 error_chain.append(d) except rospy.ServiceException, e: print "Service call failed: %s"%e try: d={} print "Mean " vals = np.reshape(self.grid.mean_output, -1) resp1 = compare_serv('mean', 0, shapeo[0], shapeo[1], vals.tolist()) #print self.grid.mean_output d['name']= 'mean' d['type']= 'mean' d['errors']={} d['errors']['error']=resp1.error d['errors']['mse']=resp1.mse d['errors']['std']=resp1.std d['errors']['var']=resp1.var #print resp1 error_chain.append(d) except rospy.ServiceException, e: print "Service call failed: %s"%e return error_chain def signal_handler(self, signal, frame): self.running = False print('You pressed Ctrl+C!') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--cell_size", type=int, default=10, help="cell size in meters") parser.add_argument("--initial_percent", type=float, default=0.05, help="Percentage of cells to be explored on the initial plan") parser.add_argument("--limits_file", type=str, default='limits.coords', help="Percentage of cells to be explored on the initial plan") parser.add_argument("--initial_waypoint", type=str, default='WayPoint498', help="Percentage of cells to be explored on the initial plan") parser.add_argument("--area_coverage_type", type=str, default='area_split', help="Type of area coverage, random or area_split") parser.add_argument("--experiment_name", type=str, default='exp1', help="Experiment ID") args = parser.parse_args() rospy.init_node('kriging_exploration') #Explorator(53.261685, -0.527158, 16, 640, args.cell_size) #Explorator(53.267213, -0.533420, 17, 640, args) #Football Field Explorator(53.261576, -0.526648, 17, 640, args) #Half cosmos field #Explorator(53.261685, -0.525158, 17, 640, args) #COSMOS Field
mit
rabipanda/tensorflow
tensorflow/contrib/metrics/python/kernel_tests/histogram_ops_test.py
130
9577
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for histogram_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.metrics.python.ops import histogram_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test class Strict1dCumsumTest(test.TestCase): """Test this private function.""" def test_empty_tensor_returns_empty(self): with self.test_session(): tensor = constant_op.constant([]) result = histogram_ops._strict_1d_cumsum(tensor, 0) expected = constant_op.constant([]) np.testing.assert_array_equal(expected.eval(), result.eval()) def test_length_1_tensor_works(self): with self.test_session(): tensor = constant_op.constant([3], dtype=dtypes.float32) result = histogram_ops._strict_1d_cumsum(tensor, 1) expected = constant_op.constant([3], dtype=dtypes.float32) np.testing.assert_array_equal(expected.eval(), result.eval()) def test_length_3_tensor_works(self): with self.test_session(): tensor = constant_op.constant([1, 2, 3], dtype=dtypes.float32) result = histogram_ops._strict_1d_cumsum(tensor, 3) expected = constant_op.constant([1, 3, 6], dtype=dtypes.float32) np.testing.assert_array_equal(expected.eval(), result.eval()) class AUCUsingHistogramTest(test.TestCase): def setUp(self): self.rng = np.random.RandomState(0) def test_empty_labels_and_scores_gives_nan_auc(self): with self.test_session(): labels = constant_op.constant([], shape=[0], dtype=dtypes.bool) scores = constant_op.constant([], shape=[0], dtype=dtypes.float32) score_range = [0, 1.] auc, update_op = histogram_ops.auc_using_histogram(labels, scores, score_range) variables.local_variables_initializer().run() update_op.run() self.assertTrue(np.isnan(auc.eval())) def test_perfect_scores_gives_auc_1(self): self._check_auc( nbins=100, desired_auc=1.0, score_range=[0, 1.], num_records=50, frac_true=0.5, atol=0.05, num_updates=1) def test_terrible_scores_gives_auc_0(self): self._check_auc( nbins=100, desired_auc=0.0, score_range=[0, 1.], num_records=50, frac_true=0.5, atol=0.05, num_updates=1) def test_many_common_conditions(self): for nbins in [50]: for desired_auc in [0.3, 0.5, 0.8]: for score_range in [[-1, 1], [-10, 0]]: for frac_true in [0.3, 0.8]: # Tests pass with atol = 0.03. Moved up to 0.05 to avoid flakes. self._check_auc( nbins=nbins, desired_auc=desired_auc, score_range=score_range, num_records=100, frac_true=frac_true, atol=0.05, num_updates=50) def test_large_class_imbalance_still_ok(self): # With probability frac_true ** num_records, each batch contains only True # records. In this case, ~ 95%. # Tests pass with atol = 0.02. Increased to 0.05 to avoid flakes. self._check_auc( nbins=100, desired_auc=0.8, score_range=[-1, 1.], num_records=10, frac_true=0.995, atol=0.05, num_updates=1000) def test_super_accuracy_with_many_bins_and_records(self): # Test passes with atol = 0.0005. Increased atol to avoid flakes. self._check_auc( nbins=1000, desired_auc=0.75, score_range=[0, 1.], num_records=1000, frac_true=0.5, atol=0.005, num_updates=100) def _check_auc(self, nbins=100, desired_auc=0.75, score_range=None, num_records=50, frac_true=0.5, atol=0.05, num_updates=10): """Check auc accuracy against synthetic data. Args: nbins: nbins arg from contrib.metrics.auc_using_histogram. desired_auc: Number in [0, 1]. The desired auc for synthetic data. score_range: 2-tuple, (low, high), giving the range of the resultant scores. Defaults to [0, 1.]. num_records: Positive integer. The number of records to return. frac_true: Number in (0, 1). Expected fraction of resultant labels that will be True. This is just in expectation...more or less may actually be True. atol: Absolute tolerance for final AUC estimate. num_updates: Update internal histograms this many times, each with a new batch of synthetic data, before computing final AUC. Raises: AssertionError: If resultant AUC is not within atol of theoretical AUC from synthetic data. """ score_range = [0, 1.] or score_range with self.test_session(): labels = array_ops.placeholder(dtypes.bool, shape=[num_records]) scores = array_ops.placeholder(dtypes.float32, shape=[num_records]) auc, update_op = histogram_ops.auc_using_histogram( labels, scores, score_range, nbins=nbins) variables.local_variables_initializer().run() # Updates, then extract auc. for _ in range(num_updates): labels_a, scores_a = synthetic_data(desired_auc, score_range, num_records, self.rng, frac_true) update_op.run(feed_dict={labels: labels_a, scores: scores_a}) labels_a, scores_a = synthetic_data(desired_auc, score_range, num_records, self.rng, frac_true) # Fetch current auc, and verify that fetching again doesn't change it. auc_eval = auc.eval() self.assertAlmostEqual(auc_eval, auc.eval(), places=5) msg = ('nbins: %s, desired_auc: %s, score_range: %s, ' 'num_records: %s, frac_true: %s, num_updates: %s') % (nbins, desired_auc, score_range, num_records, frac_true, num_updates) np.testing.assert_allclose(desired_auc, auc_eval, atol=atol, err_msg=msg) def synthetic_data(desired_auc, score_range, num_records, rng, frac_true): """Create synthetic boolean_labels and scores with adjustable auc. Args: desired_auc: Number in [0, 1], the theoretical AUC of resultant data. score_range: 2-tuple, (low, high), giving the range of the resultant scores num_records: Positive integer. The number of records to return. rng: Initialized np.random.RandomState random number generator frac_true: Number in (0, 1). Expected fraction of resultant labels that will be True. This is just in expectation...more or less may actually be True. Returns: boolean_labels: np.array, dtype=bool. scores: np.array, dtype=np.float32 """ # We prove here why the method (below) for computing AUC works. Of course we # also checked this against sklearn.metrics.roc_auc_curve. # # First do this for score_range = [0, 1], then rescale. # WLOG assume AUC >= 0.5, otherwise we will solve for AUC >= 0.5 then swap # the labels. # So for AUC in [0, 1] we create False and True labels # and corresponding scores drawn from: # F ~ U[0, 1], T ~ U[x, 1] # We have, # AUC # = P[T > F] # = P[T > F | F < x] P[F < x] + P[T > F | F > x] P[F > x] # = (1 * x) + (0.5 * (1 - x)). # Inverting, we have: # x = 2 * AUC - 1, when AUC >= 0.5. assert 0 <= desired_auc <= 1 assert 0 < frac_true < 1 if desired_auc < 0.5: flip_labels = True desired_auc = 1 - desired_auc frac_true = 1 - frac_true else: flip_labels = False x = 2 * desired_auc - 1 labels = rng.binomial(1, frac_true, size=num_records).astype(bool) num_true = labels.sum() num_false = num_records - labels.sum() # Draw F ~ U[0, 1], and T ~ U[x, 1] false_scores = rng.rand(num_false) true_scores = x + rng.rand(num_true) * (1 - x) # Reshape [0, 1] to score_range. def reshape(scores): return score_range[0] + scores * (score_range[1] - score_range[0]) false_scores = reshape(false_scores) true_scores = reshape(true_scores) # Place into one array corresponding with the labels. scores = np.nan * np.ones(num_records, dtype=np.float32) scores[labels] = true_scores scores[~labels] = false_scores if flip_labels: labels = ~labels return labels, scores if __name__ == '__main__': test.main()
apache-2.0
sharthee/ProgrammingAssignment2
labs/lab2/cs109style.py
38
1293
from __future__ import print_function from IPython.core.display import HTML from matplotlib import rcParams #colorbrewer2 Dark2 qualitative color table dark2_colors = [(0.10588235294117647, 0.6196078431372549, 0.4666666666666667), (0.8509803921568627, 0.37254901960784315, 0.00784313725490196), (0.4588235294117647, 0.4392156862745098, 0.7019607843137254), (0.9058823529411765, 0.1607843137254902, 0.5411764705882353), (0.4, 0.6509803921568628, 0.11764705882352941), (0.9019607843137255, 0.6705882352941176, 0.00784313725490196), (0.6509803921568628, 0.4627450980392157, 0.11372549019607843), (0.4, 0.4, 0.4)] def customize_mpl(): """Tweak matplotlib visual style""" print("Setting custom matplotlib visual style") rcParams['figure.figsize'] = (10, 6) rcParams['figure.dpi'] = 150 rcParams['axes.color_cycle'] = dark2_colors rcParams['lines.linewidth'] = 2 rcParams['axes.grid'] = True rcParams['axes.facecolor'] = '#eeeeee' rcParams['font.size'] = 14 rcParams['patch.edgecolor'] = 'none' def customize_css(): print("Setting custom CSS for the IPython Notebook") styles = open('custom.css', 'r').read() return HTML(styles)
mit
rabernat/xrft
setup.py
1
1391
import os import versioneer from setuptools import setup, find_packages PACKAGES = find_packages() DISTNAME = 'xrft' LICENSE = 'MIT' AUTHOR = 'xrft Developers' AUTHOR_EMAIL = '[email protected]' URL = 'https://github.com/xgcm/xrft' CLASSIFIERS = [ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Intended Audience :: Science/Research', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Topic :: Scientific/Engineering', ] INSTALL_REQUIRES = ['xarray', 'dask', 'numpy', 'pandas', 'scipy'] EXTRAS_REQUIRE = ['cftime'] SETUP_REQUIRES = ['pytest-runner'] TESTS_REQUIRE = ['pytest >= 2.8', 'coverage'] DESCRIPTION = "Discrete Fourier Transform with xarray" def readme(): with open('README.rst') as f: return f.read() setup(name=DISTNAME, version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), license=LICENSE, author=AUTHOR, author_email=AUTHOR_EMAIL, classifiers=CLASSIFIERS, description=DESCRIPTION, long_description=readme(), install_requires=INSTALL_REQUIRES, setup_requires=SETUP_REQUIRES, tests_require=TESTS_REQUIRE, url=URL, packages=find_packages())
mit
enigmampc/catalyst
catalyst/data/continuous_future_reader.py
1
12198
import numpy as np import pandas as pd from catalyst.data.session_bars import SessionBarReader class ContinuousFutureSessionBarReader(SessionBarReader): def __init__(self, bar_reader, roll_finders): self._bar_reader = bar_reader self._roll_finders = roll_finders def load_raw_arrays(self, columns, start_date, end_date, assets): """ Parameters ---------- fields : list of str 'sid' start_dt: Timestamp Beginning of the window range. end_dt: Timestamp End of the window range. sids : list of int The asset identifiers in the window. Returns ------- list of np.ndarray A list with an entry per field of ndarrays with shape (minutes in range, sids) with a dtype of float64, containing the values for the respective field over start and end dt range. """ rolls_by_asset = {} for asset in assets: rf = self._roll_finders[asset.roll_style] rolls_by_asset[asset] = rf.get_rolls( asset.root_symbol, start_date, end_date, asset.offset) num_sessions = len( self.trading_calendar.sessions_in_range(start_date, end_date)) shape = num_sessions, len(assets) results = [] tc = self._bar_reader.trading_calendar sessions = tc.sessions_in_range(start_date, end_date) # Get partitions partitions_by_asset = {} for asset in assets: partitions = [] partitions_by_asset[asset] = partitions rolls = rolls_by_asset[asset] start = start_date for roll in rolls: sid, roll_date = roll start_loc = sessions.get_loc(start) if roll_date is not None: end = roll_date - sessions.freq end_loc = sessions.get_loc(end) else: end = end_date end_loc = len(sessions) - 1 partitions.append((sid, start, end, start_loc, end_loc)) if roll[-1] is not None: start = sessions[end_loc + 1] for column in columns: if column != 'volume' and column != 'sid': out = np.full(shape, np.nan) else: out = np.zeros(shape, dtype=np.int64) for i, asset in enumerate(assets): partitions = partitions_by_asset[asset] for sid, start, end, start_loc, end_loc in partitions: if column != 'sid': result = self._bar_reader.load_raw_arrays( [column], start, end, [sid])[0][:, 0] else: result = int(sid) out[start_loc:end_loc + 1, i] = result results.append(out) return results @property def last_available_dt(self): """ Returns ------- dt : pd.Timestamp The last session for which the reader can provide data. """ return self._bar_reader.last_available_dt @property def trading_calendar(self): """ Returns the catalyst.utils.calendar.trading_calendar used to read the data. Can be None (if the writer didn't specify it). """ return self._bar_reader.trading_calendar @property def first_trading_day(self): """ Returns ------- dt : pd.Timestamp The first trading day (session) for which the reader can provide data. """ return self._bar_reader.first_trading_day def get_value(self, continuous_future, dt, field): """ Retrieve the value at the given coordinates. Parameters ---------- sid : int The asset identifier. dt : pd.Timestamp The timestamp for the desired data point. field : string The OHLVC name for the desired data point. Returns ------- value : float|int The value at the given coordinates, ``float`` for OHLC, ``int`` for 'volume'. Raises ------ NoDataOnDate If the given dt is not a valid market minute (in minute mode) or session (in daily mode) according to this reader's tradingcalendar. """ rf = self._roll_finders[continuous_future.roll_style] sid = (rf.get_contract_center(continuous_future.root_symbol, dt, continuous_future.offset)) return self._bar_reader.get_value(sid, dt, field) def get_last_traded_dt(self, asset, dt): """ Get the latest minute on or before ``dt`` in which ``asset`` traded. If there are no trades on or before ``dt``, returns ``pd.NaT``. Parameters ---------- asset : catalyst.asset.Asset The asset for which to get the last traded minute. dt : pd.Timestamp The minute at which to start searching for the last traded minute. Returns ------- last_traded : pd.Timestamp The dt of the last trade for the given asset, using the input dt as a vantage point. """ rf = self._roll_finders[asset.roll_style] sid = (rf.get_contract_center(asset.root_symbol, dt, asset.offset)) if sid is None: return pd.NaT contract = rf.asset_finder.retrieve_asset(sid) return self._bar_reader.get_last_traded_dt(contract, dt) @property def sessions(self): """ Returns ------- sessions : DatetimeIndex All session labels (unionining the range for all assets) which the reader can provide. """ return self._bar_reader.sessions class ContinuousFutureMinuteBarReader(SessionBarReader): def __init__(self, bar_reader, roll_finders): self._bar_reader = bar_reader self._roll_finders = roll_finders def load_raw_arrays(self, columns, start_date, end_date, assets): """ Parameters ---------- fields : list of str 'open', 'high', 'low', 'close', or 'volume' start_dt: Timestamp Beginning of the window range. end_dt: Timestamp End of the window range. sids : list of int The asset identifiers in the window. Returns ------- list of np.ndarray A list with an entry per field of ndarrays with shape (minutes in range, sids) with a dtype of float64, containing the values for the respective field over start and end dt range. """ rolls_by_asset = {} tc = self.trading_calendar start_session = tc.minute_to_session_label(start_date) end_session = tc.minute_to_session_label(end_date) for asset in assets: rf = self._roll_finders[asset.roll_style] rolls_by_asset[asset] = rf.get_rolls( asset.root_symbol, start_session, end_session, asset.offset) sessions = tc.sessions_in_range(start_date, end_date) minutes = tc.minutes_in_range(start_date, end_date) num_minutes = len(minutes) shape = num_minutes, len(assets) results = [] # Get partitions partitions_by_asset = {} for asset in assets: partitions = [] partitions_by_asset[asset] = partitions rolls = rolls_by_asset[asset] start = start_date for roll in rolls: sid, roll_date = roll start_loc = minutes.searchsorted(start) if roll_date is not None: _, end = tc.open_and_close_for_session( roll_date - sessions.freq) end_loc = minutes.searchsorted(end) else: end = end_date end_loc = len(minutes) - 1 partitions.append((sid, start, end, start_loc, end_loc)) if roll[-1] is not None: start, _ = tc.open_and_close_for_session( tc.minute_to_session_label(minutes[end_loc + 1])) for column in columns: if column != 'volume': out = np.full(shape, np.nan) else: out = np.zeros(shape, dtype=np.uint32) for i, asset in enumerate(assets): partitions = partitions_by_asset[asset] for sid, start, end, start_loc, end_loc in partitions: if column != 'sid': result = self._bar_reader.load_raw_arrays( [column], start, end, [sid])[0][:, 0] else: result = int(sid) out[start_loc:end_loc + 1, i] = result results.append(out) return results @property def last_available_dt(self): """ Returns ------- dt : pd.Timestamp The last session for which the reader can provide data. """ return self._bar_reader.last_available_dt @property def trading_calendar(self): """ Returns the catalyst.utils.calendar.trading_calendar used to read the data. Can be None (if the writer didn't specify it). """ return self._bar_reader.trading_calendar @property def first_trading_day(self): """ Returns ------- dt : pd.Timestamp The first trading day (session) for which the reader can provide data. """ return self._bar_reader.first_trading_day def get_value(self, continuous_future, dt, field): """ Retrieve the value at the given coordinates. Parameters ---------- sid : int The asset identifier. dt : pd.Timestamp The timestamp for the desired data point. field : string The OHLVC name for the desired data point. Returns ------- value : float|int The value at the given coordinates, ``float`` for OHLC, ``int`` for 'volume'. Raises ------ NoDataOnDate If the given dt is not a valid market minute (in minute mode) or session (in daily mode) according to this reader's tradingcalendar. """ rf = self._roll_finders[continuous_future.roll_style] sid = (rf.get_contract_center(continuous_future.root_symbol, dt, continuous_future.offset)) return self._bar_reader.get_value(sid, dt, field) def get_last_traded_dt(self, asset, dt): """ Get the latest minute on or before ``dt`` in which ``asset`` traded. If there are no trades on or before ``dt``, returns ``pd.NaT``. Parameters ---------- asset : catalyst.asset.Asset The asset for which to get the last traded minute. dt : pd.Timestamp The minute at which to start searching for the last traded minute. Returns ------- last_traded : pd.Timestamp The dt of the last trade for the given asset, using the input dt as a vantage point. """ rf = self._roll_finders[asset.roll_style] sid = (rf.get_contract_center(asset.root_symbol, dt, asset.offset)) if sid is None: return pd.NaT contract = rf.asset_finder.retrieve_asset(sid) return self._bar_reader.get_last_traded_dt(contract, dt) @property def sessions(self): return self._bar_reader.sessions
apache-2.0
CIFASIS/pylearn2
pylearn2/packaged_dependencies/theano_linear/unshared_conv/localdot.py
39
5044
""" WRITEME """ import logging from ..linear import LinearTransform from .unshared_conv import FilterActs, ImgActs from theano.compat.six.moves import xrange from theano.sandbox import cuda if cuda.cuda_available: import gpu_unshared_conv # register optimizations import numpy as np import warnings try: import matplotlib.pyplot as plt except (RuntimeError, ImportError, TypeError) as matplotlib_exception: warnings.warn("Unable to import matplotlib. Some features unavailable. " "Original exception: " + str(matplotlib_exception)) logger = logging.getLogger(__name__) class LocalDot(LinearTransform): """ LocalDot is an linear operation computationally similar to convolution in the spatial domain, except that whereas convolution applying a single filter or set of filters across an image, the LocalDot has different filterbanks for different points in the image. Mathematically, this is a general linear transform except for a restriction that filters are 0 outside of a spatially localized patch within the image. Image shape is 5-tuple: color_groups colors_per_group rows cols images Filterbank shape is 7-tuple (!) 0 row_positions 1 col_positions 2 colors_per_group 3 height 4 width 5 color_groups 6 filters_per_group The result of left-multiplication a 5-tuple with shape: filter_groups filters_per_group row_positions col_positions images Parameters ---------- filters : WRITEME irows : WRITEME Image rows icols : WRITEME Image columns subsample : WRITEME padding_start : WRITEME filters_shape : WRITEME message : WRITEME """ def __init__(self, filters, irows, icols=None, subsample=(1, 1), padding_start=None, filters_shape=None, message=""): LinearTransform.__init__(self, [filters]) self._filters = filters if filters_shape is None: self._filters_shape = tuple(filters.get_value(borrow=True).shape) else: self._filters_shape = tuple(filters_shape) self._irows = irows if icols is None: self._icols = irows else: self._icols = icols if self._icols != self._irows: raise NotImplementedError('GPU code at least needs square imgs') self._subsample = tuple(subsample) self._padding_start = padding_start if len(self._filters_shape) != 7: raise TypeError('need 7-tuple filter shape', self._filters_shape) if self._subsample[0] != self._subsample[1]: raise ValueError('subsampling must be same in rows and cols') self._filter_acts = FilterActs(self._subsample[0]) self._img_acts = ImgActs(module_stride=self._subsample[0]) if message: self._message = message else: self._message = filters.name def rmul(self, x): """ .. todo:: WRITEME """ assert x.ndim == 5 return self._filter_acts(x, self._filters) def rmul_T(self, x): """ .. todo:: WRITEME """ return self._img_acts(self._filters, x, self._irows, self._icols) def col_shape(self): """ .. todo:: WRITEME """ ishape = self.row_shape() + (-99,) fshape = self._filters_shape hshape, = self._filter_acts.infer_shape(None, (ishape, fshape)) assert hshape[-1] == -99 return hshape[:-1] def row_shape(self): """ .. todo:: WRITEME """ fshape = self._filters_shape fmodulesR, fmodulesC, fcolors, frows, fcols = fshape[:-2] fgroups, filters_per_group = fshape[-2:] return fgroups, fcolors, self._irows, self._icols def print_status(self): """ .. todo:: WRITEME """ raise NotImplementedError("TODO: fix dependence on non-existent " "ndarray_status function") """print ndarray_status( self._filters.get_value(borrow=True), msg='%s{%s}'% (self.__class__.__name__, self._message)) """ def imshow_gray(self): """ .. todo:: WRITEME """ filters = self._filters.get_value() modR, modC, colors, rows, cols, grps, fs_per_grp = filters.shape logger.info(filters.shape) rval = np.zeros(( modR * (rows + 1) - 1, modC * (cols + 1) - 1, )) for rr, modr in enumerate(xrange(0, rval.shape[0], rows + 1)): for cc, modc in enumerate(xrange(0, rval.shape[1], cols + 1)): rval[modr:modr + rows, modc:modc + cols] = filters[rr, cc, 0, :, :, 0, 0] plt.imshow(rval, cmap='gray') return rval
bsd-3-clause
dingocuster/scikit-learn
examples/semi_supervised/plot_label_propagation_structure.py
247
2432
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Andreas Mueller <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from sklearn.semi_supervised import label_propagation from sklearn.datasets import make_circles # generate ring with inner box n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = -np.ones(n_samples) labels[0] = outer labels[-1] = inner ############################################################################### # Learn with LabelSpreading label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=1.0) label_spread.fit(X, labels) ############################################################################### # Plot output labels output_labels = label_spread.transduction_ plt.figure(figsize=(8.5, 4)) plt.subplot(1, 2, 1) plot_outer_labeled, = plt.plot(X[labels == outer, 0], X[labels == outer, 1], 'rs') plot_unlabeled, = plt.plot(X[labels == -1, 0], X[labels == -1, 1], 'g.') plot_inner_labeled, = plt.plot(X[labels == inner, 0], X[labels == inner, 1], 'bs') plt.legend((plot_outer_labeled, plot_inner_labeled, plot_unlabeled), ('Outer Labeled', 'Inner Labeled', 'Unlabeled'), 'upper left', numpoints=1, shadow=False) plt.title("Raw data (2 classes=red and blue)") plt.subplot(1, 2, 2) output_label_array = np.asarray(output_labels) outer_numbers = np.where(output_label_array == outer)[0] inner_numbers = np.where(output_label_array == inner)[0] plot_outer, = plt.plot(X[outer_numbers, 0], X[outer_numbers, 1], 'rs') plot_inner, = plt.plot(X[inner_numbers, 0], X[inner_numbers, 1], 'bs') plt.legend((plot_outer, plot_inner), ('Outer Learned', 'Inner Learned'), 'upper left', numpoints=1, shadow=False) plt.title("Labels learned with Label Spreading (KNN)") plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92) plt.show()
bsd-3-clause
nhuntwalker/astroML
book_figures/chapter5/fig_likelihood_cauchy.py
3
3219
""" Log-likelihood for Cauchy Distribution -------------------------------------- Figure 5.10 An illustration of the logarithm of posterior probability distribution for :math:`\mu` and :math:`\gamma`, :math:`L(\mu,\gamma)` (see eq. 5.75) for N = 10 (the sample is generated using the Cauchy distribution with :math:`\mu = 0` and :math:`\gamma = 2`). The maximum of L is renormalized to 0, and color coded as shown in the legend. The contours enclose the regions that contain 0.683, 0.955 and 0.997 of the cumulative (integrated) posterior probability. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general from __future__ import print_function, division import numpy as np from matplotlib import pyplot as plt from scipy.stats import cauchy from astroML.plotting.mcmc import convert_to_stdev from astroML.stats import median_sigmaG #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) def cauchy_logL(xi, gamma, mu): """Equation 5.74: cauchy likelihood""" xi = np.asarray(xi) n = xi.size shape = np.broadcast(gamma, mu).shape xi = xi.reshape(xi.shape + tuple([1 for s in shape])) return ((n - 1) * np.log(gamma) - np.sum(np.log(gamma ** 2 + (xi - mu) ** 2), 0)) #------------------------------------------------------------ # Define the grid and compute logL gamma = np.linspace(0.1, 5, 70) mu = np.linspace(-5, 5, 70) np.random.seed(44) mu0 = 0 gamma0 = 2 xi = cauchy(mu0, gamma0).rvs(10) logL = cauchy_logL(xi, gamma[:, np.newaxis], mu) logL -= logL.max() #------------------------------------------------------------ # Find the max and print some information i, j = np.where(logL >= np.max(logL)) print("mu from likelihood:", mu[j]) print("gamma from likelihood:", gamma[i]) print() med, sigG = median_sigmaG(xi) print("mu from median", med) print("gamma from quartiles:", sigG / 1.483) # Equation 3.54 print() #------------------------------------------------------------ # Plot the results fig = plt.figure(figsize=(5, 3.75)) plt.imshow(logL, origin='lower', cmap=plt.cm.binary, extent=(mu[0], mu[-1], gamma[0], gamma[-1]), aspect='auto') plt.colorbar().set_label(r'$\log(L)$') plt.clim(-5, 0) plt.contour(mu, gamma, convert_to_stdev(logL), levels=(0.683, 0.955, 0.997), colors='k') plt.text(0.5, 0.93, r'$L(\mu,\gamma)\ \mathrm{for}\ \bar{x}=0,\ \gamma=2,\ n=10$', bbox=dict(ec='k', fc='w', alpha=0.9), ha='center', va='center', transform=plt.gca().transAxes) plt.xlabel(r'$\mu$') plt.ylabel(r'$\gamma$') plt.show()
bsd-2-clause
AllenDowney/SoftwareSystems
hw04/wave3/thinkdsp.py
23
31996
"""This file contains code used in "Think DSP", by Allen B. Downey, available from greenteapress.com Copyright 2013 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ import array import math import numpy import random import scipy import scipy.stats import struct import subprocess import thinkplot from fractions import gcd from wave import open as open_wave import matplotlib.pyplot as pyplot PI2 = math.pi * 2 def random_seed(x): """Initialize the random and numpy.random generators. x: int seed """ random.seed(x) numpy.random.seed(x) class UnimplementedMethodException(Exception): """Exception if someone calls a method that should be overridden.""" class WavFileWriter(object): """Writes wav files.""" def __init__(self, filename='sound.wav', framerate=11025): """Opens the file and sets parameters. filename: string framerate: samples per second """ self.filename = filename self.framerate = framerate self.nchannels = 1 self.sampwidth = 2 self.bits = self.sampwidth * 8 self.bound = 2**(self.bits-1) - 1 self.fmt = 'h' self.dtype = numpy.int16 self.fp = open_wave(self.filename, 'w') self.fp.setnchannels(self.nchannels) self.fp.setsampwidth(self.sampwidth) self.fp.setframerate(self.framerate) def write(self, wave): """Writes a wave. wave: Wave """ zs = wave.quantize(self.bound, self.dtype) self.fp.writeframes(zs.tostring()) def close(self, duration=0): """Closes the file. duration: how many seconds of silence to append """ if duration: self.write(rest(duration)) self.fp.close() def read_wave(filename='sound.wav'): """Reads a wave file. filename: string returns: Wave """ fp = open_wave(filename, 'r') nchannels = fp.getnchannels() nframes = fp.getnframes() sampwidth = fp.getsampwidth() framerate = fp.getframerate() z_str = fp.readframes(nframes) fp.close() dtype_map = {1:numpy.int8, 2:numpy.int16} assert sampwidth in dtype_map ys = numpy.fromstring(z_str, dtype=dtype_map[sampwidth]) wave = Wave(ys, framerate) return wave def play_wave(filename='sound.wav', player='aplay'): """Plays a wave file. filename: string player: string name of executable that plays wav files """ cmd = '%s %s' % (player, filename) popen = subprocess.Popen(cmd, shell=True) popen.communicate() class _SpectrumParent(object): """Contains code common to Spectrum and DCT. """ @property def max_freq(self): return self.framerate / 2.0 @property def freq_res(self): return self.max_freq / (len(self.fs) - 1) def plot(self, low=0, high=None, **options): """Plots amplitude vs frequency. low: int index to start at high: int index to end at """ thinkplot.plot(self.fs[low:high], self.amps[low:high], **options) def plot_power(self, low=0, high=None, **options): """Plots power vs frequency. low: int index to start at high: int index to end at """ thinkplot.plot(self.fs[low:high], self.power[low:high], **options) def estimate_slope(self): """Runs linear regression on log power vs log frequency. returns: slope, inter, r2, p, stderr """ x = numpy.log(self.fs[1:]) y = numpy.log(self.power[1:]) t = scipy.stats.linregress(x,y) return t def peaks(self): """Finds the highest peaks and their frequencies. returns: sorted list of (amplitude, frequency) pairs """ t = zip(self.amps, self.fs) t.sort(reverse=True) return t class Spectrum(_SpectrumParent): """Represents the spectrum of a signal.""" def __init__(self, hs, framerate): self.hs = hs self.framerate = framerate n = len(hs) self.fs = numpy.linspace(0, self.max_freq, n) def __add__(self, other): if other == 0: return self assert self.framerate == other.framerate hs = self.hs + other.hs return Spectrum(hs, self.framerate) __radd__ = __add__ @property def real(self): """Returns the real part of the hs (read-only property).""" return numpy.real(self.hs) @property def imag(self): """Returns the imaginary part of the hs (read-only property).""" return numpy.imag(self.hs) @property def amps(self): """Returns a sequence of amplitudes (read-only property).""" return numpy.absolute(self.hs) @property def power(self): """Returns a sequence of powers (read-only property).""" return self.amps ** 2 def low_pass(self, cutoff, factor=0): """Attenuate frequencies above the cutoff. cutoff: frequency in Hz factor: what to multiply the magnitude by """ for i in xrange(len(self.hs)): if self.fs[i] > cutoff: self.hs[i] *= factor def high_pass(self, cutoff, factor=0): """Attenuate frequencies below the cutoff. cutoff: frequency in Hz factor: what to multiply the magnitude by """ for i in xrange(len(self.hs)): if self.fs[i] < cutoff: self.hs[i] *= factor def band_stop(self, low_cutoff, high_cutoff, factor=0): """Attenuate frequencies between the cutoffs. low_cutoff: frequency in Hz high_cutoff: frequency in Hz factor: what to multiply the magnitude by """ for i in xrange(len(self.hs)): if low_cutoff < self.fs[i] < high_cutoff: self.hs[i] = 0 def pink_filter(self, beta=1): """Apply a filter that would make white noise pink. beta: exponent of the pink noise """ denom = self.fs ** (beta/2.0) denom[0] = 1 self.hs /= denom def angles(self, i): """Computes phase angles in radians. returns: list of phase angles """ return numpy.angle(self.hs) def make_integrated_spectrum(self): """Makes an integrated spectrum. """ cs = numpy.cumsum(self.power) cs /= cs[-1] return IntegratedSpectrum(cs, self.fs) def make_wave(self): """Transforms to the time domain. returns: Wave """ ys = numpy.fft.irfft(self.hs) return Wave(ys, self.framerate) class IntegratedSpectrum(object): """Represents the integral of a spectrum.""" def __init__(self, cs, fs): """Initializes an integrated spectrum: cs: sequence of cumulative amplitudes fs: sequence of frequences """ self.cs = cs self.fs = fs def plot_power(self, low=0, high=None, expo=False, **options): """Plots the integrated spectrum. low: int index to start at high: int index to end at """ cs = self.cs[low:high] fs = self.fs[low:high] if expo: cs = numpy.exp(cs) thinkplot.Plot(fs, cs, **options) def estimate_slope(self, low=1, high=-12000): """Runs linear regression on log cumulative power vs log frequency. returns: slope, inter, r2, p, stderr """ #print self.fs[low:high] #print self.cs[low:high] x = numpy.log(self.fs[low:high]) y = numpy.log(self.cs[low:high]) t = scipy.stats.linregress(x,y) return t class Dct(_SpectrumParent): """Represents the spectrum of a signal.""" def __init__(self, amps, framerate): self.amps = amps self.framerate = framerate n = len(amps) self.fs = numpy.arange(n) / float(n) * self.max_freq def make_wave(self): """Transforms to the time domain. returns: Wave """ ys = scipy.fftpack.dct(self.amps, type=3) / 2 return Wave(ys, self.framerate) class Spectrogram(object): """Represents the spectrum of a signal.""" def __init__(self, spec_map, seg_length, window_func=None): """Initialize the spectrogram. spec_map: map from float time to Spectrum seg_length: number of samples in each segment window_func: function that computes the window """ self.spec_map = spec_map self.seg_length = seg_length self.window_func = window_func def any_spectrum(self): """Returns an arbitrary spectrum from the spectrogram.""" return self.spec_map.itervalues().next() @property def time_res(self): """Time resolution in seconds.""" spectrum = self.any_spectrum() return float(self.seg_length) / spectrum.framerate @property def freq_res(self): """Frequency resolution in Hz.""" return self.any_spectrum().freq_res def times(self): """Sorted sequence of times. returns: sequence of float times in seconds """ ts = sorted(self.spec_map.iterkeys()) return ts def frequencies(self): """Sequence of frequencies. returns: sequence of float freqencies in Hz. """ fs = self.any_spectrum().fs return fs def plot(self, low=0, high=None, **options): """Make a pseudocolor plot. low: index of the lowest frequency component to plot high: index of the highest frequency component to plot """ ts = self.times() fs = self.frequencies()[low:high] # make the array size = len(fs), len(ts) array = numpy.zeros(size, dtype=numpy.float) # copy amplitude from each spectrum into a column of the array for i, t in enumerate(ts): spectrum = self.spec_map[t] array[:,i] = spectrum.amps[low:high] thinkplot.pcolor(ts, fs, array, **options) def make_wave(self): """Inverts the spectrogram and returns a Wave. returns: Wave """ res = [] for t, spectrum in sorted(self.spec_map.iteritems()): wave = spectrum.make_wave() n = len(wave) if self.window_func: window = 1 / self.window_func(n) wave.window(window) i = int(round(t * wave.framerate)) start = i - n / 2 end = start + n res.append((start, end, wave)) starts, ends, waves = zip(*res) low = min(starts) high = max(ends) ys = numpy.zeros(high-low, numpy.float) for start, end, wave in res: ys[start:end] = wave.ys return Wave(ys, wave.framerate) class Wave(object): """Represents a discrete-time waveform. Note: the ys attribute is a "wave array" which is a numpy array of floats. """ def __init__(self, ys, framerate, start=0): """Initializes the wave. ys: wave array framerate: samples per second """ self.ys = ys self.framerate = framerate self.start = start def __len__(self): return len(self.ys) @property def duration(self): """Duration (property). returns: float duration in seconds """ return len(self.ys) / float(self.framerate) def __or__(self, other): """Concatenates two waves. other: Wave returns: Wave """ if self.framerate != other.framerate: raise ValueError('Wave.__or__: framerates do not agree') ys = numpy.concatenate((self.ys, other.ys)) return Wave(ys, self.framerate) def quantize(self, bound, dtype): """Maps the waveform to quanta. bound: maximum amplitude dtype: numpy data type or string returns: quantized signal """ return quantize(self.ys, bound, dtype) def apodize(self, denom=20, duration=0.1): """Tapers the amplitude at the beginning and end of the signal. Tapers either the given duration of time or the given fraction of the total duration, whichever is less. denom: float fraction of the segment to taper duration: float duration of the taper in seconds """ self.ys = apodize(self.ys, self.framerate, denom, duration) def hamming(self): """Apply a Hamming window to the wave. """ self.ys *= numpy.hamming(len(self.ys)) def window(self, window): """Apply a window to the wave. window: sequence of multipliers, same length as self.ys """ self.ys *= window def normalize(self, amp=1.0): """Normalizes the signal to the given amplitude. amp: float amplitude """ self.ys = normalize(self.ys, amp=amp) def unbias(self): """Unbiases the signal. """ self.ys = unbias(self.ys) def segment(self, start=0, duration=None): """Extracts a segment. start: float start time in seconds duration: float duration in seconds returns: Wave """ i = start * self.framerate if duration is None: j = None else: j = i + duration * self.framerate ys = self.ys[i:j] return Wave(ys, self.framerate) def make_spectrum(self): """Computes the spectrum using FFT. returns: Spectrum """ hs = numpy.fft.rfft(self.ys) return Spectrum(hs, self.framerate) def make_dct(self): amps = scipy.fftpack.dct(self.ys, type=2) return Dct(amps, self.framerate) def make_spectrogram(self, seg_length, window_func=numpy.hamming): """Computes the spectrogram of the wave. seg_length: number of samples in each segment window_func: function used to compute the window returns: Spectrogram """ n = len(self.ys) window = window_func(seg_length) start, end, step = 0, seg_length, seg_length / 2 spec_map = {} while end < n: ys = self.ys[start:end] * window hs = numpy.fft.rfft(ys) t = (start + end) / 2.0 / self.framerate spec_map[t] = Spectrum(hs, self.framerate) start += step end += step return Spectrogram(spec_map, seg_length, window_func) def plot(self, **options): """Plots the wave. """ n = len(self.ys) ts = numpy.linspace(0, self.duration, n) thinkplot.plot(ts, self.ys, **options) def corr(self, other): """Correlation coefficient two waves. other: Wave returns: 2x2 covariance matrix """ mat = self.cov_mat(other) corr = mat[0][1] / math.sqrt(mat[0][0] * mat[1][1]) return corr def cov_mat(self, other): """Covariance matrix of two waves. other: Wave returns: 2x2 covariance matrix """ return numpy.cov(self.ys, other.ys) def cov(self, other): """Covariance of two unbiased waves. other: Wave returns: float """ total = sum(self.ys * other.ys) / len(self.ys) return total def cos_cov(self, k): """Covariance with a cosine signal. freq: freq of the cosine signal in Hz returns: float covariance """ n = len(self.ys) factor = math.pi * k / n ys = [math.cos(factor * (i+0.5)) for i in range(n)] total = 2 * sum(self.ys * ys) return total def cos_transform(self): """Discrete cosine transform. returns: list of frequency, cov pairs """ n = len(self.ys) res = [] for k in range(n): cov = self.cos_cov(k) res.append((k, cov)) return res def write(self, filename='sound.wav'): """Write a wave file. filename: string """ print 'Writing', filename wfile = WavFileWriter(filename, self.framerate) wfile.write(self) wfile.close() def play(self, filename='sound.wav'): """Plays a wave file. filename: string """ self.write(filename) play_wave(filename) def unbias(ys): """Shifts a wave array so it has mean 0. ys: wave array returns: wave array """ return ys - ys.mean() def normalize(ys, amp=1.0): """Normalizes a wave array so the maximum amplitude is +amp or -amp. ys: wave array amp: max amplitude (pos or neg) in result returns: wave array """ high, low = abs(max(ys)), abs(min(ys)) return amp * ys / max(high, low) def quantize(ys, bound, dtype): """Maps the waveform to quanta. ys: wave array bound: maximum amplitude dtype: numpy data type of the result returns: quantized signal """ if max(ys) > 1 or min(ys) < -1: print 'Warning: normalizing before quantizing.' ys = normalize(ys) zs = (ys * bound).astype(dtype) return zs def apodize(ys, framerate, denom=20, duration=0.1): """Tapers the amplitude at the beginning and end of the signal. Tapers either the given duration of time or the given fraction of the total duration, whichever is less. ys: wave array framerate: int frames per second denom: float fraction of the segment to taper duration: float duration of the taper in seconds returns: wave array """ # a fixed fraction of the segment n = len(ys) k1 = n / denom # a fixed duration of time k2 = int(duration * framerate) k = min(k1, k2) w1 = numpy.linspace(0, 1, k) w2 = numpy.ones(n - 2*k) w3 = numpy.linspace(1, 0, k) window = numpy.concatenate((w1, w2, w3)) return ys * window class Signal(object): """Represents a time-varying signal.""" def __add__(self, other): """Adds two signals. other: Signal returns: Signal """ if other == 0: return self return SumSignal(self, other) __radd__ = __add__ @property def period(self): """Period of the signal in seconds (property). For non-periodic signals, use the default, 0.1 seconds returns: float seconds """ return 0.1 def plot(self, framerate=11025): """Plots the signal. framerate: samples per second """ duration = self.period * 3 wave = self.make_wave(duration, start=0, framerate=framerate) wave.plot() def make_wave(self, duration=1, start=0, framerate=11025): """Makes a Wave object. duration: float seconds start: float seconds framerate: int frames per second returns: Wave """ dt = 1.0 / framerate ts = numpy.arange(start, duration, dt) ys = self.evaluate(ts) return Wave(ys, framerate=framerate, start=start) def infer_framerate(ts): """Given ts, find the framerate. Assumes that the ts are equally spaced. ts: sequence of times in seconds returns: frames per second """ dt = ts[1] - ts[0] framerate = 1.0 / dt return framerate class SumSignal(Signal): """Represents the sum of signals.""" def __init__(self, *args): """Initializes the sum. args: tuple of signals """ self.signals = args @property def period(self): """Period of the signal in seconds. Note: this is not correct; it's mostly a placekeeper. But it is correct for a harmonic sequence where all component frequencies are multiples of the fundamental. returns: float seconds """ return max(sig.period for sig in self.signals) def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ return sum(sig.evaluate(ts) for sig in self.signals) class Sinusoid(Signal): """Represents a sinusoidal signal.""" def __init__(self, freq=440, amp=1.0, offset=0, func=numpy.sin): """Initializes a sinusoidal signal. freq: float frequency in Hz amp: float amplitude, 1.0 is nominal max offset: float phase offset in radians func: function that maps phase to amplitude """ self.freq = freq self.amp = amp self.offset = offset self.func = func @property def period(self): """Period of the signal in seconds. returns: float seconds """ return 1.0 / self.freq def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ phases = PI2 * self.freq * ts + self.offset ys = self.amp * self.func(phases) return ys def CosSignal(freq=440, amp=1.0, offset=0): """Makes a consine Sinusoid. freq: float frequency in Hz amp: float amplitude, 1.0 is nominal max offset: float phase offset in radians returns: Sinusoid object """ return Sinusoid(freq, amp, offset, func=numpy.cos) def SinSignal(freq=440, amp=1.0, offset=0): """Makes a sine Sinusoid. freq: float frequency in Hz amp: float amplitude, 1.0 is nominal max offset: float phase offset in radians returns: Sinusoid object """ return Sinusoid(freq, amp, offset, func=numpy.sin) class SquareSignal(Sinusoid): """Represents a square signal.""" def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ cycles = self.freq * ts + self.offset / PI2 frac, _ = numpy.modf(cycles) ys = self.amp * numpy.sign(unbias(frac)) return ys class SawtoothSignal(Sinusoid): """Represents a sawtooth signal.""" def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ cycles = self.freq * ts + self.offset / PI2 frac, _ = numpy.modf(cycles) ys = normalize(unbias(frac), self.amp) return ys class ParabolicSignal(Sinusoid): """Represents a parabolic signal.""" def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ cycles = self.freq * ts + self.offset / PI2 frac, _ = numpy.modf(cycles) ys = frac**2 ys = normalize(unbias(ys), self.amp) return ys class GlottalSignal(Sinusoid): """Represents a periodic signal that resembles a glottal signal.""" def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ cycles = self.freq * ts + self.offset / PI2 frac, _ = numpy.modf(cycles) ys = frac**4 * (1-frac) ys = normalize(unbias(ys), self.amp) return ys class TriangleSignal(Sinusoid): """Represents a triangle signal.""" def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ cycles = self.freq * ts + self.offset / PI2 frac, _ = numpy.modf(cycles) ys = numpy.abs(frac - 0.5) ys = normalize(unbias(ys), self.amp) return ys class Chirp(Signal): """Represents a signal with variable frequency.""" def __init__(self, start=440, end=880, amp=1.0): """Initializes a linear chirp. start: float frequency in Hz end: float frequency in Hz amp: float amplitude, 1.0 is nominal max """ self.start = start self.end = end self.amp = amp @property def period(self): """Period of the signal in seconds. returns: float seconds """ return ValueError('Non-periodic signal.') def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ freqs = numpy.linspace(self.start, self.end, len(ts)-1) return self._evaluate(ts, freqs) def _evaluate(self, ts, freqs): """Helper function that evaluates the signal. ts: float array of times freqs: float array of frequencies during each interval """ #n = len(freqs) #print freqs[::n/2] dts = numpy.diff(ts) dps = PI2 * freqs * dts phases = numpy.cumsum(dps) phases = numpy.insert(phases, 0, 0) ys = self.amp * numpy.cos(phases) return ys class ExpoChirp(Chirp): """Represents a signal with varying frequency.""" def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ start, end = math.log10(self.start), math.log10(self.end) freqs = numpy.logspace(start, end, len(ts)-1) return self._evaluate(ts, freqs) class SilentSignal(Signal): """Represents silence.""" def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ return numpy.zeros(len(ts)) class _Noise(Signal): """Represents a noise signal (abstract parent class).""" def __init__(self, amp=1.0): """Initializes a white noise signal. amp: float amplitude, 1.0 is nominal max """ self.amp = amp @property def period(self): """Period of the signal in seconds. returns: float seconds """ return ValueError('Non-periodic signal.') class UncorrelatedUniformNoise(_Noise): """Represents uncorrelated uniform noise.""" def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ ys = numpy.random.uniform(-self.amp, self.amp, len(ts)) return ys class UncorrelatedGaussianNoise(_Noise): """Represents uncorrelated gaussian noise.""" def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ ys = numpy.random.normal(0, 1, len(ts)) ys = normalize(ys, self.amp) return ys class BrownianNoise(_Noise): """Represents Brownian noise, aka red noise.""" def evaluate(self, ts): """Evaluates the signal at the given times. Computes Brownian noise by taking the cumulative sum of a uniform random series. ts: float array of times returns: float wave array """ #dys = numpy.random.normal(0, 1, len(ts)) dys = numpy.random.uniform(-1, 1, len(ts)) #ys = numpy.cumsum(dys) ys = scipy.integrate.cumtrapz(dys, ts) ys = normalize(unbias(ys), self.amp) return ys class PinkNoise(_Noise): """Represents Brownian noise, aka red noise.""" def __init__(self, amp=1.0, beta=1.0): """Initializes a pink noise signal. amp: float amplitude, 1.0 is nominal max """ self.amp = amp self.beta = beta def make_wave(self, duration=1, start=0, framerate=11025): """Makes a Wave object. duration: float seconds start: float seconds framerate: int frames per second returns: Wave """ signal = UncorrelatedUniformNoise() wave = signal.make_wave(duration, start, framerate) spectrum = wave.make_spectrum() spectrum.pink_filter(beta=self.beta) wave2 = spectrum.make_wave() wave2.unbias() wave2.normalize(self.amp) return wave2 def rest(duration): """Makes a rest of the given duration. duration: float seconds returns: Wave """ signal = SilentSignal() wave = signal.make_wave(duration) return wave def make_note(midi_num, duration, sig_cons=CosSignal, framerate=11025): """Make a MIDI note with the given duration. midi_num: int MIDI note number duration: float seconds sig_cons: Signal constructor function framerate: int frames per second returns: Wave """ freq = midi_to_freq(midi_num) signal = sig_cons(freq) wave = signal.make_wave(duration, framerate=framerate) wave.apodize() return wave def make_chord(midi_nums, duration, sig_cons=CosSignal, framerate=11025): """Make a chord with the given duration. midi_nums: sequence of int MIDI note numbers duration: float seconds sig_cons: Signal constructor function framerate: int frames per second returns: Wave """ freqs = [midi_to_freq(num) for num in midi_nums] signal = sum(sig_cons(freq) for freq in freqs) wave = signal.make_wave(duration, framerate=framerate) wave.apodize() return wave def midi_to_freq(midi_num): """Converts MIDI note number to frequency. midi_num: int MIDI note number returns: float frequency in Hz """ x = (midi_num - 69) / 12.0 freq = 440.0 * 2**x return freq def sin_wave(freq, duration=1, offset=0): """Makes a sine wave with the given parameters. freq: float cycles per second duration: float seconds offset: float radians returns: Wave """ signal = SinSignal(freq, offset=offset) wave = signal.make_wave(duration) return wave def cos_wave(freq, duration=1, offset=0): """Makes a cosine wave with the given parameters. freq: float cycles per second duration: float seconds offset: float radians returns: Wave """ signal = CosSignal(freq, offset=offset) wave = signal.make_wave(duration) return wave def mag(a): """Computes the magnitude of a numpy array. a: numpy array returns: float """ return numpy.sqrt(numpy.dot(a, a)) def main(): cos_basis = cos_wave(440) sin_basis = sin_wave(440) wave = cos_wave(440, offset=math.pi/2) cos_cov = cos_basis.cov(wave) sin_cov = sin_basis.cov(wave) print cos_cov, sin_cov, mag((cos_cov, sin_cov)) return wfile = WavFileWriter() for sig_cons in [SinSignal, TriangleSignal, SawtoothSignal, GlottalSignal, ParabolicSignal, SquareSignal]: print sig_cons sig = sig_cons(440) wave = sig.make_wave(1) wave.apodize() wfile.write(wave) wfile.close() return signal = GlottalSignal(440) signal.plot() pyplot.show() return wfile = WavFileWriter() for m in range(60, 0, -1): wfile.write(make_note(m, 0.25)) wfile.close() return wave1 = make_note(69, 1) wave2 = make_chord([69, 72, 76], 1) wave = wave1 | wave2 wfile = WavFileWriter() wfile.write(wave) wfile.close() return sig1 = CosSignal(freq=440) sig2 = CosSignal(freq=523.25) sig3 = CosSignal(freq=660) sig4 = CosSignal(freq=880) sig5 = CosSignal(freq=987) sig = sig1 + sig2 + sig3 + sig4 #wave = Wave(sig, duration=0.02) #wave.plot() wave = sig.make_wave(duration=1) #wave.normalize() wfile = WavFileWriter(wave) wfile.write() wfile.close() if __name__ == '__main__': main()
gpl-3.0
dusenberrymw/systemml
src/main/python/systemml/converters.py
8
12296
#------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # #------------------------------------------------------------- __all__ = [ 'getNumCols', 'convertToMatrixBlock', 'convert_caffemodel', 'convert_lmdb_to_jpeg', 'convertToNumPyArr', 'convertToPandasDF', 'SUPPORTED_TYPES' , 'convertToLabeledDF', 'convertImageToNumPyArr', 'getDatasetMean'] import numpy as np import pandas as pd import os import math from pyspark.context import SparkContext from scipy.sparse import coo_matrix, spmatrix, csr_matrix from .classloader import * SUPPORTED_TYPES = (np.ndarray, pd.DataFrame, spmatrix) DATASET_MEAN = {'VGG_ILSVRC_19_2014':[103.939, 116.779, 123.68]} def getNumCols(numPyArr): if numPyArr.ndim == 1: return 1 else: return numPyArr.shape[1] def get_pretty_str(key, value): return '\t"' + key + '": ' + str(value) + ',\n' def save_tensor_csv(tensor, file_path, shouldTranspose): w = w.reshape(w.shape[0], -1) if shouldTranspose: w = w.T np.savetxt(file_path, w, delimiter=',') with open(file_path + '.mtd', 'w') as file: file.write('{\n\t"data_type": "matrix",\n\t"value_type": "double",\n') file.write(get_pretty_str('rows', w.shape[0])) file.write(get_pretty_str('cols', w.shape[1])) file.write(get_pretty_str('nnz', np.count_nonzero(w))) file.write('\t"format": "csv",\n\t"description": {\n\t\t"author": "SystemML"\n\t}\n}\n') def convert_caffemodel(sc, deploy_file, caffemodel_file, output_dir, format="binary", is_caffe_installed=False): """ Saves the weights and bias in the caffemodel file to output_dir in the specified format. This method does not requires caffe to be installed. Parameters ---------- sc: SparkContext SparkContext deploy_file: string Path to the input network file caffemodel_file: string Path to the input caffemodel file output_dir: string Path to the output directory format: string Format of the weights and bias (can be binary, csv or text) is_caffe_installed: bool True if caffe is installed """ if is_caffe_installed: if format != 'csv': raise ValueError('The format ' + str(format) + ' is not supported when caffe is installed. Hint: Please specify format=csv') import caffe net = caffe.Net(deploy_file, caffemodel_file, caffe.TEST) for layerName in net.params.keys(): num_parameters = len(net.params[layerName]) if num_parameters == 0: continue elif num_parameters == 2: # Weights and Biases layerType = net.layers[list(net._layer_names).index(layerName)].type shouldTranspose = True if layerType == 'InnerProduct' else False save_tensor_csv(net.params[layerName][0].data, os.path.join(output_dir, layerName + '_weight.mtx'), shouldTranspose) save_tensor_csv(net.params[layerName][1].data, os.path.join(output_dir, layerName + '_bias.mtx'), shouldTranspose) elif num_parameters == 1: # Only Weight layerType = net.layers[list(net._layer_names).index(layerName)].type shouldTranspose = True if layerType == 'InnerProduct' else False save_tensor_csv(net.params[layerName][0].data, os.path.join(output_dir, layerName + '_weight.mtx'), shouldTranspose) else: raise ValueError('Unsupported number of parameters:' + str(num_parameters)) else: createJavaObject(sc, 'dummy') utilObj = sc._jvm.org.apache.sysml.api.dl.Utils() utilObj.saveCaffeModelFile(sc._jsc, deploy_file, caffemodel_file, output_dir, format) def convert_lmdb_to_jpeg(lmdb_img_file, output_dir): """ Saves the images in the lmdb file as jpeg in the output_dir. This method requires caffe to be installed along with lmdb and cv2 package. To install cv2 package, do `pip install opencv-python`. Parameters ---------- lmdb_img_file: string Path to the input lmdb file output_dir: string Output directory for images (local filesystem) """ import lmdb, caffe, cv2 lmdb_cursor = lmdb.open(lmdb_file, readonly=True).begin().cursor() datum = caffe.proto.caffe_pb2.Datum() i = 1 for _, value in lmdb_cursor: datum.ParseFromString(value) data = caffe.io.datum_to_array(datum) output_file_path = os.path.join(output_dir, 'file_' + str(i) + '.jpg') image = np.transpose(data, (1,2,0)) # CxHxW to HxWxC in cv2 cv2.imwrite(output_file_path, image) i = i + 1 def convertToLabeledDF(sparkSession, X, y=None): from pyspark.ml.feature import VectorAssembler if y is not None: pd1 = pd.DataFrame(X) pd2 = pd.DataFrame(y, columns=['label']) pdf = pd.concat([pd1, pd2], axis=1) inputColumns = ['C' + str(i) for i in pd1.columns] outputColumns = inputColumns + ['label'] else: pdf = pd.DataFrame(X) inputColumns = ['C' + str(i) for i in pdf.columns] outputColumns = inputColumns assembler = VectorAssembler(inputCols=inputColumns, outputCol='features') out = assembler.transform(sparkSession.createDataFrame(pdf, outputColumns)) if y is not None: return out.select('features', 'label') else: return out.select('features') def _convertSPMatrixToMB(sc, src): src = coo_matrix(src, dtype=np.float64) numRows = src.shape[0] numCols = src.shape[1] data = src.data row = src.row.astype(np.int32) col = src.col.astype(np.int32) nnz = len(src.col) buf1 = bytearray(data.tostring()) buf2 = bytearray(row.tostring()) buf3 = bytearray(col.tostring()) createJavaObject(sc, 'dummy') return sc._jvm.org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt.convertSciPyCOOToMB(buf1, buf2, buf3, numRows, numCols, nnz) def _convertDenseMatrixToMB(sc, src): numCols = getNumCols(src) numRows = src.shape[0] arr = src.ravel().astype(np.float64) buf = bytearray(arr.tostring()) createJavaObject(sc, 'dummy') return sc._jvm.org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt.convertPy4JArrayToMB(buf, numRows, numCols) def _copyRowBlock(i, sc, ret, src, numRowsPerBlock, rlen, clen): rowIndex = int(i / numRowsPerBlock) tmp = src[i:min(i+numRowsPerBlock, rlen),] mb = _convertSPMatrixToMB(sc, tmp) if isinstance(src, spmatrix) else _convertDenseMatrixToMB(sc, tmp) sc._jvm.org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt.copyRowBlocks(mb, rowIndex, ret, numRowsPerBlock, rlen, clen) return i def convertToMatrixBlock(sc, src, maxSizeBlockInMB=8): if not isinstance(sc, SparkContext): raise TypeError('sc needs to be of type SparkContext') isSparse = True if isinstance(src, spmatrix) else False src = np.asarray(src, dtype=np.float64) if not isSparse else src if len(src.shape) != 2: src_type = str(type(src).__name__) raise TypeError('Expected 2-dimensional ' + src_type + ', instead passed ' + str(len(src.shape)) + '-dimensional ' + src_type) # Ignoring sparsity for computing numRowsPerBlock for now numRowsPerBlock = int(math.ceil((maxSizeBlockInMB*1000000) / (src.shape[1]*8))) multiBlockTransfer = False if numRowsPerBlock >= src.shape[0] else True if not multiBlockTransfer: return _convertSPMatrixToMB(sc, src) if isSparse else _convertDenseMatrixToMB(sc, src) else: # Since coo_matrix does not have range indexing src = csr_matrix(src) if isSparse else src rlen = int(src.shape[0]) clen = int(src.shape[1]) ret = sc._jvm.org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt.allocateDenseOrSparse(rlen, clen, isSparse) [ _copyRowBlock(i, sc, ret, src, numRowsPerBlock, rlen, clen) for i in range(0, src.shape[0], numRowsPerBlock) ] sc._jvm.org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt.postProcessAfterCopying(ret) return ret def convertToNumPyArr(sc, mb): if isinstance(sc, SparkContext): numRows = mb.getNumRows() numCols = mb.getNumColumns() createJavaObject(sc, 'dummy') buf = sc._jvm.org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt.convertMBtoPy4JDenseArr(mb) return np.frombuffer(buf, count=numRows*numCols, dtype=np.float64).reshape((numRows, numCols)) else: raise TypeError('sc needs to be of type SparkContext') # TODO: We can generalize this by creating py4j gateway ourselves # Returns the mean of a model if defined otherwise None def getDatasetMean(dataset_name): """ Parameters ---------- dataset_name: Name of the dataset used to train model. This name is artificial name based on dataset used to train the model. Returns ------- mean: Mean value of model if its defined in the list DATASET_MEAN else None. """ try: mean = DATASET_MEAN[dataset_name.upper()] except: mean = None return mean # Example usage: convertImageToNumPyArr(im, img_shape=(3, 224, 224), add_rotated_images=True, add_mirrored_images=True) # The above call returns a numpy array of shape (6, 50176) in NCHW format def convertImageToNumPyArr(im, img_shape=None, add_rotated_images=False, add_mirrored_images=False, color_mode = 'RGB', mean=None): ## Input Parameters # color_mode: In case of VGG models which expect image data in BGR format instead of RGB for other most models, # color_mode parameter is used to process image data in BGR format. # mean: mean value is used to subtract from input data from every pixel value. By default value is None, so mean value not subtracted. if img_shape is not None: num_channels = img_shape[0] size = (img_shape[1], img_shape[2]) else: num_channels = 1 if im.mode == 'L' else 3 size = None if num_channels != 1 and num_channels != 3: raise ValueError('Expected the number of channels to be either 1 or 3') from PIL import Image if size is not None: im = im.resize(size, Image.LANCZOS) expected_mode = 'L' if num_channels == 1 else 'RGB' if expected_mode is not im.mode: im = im.convert(expected_mode) def _im2NumPy(im): if expected_mode == 'L': return np.asarray(im.getdata()).reshape((1, -1)) else: im = (np.array(im).astype(np.float)) # (H,W,C) -> (C,H,W) im = im.transpose(2, 0, 1) # RGB -> BGR if color_mode == 'BGR': im = im[...,::-1] # Subtract Mean if mean is not None: for c in range(3): im[:, :, c] = im[:, :, c] - mean[c] # (C,H,W) --> (1, C*H*W) return im.reshape((1, -1)) ret = _im2NumPy(im) if add_rotated_images: ret = np.vstack((ret, _im2NumPy(im.rotate(90)), _im2NumPy(im.rotate(180)), _im2NumPy(im.rotate(270)) )) if add_mirrored_images: ret = np.vstack((ret, _im2NumPy(im.transpose(Image.FLIP_LEFT_RIGHT)), _im2NumPy(im.transpose(Image.FLIP_TOP_BOTTOM)))) return ret def convertToPandasDF(X): if not isinstance(X, pd.DataFrame): return pd.DataFrame(X, columns=['C' + str(i) for i in range(getNumCols(X))]) return X
apache-2.0
thilbern/scikit-learn
sklearn/neighbors/base.py
7
25049
"""Base and mixin classes for nearest neighbors""" # Authors: Jake Vanderplas <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Sparseness support by Lars Buitinck <[email protected]> # Multi-output support by Arnaud Joly <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import csr_matrix, issparse from .ball_tree import BallTree from .kd_tree import KDTree from ..base import BaseEstimator from ..metrics import pairwise_distances from ..metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from ..utils import check_X_y, check_array from ..utils.fixes import argpartition from ..utils.validation import DataConversionWarning from ..externals import six VALID_METRICS = dict(ball_tree=BallTree.valid_metrics, kd_tree=KDTree.valid_metrics, # The following list comes from the # sklearn.metrics.pairwise doc string brute=(list(PAIRWISE_DISTANCE_FUNCTIONS.keys()) + ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', 'wminkowski'])) VALID_METRICS_SPARSE = dict(ball_tree=[], kd_tree=[], brute=PAIRWISE_DISTANCE_FUNCTIONS.keys()) class NeighborsWarning(UserWarning): pass # Make sure that NeighborsWarning are displayed more than once warnings.simplefilter("always", NeighborsWarning) def _check_weights(weights): """Check to make sure weights are valid""" if weights in (None, 'uniform', 'distance'): return weights elif callable(weights): return weights else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") def _get_weights(dist, weights): """Get the weights from an array of distances and a parameter ``weights`` Parameters =========== dist: ndarray The input distances weights: {'uniform', 'distance' or a callable} The kind of weighting used Returns ======== weights_arr: array of the same shape as ``dist`` if ``weights == 'uniform'``, then returns None """ if weights in (None, 'uniform'): return None elif weights == 'distance': with np.errstate(divide='ignore'): dist = 1. / dist return dist elif callable(weights): return weights(dist) else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") class NeighborsBase(six.with_metaclass(ABCMeta, BaseEstimator)): """Base class for nearest neighbors estimators.""" @abstractmethod def __init__(self): pass def _init_params(self, n_neighbors=None, radius=None, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, **kwargs): if kwargs: warnings.warn("Passing additional arguments to the metric " "function as **kwargs is deprecated " "and will no longer be supported in 0.18. " "Use metric_params instead.", DeprecationWarning, stacklevel=3) if metric_params is None: metric_params = {} metric_params.update(kwargs) self.n_neighbors = n_neighbors self.radius = radius self.algorithm = algorithm self.leaf_size = leaf_size self.metric = metric self.metric_params = metric_params self.p = p if algorithm not in ['auto', 'brute', 'kd_tree', 'ball_tree']: raise ValueError("unrecognized algorithm: '%s'" % algorithm) if algorithm == 'auto': alg_check = 'ball_tree' else: alg_check = algorithm if callable(metric): if algorithm == 'kd_tree': # callable metric is only valid for brute force and ball_tree raise ValueError( "kd_tree algorithm does not support callable metric '%s'" % metric) elif metric not in VALID_METRICS[alg_check]: raise ValueError("Metric '%s' not valid for algorithm '%s'" % (metric, algorithm)) if self.metric_params is not None and 'p' in self.metric_params: warnings.warn("Parameter p is found in metric_params. " "The corresponding parameter from __init__ " "is ignored.", SyntaxWarning, stacklevel=3) effective_p = metric_params['p'] else: effective_p = self.p if self.metric in ['wminkowski', 'minkowski'] and effective_p < 1: raise ValueError("p must be greater than one for minkowski metric") self._fit_X = None self._tree = None self._fit_method = None def _fit(self, X): if self.metric_params is None: self.effective_metric_params_ = {} else: self.effective_metric_params_ = self.metric_params.copy() effective_p = self.effective_metric_params_.get('p', self.p) if self.metric in ['wminkowski', 'minkowski']: self.effective_metric_params_['p'] = effective_p self.effective_metric_ = self.metric # For minkowski distance, use more efficient methods where available if self.metric == 'minkowski': p = self.effective_metric_params_.pop('p', 2) if p < 1: raise ValueError("p must be greater than one " "for minkowski metric") elif p == 1: self.effective_metric_ = 'manhattan' elif p == 2: self.effective_metric_ = 'euclidean' elif p == np.inf: self.effective_metric_ = 'chebyshev' else: self.effective_metric_params_['p'] = p if isinstance(X, NeighborsBase): self._fit_X = X._fit_X self._tree = X._tree self._fit_method = X._fit_method return self elif isinstance(X, BallTree): self._fit_X = X.data self._tree = X self._fit_method = 'ball_tree' return self elif isinstance(X, KDTree): self._fit_X = X.data self._tree = X self._fit_method = 'kd_tree' return self X = check_array(X, accept_sparse='csr') n_samples = X.shape[0] if n_samples == 0: raise ValueError("n_samples must be greater than 0") if issparse(X): if self.algorithm not in ('auto', 'brute'): warnings.warn("cannot use tree with sparse input: " "using brute force") if self.effective_metric_ not in VALID_METRICS_SPARSE['brute']: raise ValueError("metric '%s' not valid for sparse input" % self.effective_metric_) self._fit_X = X.copy() self._tree = None self._fit_method = 'brute' return self self._fit_method = self.algorithm self._fit_X = X if self._fit_method == 'auto': # A tree approach is better for small number of neighbors, # and KDTree is generally faster when available if (self.n_neighbors is None or self.n_neighbors < self._fit_X.shape[0] // 2): if self.effective_metric_ in VALID_METRICS['kd_tree']: self._fit_method = 'kd_tree' else: self._fit_method = 'ball_tree' else: self._fit_method = 'brute' if self._fit_method == 'ball_tree': self._tree = BallTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_params_) elif self._fit_method == 'kd_tree': self._tree = KDTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_params_) elif self._fit_method == 'brute': self._tree = None else: raise ValueError("algorithm = '%s' not recognized" % self.algorithm) return self class KNeighborsMixin(object): """Mixin for k-neighbors searches""" def kneighbors(self, X, n_neighbors=None, return_distance=True): """Finds the K-neighbors of a point. Returns distance Parameters ---------- X : array-like, last dimension same as that of fit data The new point. n_neighbors : int Number of neighbors to get (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array Array representing the lengths to point, only present if return_distance=True ind : array Indices of the nearest points in the population matrix. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1,1,1] >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=1) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> print(neigh.kneighbors([1., 1., 1.])) # doctest: +ELLIPSIS (array([[ 0.5]]), array([[2]]...)) As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third element of samples (indexes start at 0). You can also query for multiple points: >>> X = [[0., 1., 0.], [1., 0., 1.]] >>> neigh.kneighbors(X, return_distance=False) # doctest: +ELLIPSIS array([[1], [2]]...) """ if self._fit_method is None: raise ValueError("must fit neighbors before querying") X = check_array(X, accept_sparse='csr') if n_neighbors is None: n_neighbors = self.n_neighbors if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', squared=True) else: dist = pairwise_distances(X, self._fit_X, self.effective_metric_, **self.effective_metric_params_) neigh_ind = argpartition(dist, n_neighbors - 1, axis=1) neigh_ind = neigh_ind[:, :n_neighbors] # argpartition doesn't guarantee sorted order, so we sort again j = np.arange(neigh_ind.shape[0])[:, None] neigh_ind = neigh_ind[j, np.argsort(dist[j, neigh_ind])] if return_distance: if self.effective_metric_ == 'euclidean': return np.sqrt(dist[j, neigh_ind]), neigh_ind else: return dist[j, neigh_ind], neigh_ind else: return neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: if issparse(X): raise ValueError( "%s does not work with sparse matrices. Densify the data, " "or set algorithm='brute'" % self._fit_method) result = self._tree.query(X, n_neighbors, return_distance=return_distance) return result else: raise ValueError("internal: _fit_method not recognized") def kneighbors_graph(self, X, n_neighbors=None, mode='connectivity'): """Computes the (weighted) graph of k-Neighbors for points in X Parameters ---------- X : array-like, shape = [n_samples, n_features] Sample data n_neighbors : int Number of neighbors for each sample. (default is value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit] n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=2) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.kneighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- NearestNeighbors.radius_neighbors_graph """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) if n_neighbors is None: n_neighbors = self.n_neighbors n_samples1 = X.shape[0] n_samples2 = self._fit_X.shape[0] n_nonzero = n_samples1 * n_neighbors A_indptr = np.arange(0, n_nonzero + 1, n_neighbors) # construct CSR matrix representation of the k-NN graph if mode == 'connectivity': A_data = np.ones((n_samples1, n_neighbors)) A_ind = self.kneighbors(X, n_neighbors, return_distance=False) elif mode == 'distance': data, ind = self.kneighbors(X, n_neighbors + 1, return_distance=True) A_data, A_ind = data[:, 1:], ind[:, 1:] else: raise ValueError( 'Unsupported mode, must be one of "connectivity" ' 'or "distance" but got "%s" instead' % mode) return csr_matrix((A_data.ravel(), A_ind.ravel(), A_indptr), shape=(n_samples1, n_samples2)) class RadiusNeighborsMixin(object): """Mixin for radius-based neighbors searches""" def radius_neighbors(self, X, radius=None, return_distance=True): """Finds the neighbors within a given radius of a point or points. Returns indices of and distances to the neighbors of each point. Parameters ---------- X : array-like, last dimension same as that of fit data The new point or points radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array Array representing the euclidean distances to each point, only present if return_distance=True. ind : array Indices of the nearest points in the population matrix. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1,1,1] >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.6) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> print(neigh.radius_neighbors([1., 1., 1.])) # doctest: +ELLIPSIS (array([[ 1.5, 0.5]]...), array([[1, 2]]...) The first array returned contains the distances to all points which are closer than 1.6, while the second array returned contains their indices. In general, multiple points can be queried at the same time. Notes ----- Because the number of neighbors of each point is not necessarily equal, the results for multiple query points cannot be fit in a standard data array. For efficiency, `radius_neighbors` returns arrays of objects, where each object is a 1D array of indices or distances. """ if self._fit_method is None: raise ValueError("must fit neighbors before querying") X = check_array(X, accept_sparse='csr') if radius is None: radius = self.radius if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', squared=True) radius *= radius else: dist = pairwise_distances(X, self._fit_X, self.effective_metric_, **self.effective_metric_params_) neigh_ind = [np.where(d < radius)[0] for d in dist] # if there are the same number of neighbors for each point, # we can do a normal array. Otherwise, we return an object # array with elements that are numpy arrays try: neigh_ind = np.asarray(neigh_ind, dtype=int) dtype_F = float except ValueError: neigh_ind = np.asarray(neigh_ind, dtype='object') dtype_F = object if return_distance: if self.effective_metric_ == 'euclidean': dist = np.array([np.sqrt(d[neigh_ind[i]]) for i, d in enumerate(dist)], dtype=dtype_F) else: dist = np.array([d[neigh_ind[i]] for i, d in enumerate(dist)], dtype=dtype_F) return dist, neigh_ind else: return neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: if issparse(X): raise ValueError( "%s does not work with sparse matrices. Densify the data, " "or set algorithm='brute'" % self._fit_method) results = self._tree.query_radius(X, radius, return_distance=return_distance) if return_distance: ind, dist = results return dist, ind else: return results else: raise ValueError("internal: _fit_method not recognized") def radius_neighbors_graph(self, X, radius=None, mode='connectivity'): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Parameters ---------- X : array-like, shape = [n_samples, n_features] Sample data radius : float Radius of neighborhoods. (default is the value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.5) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.radius_neighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) if radius is None: radius = self.radius n_samples1 = X.shape[0] n_samples2 = self._fit_X.shape[0] # construct CSR matrix representation of the NN graph if mode == 'connectivity': A_ind = self.radius_neighbors(X, radius, return_distance=False) A_data = None elif mode == 'distance': dist, A_ind = self.radius_neighbors(X, radius, return_distance=True) A_data = np.concatenate(list(dist)) else: raise ValueError( 'Unsupported mode, must be one of "connectivity", ' 'or "distance" but got %s instead' % mode) n_neighbors = np.array([len(a) for a in A_ind]) n_nonzero = np.sum(n_neighbors) if A_data is None: A_data = np.ones(n_nonzero) A_ind = np.concatenate(list(A_ind)) A_indptr = np.concatenate((np.zeros(1, dtype=int), np.cumsum(n_neighbors))) return csr_matrix((A_data, A_ind, A_indptr), shape=(n_samples1, n_samples2)) class SupervisedFloatMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] y : {array-like, sparse matrix} Target values, array of float values, shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_X_y(X, y, "csr", multi_output=True) self._y = y return self._fit(X) class SupervisedIntegerMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] y : {array-like, sparse matrix} Target values of shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_X_y(X, y, "csr", multi_output=True) if y.ndim == 1 or y.ndim == 2 and y.shape[1] == 1: if y.ndim != 1: warnings.warn("A column-vector y was passed when a 1d array " "was expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning, stacklevel=2) self.outputs_2d_ = False y = y.reshape((-1, 1)) else: self.outputs_2d_ = True self.classes_ = [] self._y = np.empty(y.shape, dtype=np.int) for k in range(self._y.shape[1]): classes, self._y[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes) if not self.outputs_2d_: self.classes_ = self.classes_[0] self._y = self._y.ravel() return self._fit(X) class UnsupervisedMixin(object): def fit(self, X, y=None): """Fit the model using X as training data Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] """ return self._fit(X)
bsd-3-clause
mjgrav2001/scikit-learn
sklearn/decomposition/tests/test_sparse_pca.py
142
5990
# Author: Vlad Niculae # License: BSD 3 clause import sys import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import if_not_mac_os from sklearn.decomposition import SparsePCA, MiniBatchSparsePCA from sklearn.utils import check_random_state def generate_toy_data(n_components, n_samples, image_size, random_state=None): n_features = image_size[0] * image_size[1] rng = check_random_state(random_state) U = rng.randn(n_samples, n_components) V = rng.randn(n_components, n_features) centers = [(3, 3), (6, 7), (8, 1)] sz = [1, 2, 1] for k in range(n_components): img = np.zeros(image_size) xmin, xmax = centers[k][0] - sz[k], centers[k][0] + sz[k] ymin, ymax = centers[k][1] - sz[k], centers[k][1] + sz[k] img[xmin:xmax][:, ymin:ymax] = 1.0 V[k, :] = img.ravel() # Y is defined by : Y = UV + noise Y = np.dot(U, V) Y += 0.1 * rng.randn(Y.shape[0], Y.shape[1]) # Add noise return Y, U, V # SparsePCA can be a bit slow. To avoid having test times go up, we # test different aspects of the code in the same test def test_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) spca = SparsePCA(n_components=8, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition spca = SparsePCA(n_components=13, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_fit_transform(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) # Test that CD gives similar results spca_lasso = SparsePCA(n_components=3, method='cd', random_state=0, alpha=alpha) spca_lasso.fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_) @if_not_mac_os() def test_fit_transform_parallel(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs spca = SparsePCA(n_components=3, n_jobs=2, method='lars', alpha=alpha, random_state=0).fit(Y) U2 = spca.transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) def test_transform_nan(): # Test that SparsePCA won't return NaN when there is 0 feature in all # samples. rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array Y[:, 0] = 0 estimator = SparsePCA(n_components=8) assert_false(np.any(np.isnan(estimator.fit_transform(Y)))) def test_fit_transform_tall(): rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 65, (8, 8), random_state=rng) # tall array spca_lars = SparsePCA(n_components=3, method='lars', random_state=rng) U1 = spca_lars.fit_transform(Y) spca_lasso = SparsePCA(n_components=3, method='cd', random_state=rng) U2 = spca_lasso.fit(Y).transform(Y) assert_array_almost_equal(U1, U2) def test_initialization(): rng = np.random.RandomState(0) U_init = rng.randn(5, 3) V_init = rng.randn(3, 4) model = SparsePCA(n_components=3, U_init=U_init, V_init=V_init, max_iter=0, random_state=rng) model.fit(rng.randn(5, 4)) assert_array_equal(model.components_, V_init) def test_mini_batch_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) pca = MiniBatchSparsePCA(n_components=8, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition pca = MiniBatchSparsePCA(n_components=13, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_mini_batch_fit_transform(): raise SkipTest("skipping mini_batch_fit_transform.") alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = MiniBatchSparsePCA(n_components=3, random_state=0, alpha=alpha).fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs if sys.platform == 'win32': # fake parallelism for win32 import sklearn.externals.joblib.parallel as joblib_par _mp = joblib_par.multiprocessing joblib_par.multiprocessing = None try: U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) finally: joblib_par.multiprocessing = _mp else: # we can efficiently use parallelism U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) # Test that CD gives similar results spca_lasso = MiniBatchSparsePCA(n_components=3, method='cd', alpha=alpha, random_state=0).fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)
bsd-3-clause
Rickyfox/MLMA2
core/DataHandler.py
1
1770
''' Created on Dec 17, 2014 @author: Dominik Lang ''' import csv import os.path from random import shuffle import collections import numpy from sklearn.preprocessing import Imputer class DataHandler(object): def __init__(self): pass ''' @summary: A method to handle reading the data in from the csv file @return: List containing the rows of the dataset as seperate lists ''' def readData(self): # We get the path to the current file, then go one directory up to find the data file basepath = os.path.dirname(__file__) filepath = os.path.abspath(os.path.join(basepath, "..","data.csv")) output=[] with open(filepath, 'rb') as csvfile: i=0 linereader = csv.reader(csvfile, delimiter=',') for row in linereader: if i==0: i+=1 continue output.append(row) return output ''' @summary: A method that splits the dataset into a training and a test set ''' def splitData(self,dataset): sets = collections.namedtuple('Sets', ['train', 'test']) third=len(dataset)/3 shuffle(dataset) testset=dataset[0:third] trainset=dataset[third:-1] s=sets(trainset,testset) return s def vectorizeData(self,dataset): vectors = collections.namedtuple('vectors', ['X', 'Y']) x=[] y=[] for i in dataset: atts=i[0:-2] c=i[-1] x.append(atts) y.append(c) x=numpy.asarray(x) y=numpy.asarray(y) output=vectors(x,y) return output
gpl-2.0
siutanwong/scikit-learn
sklearn/neighbors/tests/test_approximate.py
142
18692
""" Testing for the approximate neighbor search using Locality Sensitive Hashing Forest module (sklearn.neighbors.LSHForest). """ # Author: Maheshakya Wijewardena, Joel Nothman import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_array_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.metrics.pairwise import pairwise_distances from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors def test_neighbors_accuracy_with_n_candidates(): # Checks whether accuracy increases as `n_candidates` increases. n_candidates_values = np.array([.1, 50, 500]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_candidates_values.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, n_candidates in enumerate(n_candidates_values): lshf = LSHForest(n_candidates=n_candidates) lshf.fit(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)] neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") def test_neighbors_accuracy_with_n_estimators(): # Checks whether accuracy increases as `n_estimators` increases. n_estimators = np.array([1, 10, 100]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_estimators.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, t in enumerate(n_estimators): lshf = LSHForest(n_candidates=500, n_estimators=t) lshf.fit(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)] neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") @ignore_warnings def test_kneighbors(): # Checks whether desired number of neighbors are returned. # It is guaranteed to return the requested number of neighbors # if `min_hash_match` is set to 0. Returned distances should be # in ascending order. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) # Test unfitted estimator assert_raises(ValueError, lshf.kneighbors, X[0]) lshf.fit(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)] neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=False) # Desired number of neighbors should be returned. assert_equal(neighbors.shape[1], n_neighbors) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=True) assert_equal(neighbors.shape[0], n_queries) assert_equal(distances.shape[0], n_queries) # Test only neighbors neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=False) assert_equal(neighbors.shape[0], n_queries) # Test random point(not in the data set) query = rng.randn(n_features) lshf.kneighbors(query, n_neighbors=1, return_distance=False) # Test n_neighbors at initialization neighbors = lshf.kneighbors(query, return_distance=False) assert_equal(neighbors.shape[1], 5) # Test `neighbors` has an integer dtype assert_true(neighbors.dtype.kind == 'i', msg="neighbors are not in integer dtype.") def test_radius_neighbors(): # Checks whether Returned distances are less than `radius` # At least one point should be returned when the `radius` is set # to mean distance from the considering point to other points in # the database. # Moreover, this test compares the radius neighbors of LSHForest # with the `sklearn.neighbors.NearestNeighbors`. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() # Test unfitted estimator assert_raises(ValueError, lshf.radius_neighbors, X[0]) lshf.fit(X) for i in range(n_iter): # Select a random point in the dataset as the query query = X[rng.randint(0, n_samples)] # At least one neighbor should be returned when the radius is the # mean distance from the query to the points of the dataset. mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=False) assert_equal(neighbors.shape, (1,)) assert_equal(neighbors.dtype, object) assert_greater(neighbors[0].shape[0], 0) # All distances to points in the results of the radius query should # be less than mean_dist distances, neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=True) assert_array_less(distances[0], mean_dist) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.radius_neighbors(queries, return_distance=True) # dists and inds should not be 1D arrays or arrays of variable lengths # hence the use of the object dtype. assert_equal(distances.shape, (n_queries,)) assert_equal(distances.dtype, object) assert_equal(neighbors.shape, (n_queries,)) assert_equal(neighbors.dtype, object) # Compare with exact neighbor search query = X[rng.randint(0, n_samples)] mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) distances_exact, _ = nbrs.radius_neighbors(query, radius=mean_dist) distances_approx, _ = lshf.radius_neighbors(query, radius=mean_dist) # Radius-based queries do not sort the result points and the order # depends on the method, the random_state and the dataset order. Therefore # we need to sort the results ourselves before performing any comparison. sorted_dists_exact = np.sort(distances_exact[0]) sorted_dists_approx = np.sort(distances_approx[0]) # Distances to exact neighbors are less than or equal to approximate # counterparts as the approximate radius query might have missed some # closer neighbors. assert_true(np.all(np.less_equal(sorted_dists_exact, sorted_dists_approx))) def test_radius_neighbors_boundary_handling(): X = [[0.999, 0.001], [0.5, 0.5], [0, 1.], [-1., 0.001]] n_points = len(X) # Build an exact nearest neighbors model as reference model to ensure # consistency between exact and approximate methods nnbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) # Build a LSHForest model with hyperparameter values that always guarantee # exact results on this toy dataset. lsfh = LSHForest(min_hash_match=0, n_candidates=n_points).fit(X) # define a query aligned with the first axis query = [1., 0.] # Compute the exact cosine distances of the query to the four points of # the dataset dists = pairwise_distances(query, X, metric='cosine').ravel() # The first point is almost aligned with the query (very small angle), # the cosine distance should therefore be almost null: assert_almost_equal(dists[0], 0, decimal=5) # The second point form an angle of 45 degrees to the query vector assert_almost_equal(dists[1], 1 - np.cos(np.pi / 4)) # The third point is orthogonal from the query vector hence at a distance # exactly one: assert_almost_equal(dists[2], 1) # The last point is almost colinear but with opposite sign to the query # therefore it has a cosine 'distance' very close to the maximum possible # value of 2. assert_almost_equal(dists[3], 2, decimal=5) # If we query with a radius of one, all the samples except the last sample # should be included in the results. This means that the third sample # is lying on the boundary of the radius query: exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1) assert_array_equal(np.sort(exact_idx[0]), [0, 1, 2]) assert_array_equal(np.sort(approx_idx[0]), [0, 1, 2]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-1]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-1]) # If we perform the same query with a slighltly lower radius, the third # point of the dataset that lay on the boundary of the previous query # is now rejected: eps = np.finfo(np.float64).eps exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1 - eps) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1 - eps) assert_array_equal(np.sort(exact_idx[0]), [0, 1]) assert_array_equal(np.sort(approx_idx[0]), [0, 1]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-2]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-2]) def test_distances(): # Checks whether returned neighbors are from closest to farthest. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() lshf.fit(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)] distances, neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=True) # Returned neighbors should be from closest to farthest, that is # increasing distance values. assert_true(np.all(np.diff(distances[0]) >= 0)) # Note: the radius_neighbors method does not guarantee the order of # the results. def test_fit(): # Checks whether `fit` method sets all attribute values correctly. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators) lshf.fit(X) # _input_array = X assert_array_equal(X, lshf._fit_X) # A hash function g(p) for each tree assert_equal(n_estimators, len(lshf.hash_functions_)) # Hash length = 32 assert_equal(32, lshf.hash_functions_[0].components_.shape[0]) # Number of trees_ in the forest assert_equal(n_estimators, len(lshf.trees_)) # Each tree has entries for every data point assert_equal(n_samples, len(lshf.trees_[0])) # Original indices after sorting the hashes assert_equal(n_estimators, len(lshf.original_indices_)) # Each set of original indices in a tree has entries for every data point assert_equal(n_samples, len(lshf.original_indices_[0])) def test_partial_fit(): # Checks whether inserting array is consitent with fitted data. # `partial_fit` method should set all attribute values correctly. n_samples = 12 n_samples_partial_fit = 3 n_features = 2 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) X_partial_fit = rng.rand(n_samples_partial_fit, n_features) lshf = LSHForest() # Test unfitted estimator lshf.partial_fit(X) assert_array_equal(X, lshf._fit_X) lshf.fit(X) # Insert wrong dimension assert_raises(ValueError, lshf.partial_fit, np.random.randn(n_samples_partial_fit, n_features - 1)) lshf.partial_fit(X_partial_fit) # size of _input_array = samples + 1 after insertion assert_equal(lshf._fit_X.shape[0], n_samples + n_samples_partial_fit) # size of original_indices_[1] = samples + 1 assert_equal(len(lshf.original_indices_[0]), n_samples + n_samples_partial_fit) # size of trees_[1] = samples + 1 assert_equal(len(lshf.trees_[1]), n_samples + n_samples_partial_fit) def test_hash_functions(): # Checks randomness of hash functions. # Variance and mean of each hash function (projection vector) # should be different from flattened array of hash functions. # If hash functions are not randomly built (seeded with # same value), variances and means of all functions are equal. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators, random_state=rng.randint(0, np.iinfo(np.int32).max)) lshf.fit(X) hash_functions = [] for i in range(n_estimators): hash_functions.append(lshf.hash_functions_[i].components_) for i in range(n_estimators): assert_not_equal(np.var(hash_functions), np.var(lshf.hash_functions_[i].components_)) for i in range(n_estimators): assert_not_equal(np.mean(hash_functions), np.mean(lshf.hash_functions_[i].components_)) def test_candidates(): # Checks whether candidates are sufficient. # This should handle the cases when number of candidates is 0. # User should be warned when number of candidates is less than # requested number of neighbors. X_train = np.array([[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]], dtype=np.float32) X_test = np.array([7, 10, 3], dtype=np.float32) # For zero candidates lshf = LSHForest(min_hash_match=32) lshf.fit(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (3, 32)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=3) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=3) assert_equal(distances.shape[1], 3) # For candidates less than n_neighbors lshf = LSHForest(min_hash_match=31) lshf.fit(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (5, 31)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=5) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=5) assert_equal(distances.shape[1], 5) def test_graphs(): # Smoke tests for graph methods. n_samples_sizes = [5, 10, 20] n_features = 3 rng = np.random.RandomState(42) for n_samples in n_samples_sizes: X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) lshf.fit(X) kneighbors_graph = lshf.kneighbors_graph(X) radius_neighbors_graph = lshf.radius_neighbors_graph(X) assert_equal(kneighbors_graph.shape[0], n_samples) assert_equal(kneighbors_graph.shape[1], n_samples) assert_equal(radius_neighbors_graph.shape[0], n_samples) assert_equal(radius_neighbors_graph.shape[1], n_samples) def test_sparse_input(): # note: Fixed random state in sp.rand is not supported in older scipy. # The test should succeed regardless. X1 = sp.rand(50, 100) X2 = sp.rand(10, 100) forest_sparse = LSHForest(radius=1, random_state=0).fit(X1) forest_dense = LSHForest(radius=1, random_state=0).fit(X1.A) d_sparse, i_sparse = forest_sparse.kneighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.kneighbors(X2.A, return_distance=True) assert_almost_equal(d_sparse, d_dense) assert_almost_equal(i_sparse, i_dense) d_sparse, i_sparse = forest_sparse.radius_neighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.radius_neighbors(X2.A, return_distance=True) assert_equal(d_sparse.shape, d_dense.shape) for a, b in zip(d_sparse, d_dense): assert_almost_equal(a, b) for a, b in zip(i_sparse, i_dense): assert_almost_equal(a, b)
bsd-3-clause
jjx02230808/project0223
examples/decomposition/plot_kernel_pca.py
353
2011
""" ========== Kernel PCA ========== This example shows that Kernel PCA is able to find a projection of the data that makes data linearly separable. """ print(__doc__) # Authors: Mathieu Blondel # Andreas Mueller # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles np.random.seed(0) X, y = make_circles(n_samples=400, factor=.3, noise=.05) kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10) X_kpca = kpca.fit_transform(X) X_back = kpca.inverse_transform(X_kpca) pca = PCA() X_pca = pca.fit_transform(X) # Plot results plt.figure() plt.subplot(2, 2, 1, aspect='equal') plt.title("Original space") reds = y == 0 blues = y == 1 plt.plot(X[reds, 0], X[reds, 1], "ro") plt.plot(X[blues, 0], X[blues, 1], "bo") plt.xlabel("$x_1$") plt.ylabel("$x_2$") X1, X2 = np.meshgrid(np.linspace(-1.5, 1.5, 50), np.linspace(-1.5, 1.5, 50)) X_grid = np.array([np.ravel(X1), np.ravel(X2)]).T # projection on the first principal component (in the phi space) Z_grid = kpca.transform(X_grid)[:, 0].reshape(X1.shape) plt.contour(X1, X2, Z_grid, colors='grey', linewidths=1, origin='lower') plt.subplot(2, 2, 2, aspect='equal') plt.plot(X_pca[reds, 0], X_pca[reds, 1], "ro") plt.plot(X_pca[blues, 0], X_pca[blues, 1], "bo") plt.title("Projection by PCA") plt.xlabel("1st principal component") plt.ylabel("2nd component") plt.subplot(2, 2, 3, aspect='equal') plt.plot(X_kpca[reds, 0], X_kpca[reds, 1], "ro") plt.plot(X_kpca[blues, 0], X_kpca[blues, 1], "bo") plt.title("Projection by KPCA") plt.xlabel("1st principal component in space induced by $\phi$") plt.ylabel("2nd component") plt.subplot(2, 2, 4, aspect='equal') plt.plot(X_back[reds, 0], X_back[reds, 1], "ro") plt.plot(X_back[blues, 0], X_back[blues, 1], "bo") plt.title("Original space after inverse transform") plt.xlabel("$x_1$") plt.ylabel("$x_2$") plt.subplots_adjust(0.02, 0.10, 0.98, 0.94, 0.04, 0.35) plt.show()
bsd-3-clause
igabriel85/dmon-adp
adpformater/adpformater.py
1
1615
import pandas as pd class DataFormatter(): def __init__(self, dataloc): self.dataloc = dataloc def aggJsonToCsv(self): return "CSV file" def expTimestamp(self): return "Expand metric timestamp" def window(self): return "Window metrics" def pivot(self): return "Pivot values" def addID(self): return "Add new ID as index" def removeID(self): return "Remove selected column as index" def renameHeader(self): return "Rename headers" def normalize(self): return "Normalize data" def denormalize(self): return "Denormalize data" input_table = pd.read_csv("metrics.csv") for index, row in input_table.iterrows(): input_table = input_table.append([row]*9) input_table = input_table.sort_values(['row ID']) input_table = input_table.reset_index(drop=True) for index, rows in input_table.iterrows(): if int(index) > 59: print "Index to big!" time = rows[0].split(", ", 1) #In Knime row for timestamp is row(55) last one timeHour = time[1].split(":", 2) timeHourSeconds = timeHour[2].split(".", 1) timeHourSecondsDecimal = timeHour[2].split(".", 1) timeHourSecondsDecimal[0] = str(index) if len(timeHourSecondsDecimal[0]) == 1: timeHourSecondsDecimal[0] = '0%s' %timeHourSecondsDecimal[0] decimal = '.'.join(timeHourSecondsDecimal) timeHour[2] = decimal timenew = ':'.join(timeHour) time[1] = timenew finalString = ', '.join(time) input_table.set_value(index, 'row ID', finalString) input_table.to_csv('out.csv')
apache-2.0
idlead/scikit-learn
examples/linear_model/plot_sgd_comparison.py
112
1819
""" ================================== Comparing various online solvers ================================== An example showing how different online solvers perform on the hand-written digits dataset. """ # Author: Rob Zinkov <rob at zinkov dot com> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.linear_model import SGDClassifier, Perceptron from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import LogisticRegression heldout = [0.95, 0.90, 0.75, 0.50, 0.01] rounds = 20 digits = datasets.load_digits() X, y = digits.data, digits.target classifiers = [ ("SGD", SGDClassifier()), ("ASGD", SGDClassifier(average=True)), ("Perceptron", Perceptron()), ("Passive-Aggressive I", PassiveAggressiveClassifier(loss='hinge', C=1.0)), ("Passive-Aggressive II", PassiveAggressiveClassifier(loss='squared_hinge', C=1.0)), ("SAG", LogisticRegression(solver='sag', tol=1e-1, C=1.e4 / X.shape[0])) ] xx = 1. - np.array(heldout) for name, clf in classifiers: print("training %s" % name) rng = np.random.RandomState(42) yy = [] for i in heldout: yy_ = [] for r in range(rounds): X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=i, random_state=rng) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) yy_.append(1 - np.mean(y_pred == y_test)) yy.append(np.mean(yy_)) plt.plot(xx, yy, label=name) plt.legend(loc="upper right") plt.xlabel("Proportion train") plt.ylabel("Test Error Rate") plt.show()
bsd-3-clause
junbochen/pylearn2
pylearn2/scripts/papers/jia_huang_wkshp_11/evaluate.py
44
3208
from __future__ import print_function from optparse import OptionParser import warnings try: from sklearn.metrics import classification_report except ImportError: classification_report = None warnings.warn("couldn't find sklearn.metrics.classification_report") try: from sklearn.metrics import confusion_matrix except ImportError: confusion_matrix = None warnings.warn("couldn't find sklearn.metrics.metrics.confusion_matrix") from galatea.s3c.feature_loading import get_features from pylearn2.utils import serial from pylearn2.datasets.cifar10 import CIFAR10 from pylearn2.datasets.cifar100 import CIFAR100 import numpy as np def test(model, X, y): print("Evaluating svm") y_pred = model.predict(X) #try: if True: acc = (y == y_pred).mean() print("Accuracy ",acc) """except: print("something went wrong") print('y:') print(y) print('y_pred:') print(y_pred) print('extra info') print(type(y)) print(type(y_pred)) print(y.dtype) print(y_pred.dtype) print(y.shape) print(y_pred.shape) raise """ # def get_test_labels(cifar10, cifar100, stl10): assert cifar10 + cifar100 + stl10 == 1 if stl10: print('loading entire stl-10 test set just to get the labels') stl10 = serial.load("${PYLEARN2_DATA_PATH}/stl10/stl10_32x32/test.pkl") return stl10.y if cifar10: print('loading entire cifar10 test set just to get the labels') cifar10 = CIFAR10(which_set = 'test') return np.asarray(cifar10.y) if cifar100: print('loading entire cifar100 test set just to get the fine labels') cifar100 = CIFAR100(which_set = 'test') return np.asarray(cifar100.y_fine) assert False def main(model_path, test_path, dataset, **kwargs): model = serial.load(model_path) cifar100 = dataset == 'cifar100' cifar10 = dataset == 'cifar10' stl10 = dataset == 'stl10' assert cifar10 + cifar100 + stl10 == 1 y = get_test_labels(cifar10, cifar100, stl10) X = get_features(test_path, False, False) if stl10: num_examples = 8000 if cifar10 or cifar100: num_examples = 10000 if not X.shape[0] == num_examples: raise AssertionError('Expected %d examples but got %d' % (num_examples, X.shape[0])) assert y.shape[0] == num_examples test(model,X,y) if __name__ == '__main__': """ Useful for quick tests. Usage: python train_bilinear.py """ parser = OptionParser() parser.add_option("-m", "--model", action="store", type="string", dest="model_path") parser.add_option("-t", "--test", action="store", type="string", dest="test") parser.add_option("-o", action="store", dest="output", default = None, help="path to write the report to") parser.add_option('--dataset', type='string', dest = 'dataset', action='store', default = None) #(options, args) = parser.parse_args() #assert options.output main(model_path='final_model.pkl', test_path='test_features.npy', dataset = 'cifar100', )
bsd-3-clause
fboers/jumeg
examples/do_MLICA.py
1
5891
""" Compute ICA object based on filtered and downsampled data. Identify ECG and EOG artifacts using MLICA and compare results to correlation & ctps analysis. Apply ICA object to filtered and unfiltered data. Ahmad Hasasneh, Nikolas Kampel, Praveen Sripad, N. Jon Shah, and Juergen Dammers "Deep Learning Approach for Automatic Classification of Ocular and Cardiac Artifacts in MEG Data" Journal of Engineering, vol. 2018, Article ID 1350692,10 pages, 2018. https://doi.org/10.1155/2018/1350692 """ import os.path as op import matplotlib.pylab as plt plt.ion() import numpy as np import mne from jumeg.decompose.ica_replace_mean_std import ICA, ica_update_mean_std from keras.models import load_model from jumeg.jumeg_noise_reducer import noise_reducer from jumeg.jumeg_preprocessing import get_ics_cardiac, get_ics_ocular from jumeg.jumeg_plot import plot_performance_artifact_rejection from jumeg.jumeg_utils import get_jumeg_path # config MLICA_threshold = 0.8 n_components = 60 njobs = 4 # for downsampling tmin = 0 tmax = tmin + 15000 flow_ecg, fhigh_ecg = 8, 20 flow_eog, fhigh_eog = 1, 20 ecg_thresh, eog_thresh = 0.3, 0.3 ecg_ch = 'ECG 001' eog1_ch = 'EOG 001' eog2_ch = 'EOG 002' reject = {'mag': 5e-12} refnotch = [50., 100., 150., 200., 250., 300., 350., 400.] data_path = op.join(get_jumeg_path(), 'data') print(data_path) # example filname raw_fname = "/Volumes/megraid21/sripad/cau_fif_data/jumeg_test_data/" \ "109925_CAU01A_100715_0842_2_c,rfDC-raw.fif" # load the model for artifact rejection # the details of the model is provided in the x_validation_shuffle_v4_split_23.txt model_name = op.join(data_path, "dcnn_model.hdf5") model = load_model(model_name) # noise reducer raw_nr = noise_reducer(raw_fname, reflp=5., return_raw=True) raw_nr = noise_reducer(raw_fname, raw=raw_nr, refhp=0.1, noiseref=['RFG ...'], return_raw=True) # 50HZ and 60HZ notch filter to remove noise raw = noise_reducer(raw_fname, raw=raw_nr, refnotch=refnotch, return_raw=True) picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=False, stim=False, exclude='bads') raw_filtered = raw.copy().filter(0., 45., picks=picks, filter_length='auto', l_trans_bandwidth='auto', h_trans_bandwidth='auto', n_jobs=njobs, method='fir', phase='zero', fir_window='hamming') # downsample the data to 250 Hz, necessary for the model raw_ds = raw_filtered.copy().resample(250, npad='auto', window='boxcar', stim_picks=None, n_jobs=njobs, events=None) raw_ds_chop = raw_ds.copy().crop(tmin=tmin*4./1000, tmax=tmax*4./1000) # downsampled raw raw_filtered_chop = raw_filtered.copy().crop(tmin=tmin*4./1000, tmax=tmax*4./1000) raw_chop = raw.copy().crop(tmin=tmin*4./1000, tmax=tmax*4./1000) ica = ICA(method='fastica', n_components=n_components, random_state=42, max_pca_components=None, max_iter=5000, verbose=None) # do the ICA decomposition on downsampled raw ica.fit(raw_ds_chop, picks=picks, reject=reject, verbose=None) sources = ica.get_sources(raw_ds_chop)._data # extract temporal and spatial components mm = np.float32(np.dot(ica.mixing_matrix_[:, :].T, ica.pca_components_[:ica.n_components_])) # use [:, :15000] to make sure it's 15000 data points chop = sources[:, :15000] chop_reshaped = np.reshape(chop, (len(chop), len(chop[0]), 1)) model_scores = model.predict([mm, chop_reshaped], verbose=1) bads_MLICA = [] # print model_scores for idx in range(0, len(model_scores)): if model_scores[idx][0] > MLICA_threshold: bads_MLICA.append(idx) # visualisation # ica.exclude = bads_MLICA # ica.plot_sources(raw_ds_chop, block=True) # compare MLICA to results from correlation and ctps analysis ica.exclude = [] print('Identifying components..') # get ECG/EOG related components using JuMEG ic_ecg = get_ics_cardiac(raw_filtered_chop, ica, flow=flow_ecg, fhigh=fhigh_ecg, thresh=ecg_thresh, tmin=-0.5, tmax=0.5, name_ecg=ecg_ch, use_CTPS=True)[0] # returns both ICs and scores (take only ICs) ic_eog = get_ics_ocular(raw_filtered_chop, ica, flow=flow_eog, fhigh=fhigh_eog, thresh=eog_thresh, name_eog_hor=eog1_ch, name_eog_ver=eog2_ch, score_func='pearsonr') bads_corr_ctps = list(ic_ecg) + list(ic_eog) bads_corr_ctps = list(set(bads_corr_ctps)) # remove potential duplicates bads_corr_ctps.sort() # visualisation # ica.exclude = bads_corr_ctps # ica.plot_sources(raw_chop, block=True) print('Bad components from MLICA:', bads_MLICA) print('Bad components from correlation & ctps:', bads_corr_ctps) # apply MLICA result to filtered and unfiltered data # exclude bad components identified by MLICA ica.exclude = bads_MLICA fnout_fig = '109925_CAU01A_100715_0842_2_c,rfDC,0-45hz,ar-perf' ica_filtered_chop = ica_update_mean_std(raw_filtered_chop, ica, picks=picks, reject=reject) raw_filtered_chop_clean = ica_filtered_chop.apply(raw_filtered_chop, exclude=ica.exclude, n_pca_components=None) ica_unfiltered_chop = ica_update_mean_std(raw_chop, ica, picks=picks, reject=reject) raw_unfiltered_chop_clean = ica_unfiltered_chop.apply(raw_chop, exclude=ica.exclude, n_pca_components=None) # create copy of original data since apply_ica_replace_mean_std changes the input data in place (raw and ica) raw_copy = raw.copy().crop(tmin=tmin*4./1000, tmax=tmax*4./1000) plot_performance_artifact_rejection(raw_copy, ica_unfiltered_chop, fnout_fig, meg_clean=raw_unfiltered_chop_clean, show=False, verbose=False, name_ecg=ecg_ch, name_eog=eog2_ch)
bsd-3-clause