Initial commit
Browse files
boolq.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Based on https://huggingface.co/datasets/boolq/blob/main/boolq.py
|
2 |
+
|
3 |
+
import json
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
|
8 |
+
# TODO(boolq): BibTeX citation
|
9 |
+
_CITATION = """\
|
10 |
+
@inproceedings{clark2019boolq,
|
11 |
+
title = {BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions},
|
12 |
+
author = {Clark, Christopher and Lee, Kenton and Chang, Ming-Wei, and Kwiatkowski, Tom and Collins, Michael, and Toutanova, Kristina},
|
13 |
+
booktitle = {NAACL},
|
14 |
+
year = {2019},
|
15 |
+
}
|
16 |
+
"""
|
17 |
+
|
18 |
+
# TODO(boolq):
|
19 |
+
_DESCRIPTION = """\
|
20 |
+
BoolQ is a question answering dataset for yes/no questions containing 15942 examples. These questions are naturally
|
21 |
+
occurring ---they are generated in unprompted and unconstrained settings.
|
22 |
+
Each example is a triplet of (question, passage, answer), with the title of the page as optional additional context.
|
23 |
+
The text-pair classification setup is similar to existing natural language inference tasks.
|
24 |
+
"""
|
25 |
+
|
26 |
+
_URL = "https://storage.googleapis.com/boolq/"
|
27 |
+
_URLS = {
|
28 |
+
"train": _URL + "train.jsonl",
|
29 |
+
"dev": _URL + "dev.jsonl",
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
+
class Boolq(datasets.GeneratorBasedBuilder):
|
34 |
+
"""TODO(boolq): Short description of my dataset."""
|
35 |
+
|
36 |
+
# TODO(boolq): Set up version.
|
37 |
+
VERSION = datasets.Version("0.1.0")
|
38 |
+
|
39 |
+
def _info(self):
|
40 |
+
# TODO(boolq): Specifies the datasets.DatasetInfo object
|
41 |
+
return datasets.DatasetInfo(
|
42 |
+
# This is the description that will appear on the datasets page.
|
43 |
+
description=_DESCRIPTION,
|
44 |
+
# datasets.features.FeatureConnectors
|
45 |
+
features=datasets.Features(
|
46 |
+
{
|
47 |
+
"question": datasets.Value("string"),
|
48 |
+
"answer": datasets.Value("bool"),
|
49 |
+
"passage": datasets.Value("string")
|
50 |
+
# These are the features of your dataset like images, labels ...
|
51 |
+
}
|
52 |
+
),
|
53 |
+
# If there's a common (input, target) tuple from the features,
|
54 |
+
# specify them here. They'll be used if as_supervised=True in
|
55 |
+
# builder.as_dataset.
|
56 |
+
supervised_keys=None,
|
57 |
+
# Homepage of the dataset for documentation
|
58 |
+
homepage="https://github.com/google-research-datasets/boolean-questions",
|
59 |
+
citation=_CITATION,
|
60 |
+
)
|
61 |
+
|
62 |
+
def _split_generators(self, dl_manager):
|
63 |
+
"""Returns SplitGenerators."""
|
64 |
+
# TODO(boolq): Downloads the data and defines the splits
|
65 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to
|
66 |
+
# download and extract URLs
|
67 |
+
urls_to_download = _URLS
|
68 |
+
downloaded_files = dl_manager.download(urls_to_download)
|
69 |
+
|
70 |
+
return [
|
71 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
72 |
+
datasets.SplitGenerator(
|
73 |
+
name=datasets.Split.VALIDATION,
|
74 |
+
gen_kwargs={"filepath": downloaded_files["dev"]},
|
75 |
+
),
|
76 |
+
]
|
77 |
+
|
78 |
+
def _generate_examples(self, filepath):
|
79 |
+
"""Yields examples."""
|
80 |
+
# TODO(boolq): Yields (key, example) tuples from the dataset
|
81 |
+
with open(filepath, encoding="utf-8") as f:
|
82 |
+
for id_, row in enumerate(f):
|
83 |
+
data = json.loads(row)
|
84 |
+
question = data["question"]
|
85 |
+
answer = data["answer"]
|
86 |
+
passage = data["passage"]
|
87 |
+
title = data["title"]
|
88 |
+
yield id_, {"question": question, "answer": answer, "passage": passage, "title": title}
|