Datasets:
File size: 79,884 Bytes
2f33750 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"jiggins = pd.read_csv(\"../Jiggins_Zenodo_Master.csv\", low_memory = False)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(49956, 25)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jiggins.shape"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Unnamed: 0</th>\n",
" <th>CAMID</th>\n",
" <th>X</th>\n",
" <th>Image_name</th>\n",
" <th>Side</th>\n",
" <th>zenodo_name</th>\n",
" <th>zenodo_link</th>\n",
" <th>Sequence</th>\n",
" <th>Taxonomic.Name</th>\n",
" <th>Locality</th>\n",
" <th>...</th>\n",
" <th>Dataset</th>\n",
" <th>Store</th>\n",
" <th>Eclosion.Date</th>\n",
" <th>Brood</th>\n",
" <th>Death.Date</th>\n",
" <th>Cross.Type</th>\n",
" <th>Stage</th>\n",
" <th>Sex</th>\n",
" <th>Unit.Type</th>\n",
" <th>Verbatim.Coordinates</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>20776</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.sheffield.ps.nn.ikiam.batch1.csv</td>\n",
" <td>https://zenodo.org/record/4288311</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>NaN</td>\n",
" <td>20777</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.sheffield.ps.nn.ikiam.batch1.csv</td>\n",
" <td>https://zenodo.org/record/4288311</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>20778</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.sheffield.ps.nn.ikiam.batch1.csv</td>\n",
" <td>https://zenodo.org/record/4288311</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>NaN</td>\n",
" <td>20779</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.sheffield.ps.nn.ikiam.batch1.csv</td>\n",
" <td>https://zenodo.org/record/4288311</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5</td>\n",
" <td>NaN</td>\n",
" <td>20780</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.sheffield.ps.nn.ikiam.batch1.csv</td>\n",
" <td>https://zenodo.org/record/4288311</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 25 columns</p>\n",
"</div>"
],
"text/plain": [
" Unnamed: 0 CAMID X Image_name Side \\\n",
"0 1 NaN 20776 NaN NaN \n",
"1 2 NaN 20777 NaN NaN \n",
"2 3 NaN 20778 NaN NaN \n",
"3 4 NaN 20779 NaN NaN \n",
"4 5 NaN 20780 NaN NaN \n",
"\n",
" zenodo_name zenodo_link \\\n",
"0 0.sheffield.ps.nn.ikiam.batch1.csv https://zenodo.org/record/4288311 \n",
"1 0.sheffield.ps.nn.ikiam.batch1.csv https://zenodo.org/record/4288311 \n",
"2 0.sheffield.ps.nn.ikiam.batch1.csv https://zenodo.org/record/4288311 \n",
"3 0.sheffield.ps.nn.ikiam.batch1.csv https://zenodo.org/record/4288311 \n",
"4 0.sheffield.ps.nn.ikiam.batch1.csv https://zenodo.org/record/4288311 \n",
"\n",
" Sequence Taxonomic.Name Locality ... Dataset Store Eclosion.Date Brood \\\n",
"0 NaN NaN NaN ... NaN NaN NaN NaN \n",
"1 NaN NaN NaN ... NaN NaN NaN NaN \n",
"2 NaN NaN NaN ... NaN NaN NaN NaN \n",
"3 NaN NaN NaN ... NaN NaN NaN NaN \n",
"4 NaN NaN NaN ... NaN NaN NaN NaN \n",
"\n",
" Death.Date Cross.Type Stage Sex Unit.Type Verbatim.Coordinates \n",
"0 NaN NaN NaN NaN NaN NaN \n",
"1 NaN NaN NaN NaN NaN NaN \n",
"2 NaN NaN NaN NaN NaN NaN \n",
"3 NaN NaN NaN NaN NaN NaN \n",
"4 NaN NaN NaN NaN NaN NaN \n",
"\n",
"[5 rows x 25 columns]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jiggins.head()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['Unnamed: 0', 'CAMID', 'X', 'Image_name', 'Side', 'zenodo_name',\n",
" 'zenodo_link', 'Sequence', 'Taxonomic.Name', 'Locality',\n",
" 'Sample.accession', 'Collected.by', 'Other.Id', 'Collected.By', 'Date',\n",
" 'Dataset', 'Store', 'Eclosion.Date', 'Brood', 'Death.Date',\n",
" 'Cross.Type', 'Stage', 'Sex', 'Unit.Type', 'Verbatim.Coordinates'],\n",
" dtype='object')"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jiggins.columns"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"411"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jiggins.Image_name.isna().sum()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"28585 CAM036108_v.JPG\n",
"45469 CAM044420_v.CR2\n",
"16097 CAM011543_v.CR2\n",
"22992 CAM017525_v.JPG\n",
"6601 CAM000930_v.JPG\n",
"39261 CAM043354_v.CR2\n",
"2577 19N2059_d.CR2\n",
"21344 CAM017153_d.JPG\n",
"48669 CS004036_d.JPG\n",
"19706 CAM016699_v.JPG\n",
"12020 CAM009527_v.JPG\n",
"47898 CS000628_d.JPG\n",
"7592 CAM001394_d.JPG\n",
"43523 CAM044173_v.CR2\n",
"12596 CAM010226_v.JPG\n",
"33816 CAM041028_v.JPG\n",
"23148 CAM017547_v_whitestandard.JPG\n",
"44996 CAM044362_hwv.CR2\n",
"3460 19N2605_v.JPG\n",
"24164 CAM017738_d_whitestandard.CR2\n",
"Name: Image_name, dtype: object"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jiggins.Image_name.sample(20)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>CAMID</th>\n",
" <th>X</th>\n",
" <th>Image_name</th>\n",
" <th>zenodo_name</th>\n",
" <th>zenodo_link</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>22895</th>\n",
" <td>CAM017512</td>\n",
" <td>5226</td>\n",
" <td>CAM017512_d.JPG</td>\n",
" <td>CAM.coll.images.batch1_v2.csv</td>\n",
" <td>https://zenodo.org/record/3082688</td>\n",
" </tr>\n",
" <tr>\n",
" <th>36246</th>\n",
" <td>CAM041681</td>\n",
" <td>39690</td>\n",
" <td>CAM041681_d.CR2</td>\n",
" <td>0.gmk.broods.all.csv</td>\n",
" <td>https://zenodo.org/record/4291095</td>\n",
" </tr>\n",
" <tr>\n",
" <th>38630</th>\n",
" <td>CAM043178</td>\n",
" <td>29793</td>\n",
" <td>CAM043178_fwv.CR2</td>\n",
" <td>batch1.Peru.image.names.Zenodo.csv</td>\n",
" <td>https://zenodo.org/record/3569598</td>\n",
" </tr>\n",
" <tr>\n",
" <th>45984</th>\n",
" <td>CAM044484</td>\n",
" <td>34635</td>\n",
" <td>CAM044484_hwd.CR2</td>\n",
" <td>batch2.Peru.image.names.Zenodo.csv</td>\n",
" <td>https://zenodo.org/record/4287444</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15393</th>\n",
" <td>CAM011382</td>\n",
" <td>28038</td>\n",
" <td>CAM011382_d.JPG</td>\n",
" <td>2001_2.broods.batch.2.csv</td>\n",
" <td>https://zenodo.org/record/2550097</td>\n",
" </tr>\n",
" <tr>\n",
" <th>44443</th>\n",
" <td>CAM044299</td>\n",
" <td>33864</td>\n",
" <td>CAM044299_d.JPG</td>\n",
" <td>batch2.Peru.image.names.Zenodo.csv</td>\n",
" <td>https://zenodo.org/record/4287444</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7117</th>\n",
" <td>CAM001175</td>\n",
" <td>7908</td>\n",
" <td>CAM001175_d.JPG</td>\n",
" <td>CAM.coll.images.batch4.csv</td>\n",
" <td>https://zenodo.org/record/2682669</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" CAMID X Image_name \\\n",
"22895 CAM017512 5226 CAM017512_d.JPG \n",
"36246 CAM041681 39690 CAM041681_d.CR2 \n",
"38630 CAM043178 29793 CAM043178_fwv.CR2 \n",
"45984 CAM044484 34635 CAM044484_hwd.CR2 \n",
"15393 CAM011382 28038 CAM011382_d.JPG \n",
"44443 CAM044299 33864 CAM044299_d.JPG \n",
"7117 CAM001175 7908 CAM001175_d.JPG \n",
"\n",
" zenodo_name zenodo_link \n",
"22895 CAM.coll.images.batch1_v2.csv https://zenodo.org/record/3082688 \n",
"36246 0.gmk.broods.all.csv https://zenodo.org/record/4291095 \n",
"38630 batch1.Peru.image.names.Zenodo.csv https://zenodo.org/record/3569598 \n",
"45984 batch2.Peru.image.names.Zenodo.csv https://zenodo.org/record/4287444 \n",
"15393 2001_2.broods.batch.2.csv https://zenodo.org/record/2550097 \n",
"44443 batch2.Peru.image.names.Zenodo.csv https://zenodo.org/record/4287444 \n",
"7117 CAM.coll.images.batch4.csv https://zenodo.org/record/2682669 "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jiggins_imgs = jiggins[['CAMID', 'X', 'Image_name', 'zenodo_name', 'zenodo_link']].dropna()\n",
"jiggins_imgs.sample(7)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>CAMID</th>\n",
" <th>X</th>\n",
" <th>Image_name</th>\n",
" <th>zenodo_name</th>\n",
" <th>zenodo_link</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>10528</th>\n",
" <td>CAM008821</td>\n",
" <td>9887</td>\n",
" <td>CAM008821_d.JPG</td>\n",
" <td>CAM.coll.images.batch6.csv</td>\n",
" <td>https://zenodo.org/record/2686762</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19587</th>\n",
" <td>CAM016660</td>\n",
" <td>3856</td>\n",
" <td>CAM016660_v.JPG</td>\n",
" <td>CAM.coll.images.batch1_v2.csv</td>\n",
" <td>https://zenodo.org/record/3082688</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25858</th>\n",
" <td>CAM017989</td>\n",
" <td>17211</td>\n",
" <td>CAM017989_v_whitestandard.JPG</td>\n",
" <td>CAM.coll.patricio.batch1.csv</td>\n",
" <td>https://zenodo.org/record/1748277</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10042</th>\n",
" <td>CAM008668</td>\n",
" <td>46436</td>\n",
" <td>CAM008668_d.JPG</td>\n",
" <td>occurences_and_multimedia.csv</td>\n",
" <td>https://zenodo.org/record/3477891</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30646</th>\n",
" <td>CAM040217</td>\n",
" <td>47915</td>\n",
" <td>CAM040217_v.JPG</td>\n",
" <td>occurences_and_multimedia.csv</td>\n",
" <td>https://zenodo.org/record/3477891</td>\n",
" </tr>\n",
" <tr>\n",
" <th>42889</th>\n",
" <td>CAM044091</td>\n",
" <td>33084</td>\n",
" <td>CAM044091_fwd.JPG</td>\n",
" <td>batch2.Peru.image.names.Zenodo.csv</td>\n",
" <td>https://zenodo.org/record/4287444</td>\n",
" </tr>\n",
" <tr>\n",
" <th>39215</th>\n",
" <td>CAM043344</td>\n",
" <td>30372</td>\n",
" <td>CAM043344_fwd.JPG</td>\n",
" <td>batch1.Peru.image.names.Zenodo.csv</td>\n",
" <td>https://zenodo.org/record/3569598</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" CAMID X Image_name \\\n",
"10528 CAM008821 9887 CAM008821_d.JPG \n",
"19587 CAM016660 3856 CAM016660_v.JPG \n",
"25858 CAM017989 17211 CAM017989_v_whitestandard.JPG \n",
"10042 CAM008668 46436 CAM008668_d.JPG \n",
"30646 CAM040217 47915 CAM040217_v.JPG \n",
"42889 CAM044091 33084 CAM044091_fwd.JPG \n",
"39215 CAM043344 30372 CAM043344_fwd.JPG \n",
"\n",
" zenodo_name zenodo_link \n",
"10528 CAM.coll.images.batch6.csv https://zenodo.org/record/2686762 \n",
"19587 CAM.coll.images.batch1_v2.csv https://zenodo.org/record/3082688 \n",
"25858 CAM.coll.patricio.batch1.csv https://zenodo.org/record/1748277 \n",
"10042 occurences_and_multimedia.csv https://zenodo.org/record/3477891 \n",
"30646 occurences_and_multimedia.csv https://zenodo.org/record/3477891 \n",
"42889 batch2.Peru.image.names.Zenodo.csv https://zenodo.org/record/4287444 \n",
"39215 batch1.Peru.image.names.Zenodo.csv https://zenodo.org/record/3569598 "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jiggins_imgs[jiggins_imgs.Image_name.str.contains('JPG')].sample(7)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>CAMID</th>\n",
" <th>X</th>\n",
" <th>Image_name</th>\n",
" <th>zenodo_name</th>\n",
" <th>zenodo_link</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>8296</th>\n",
" <td>CAM008147</td>\n",
" <td>44302</td>\n",
" <td>8147v.jpg</td>\n",
" <td>occurences_and_multimedia.csv</td>\n",
" <td>https://zenodo.org/record/3477891</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15626</th>\n",
" <td>CAM011437</td>\n",
" <td>44275</td>\n",
" <td>11437v.jpg</td>\n",
" <td>occurences_and_multimedia.csv</td>\n",
" <td>https://zenodo.org/record/3477891</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16975</th>\n",
" <td>CAM012169</td>\n",
" <td>25057</td>\n",
" <td>12169v.jpg</td>\n",
" <td>Heliconius_wing_old_photos_2001_2019_part1.csv</td>\n",
" <td>https://zenodo.org/record/2552371</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14097</th>\n",
" <td>CAM010773</td>\n",
" <td>23942</td>\n",
" <td>10773v.jpg</td>\n",
" <td>Heliconius_wing_old_photos_2001_2019_part1.csv</td>\n",
" <td>https://zenodo.org/record/2552371</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15970</th>\n",
" <td>CAM011513</td>\n",
" <td>24565</td>\n",
" <td>11513v.jpg</td>\n",
" <td>Heliconius_wing_old_photos_2001_2019_part1.csv</td>\n",
" <td>https://zenodo.org/record/2552371</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13349</th>\n",
" <td>CAM010485</td>\n",
" <td>23640</td>\n",
" <td>10485d.jpg</td>\n",
" <td>Heliconius_wing_old_photos_2001_2019_part1.csv</td>\n",
" <td>https://zenodo.org/record/2552371</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16919</th>\n",
" <td>CAM012124</td>\n",
" <td>25001</td>\n",
" <td>12124v.jpg</td>\n",
" <td>Heliconius_wing_old_photos_2001_2019_part1.csv</td>\n",
" <td>https://zenodo.org/record/2552371</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" CAMID X Image_name \\\n",
"8296 CAM008147 44302 8147v.jpg \n",
"15626 CAM011437 44275 11437v.jpg \n",
"16975 CAM012169 25057 12169v.jpg \n",
"14097 CAM010773 23942 10773v.jpg \n",
"15970 CAM011513 24565 11513v.jpg \n",
"13349 CAM010485 23640 10485d.jpg \n",
"16919 CAM012124 25001 12124v.jpg \n",
"\n",
" zenodo_name \\\n",
"8296 occurences_and_multimedia.csv \n",
"15626 occurences_and_multimedia.csv \n",
"16975 Heliconius_wing_old_photos_2001_2019_part1.csv \n",
"14097 Heliconius_wing_old_photos_2001_2019_part1.csv \n",
"15970 Heliconius_wing_old_photos_2001_2019_part1.csv \n",
"13349 Heliconius_wing_old_photos_2001_2019_part1.csv \n",
"16919 Heliconius_wing_old_photos_2001_2019_part1.csv \n",
"\n",
" zenodo_link \n",
"8296 https://zenodo.org/record/3477891 \n",
"15626 https://zenodo.org/record/3477891 \n",
"16975 https://zenodo.org/record/2552371 \n",
"14097 https://zenodo.org/record/2552371 \n",
"15970 https://zenodo.org/record/2552371 \n",
"13349 https://zenodo.org/record/2552371 \n",
"16919 https://zenodo.org/record/2552371 "
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jiggins_imgs[jiggins_imgs.Image_name.str.contains('jpg')].sample(7)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>CAMID</th>\n",
" <th>X</th>\n",
" <th>Image_name</th>\n",
" <th>zenodo_name</th>\n",
" <th>zenodo_link</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>47693</th>\n",
" <td>CAM050052</td>\n",
" <td>26152</td>\n",
" <td>CAM050052_M1_10_Hmr_mut_D_cut.tif</td>\n",
" <td>Heliconius_wing_old_photos_2001_2019_part3.csv</td>\n",
" <td>https://zenodo.org/record/2553977</td>\n",
" </tr>\n",
" <tr>\n",
" <th>47694</th>\n",
" <td>CAM050063</td>\n",
" <td>26155</td>\n",
" <td>CAM050063_M7_17_Hmr_mut_V_IMG_8293_wb_cut.tif</td>\n",
" <td>Heliconius_wing_old_photos_2001_2019_part3.csv</td>\n",
" <td>https://zenodo.org/record/2553977</td>\n",
" </tr>\n",
" <tr>\n",
" <th>47712</th>\n",
" <td>CAM050147</td>\n",
" <td>26197</td>\n",
" <td>CAM050147_DS1_HW_IMG_8537_cut_3.tif</td>\n",
" <td>Heliconius_wing_old_photos_2001_2019_part3.csv</td>\n",
" <td>https://zenodo.org/record/2553977</td>\n",
" </tr>\n",
" <tr>\n",
" <th>47637</th>\n",
" <td>CAM050006</td>\n",
" <td>26126</td>\n",
" <td>CAM050006_S1_17_Hsar_mut_V_8296_wb_cut.tif</td>\n",
" <td>Heliconius_wing_old_photos_2001_2019_part3.csv</td>\n",
" <td>https://zenodo.org/record/2553977</td>\n",
" </tr>\n",
" <tr>\n",
" <th>47626</th>\n",
" <td>CAM050001</td>\n",
" <td>26118</td>\n",
" <td>CAM050001_S1_5_Hs_mut_D_wb_cut.tif</td>\n",
" <td>Heliconius_wing_old_photos_2001_2019_part3.csv</td>\n",
" <td>https://zenodo.org/record/2553977</td>\n",
" </tr>\n",
" <tr>\n",
" <th>47692</th>\n",
" <td>CAM050052</td>\n",
" <td>26153</td>\n",
" <td>CAM050052_M1_10_Hmr_mut_V_cut.tif</td>\n",
" <td>Heliconius_wing_old_photos_2001_2019_part3.csv</td>\n",
" <td>https://zenodo.org/record/2553977</td>\n",
" </tr>\n",
" <tr>\n",
" <th>47673</th>\n",
" <td>CAM050026</td>\n",
" <td>26147</td>\n",
" <td>CAM050026_S4_1_Hs_mut_V_IMG_8453_wb_cut.tif</td>\n",
" <td>Heliconius_wing_old_photos_2001_2019_part3.csv</td>\n",
" <td>https://zenodo.org/record/2553977</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" CAMID X Image_name \\\n",
"47693 CAM050052 26152 CAM050052_M1_10_Hmr_mut_D_cut.tif \n",
"47694 CAM050063 26155 CAM050063_M7_17_Hmr_mut_V_IMG_8293_wb_cut.tif \n",
"47712 CAM050147 26197 CAM050147_DS1_HW_IMG_8537_cut_3.tif \n",
"47637 CAM050006 26126 CAM050006_S1_17_Hsar_mut_V_8296_wb_cut.tif \n",
"47626 CAM050001 26118 CAM050001_S1_5_Hs_mut_D_wb_cut.tif \n",
"47692 CAM050052 26153 CAM050052_M1_10_Hmr_mut_V_cut.tif \n",
"47673 CAM050026 26147 CAM050026_S4_1_Hs_mut_V_IMG_8453_wb_cut.tif \n",
"\n",
" zenodo_name \\\n",
"47693 Heliconius_wing_old_photos_2001_2019_part3.csv \n",
"47694 Heliconius_wing_old_photos_2001_2019_part3.csv \n",
"47712 Heliconius_wing_old_photos_2001_2019_part3.csv \n",
"47637 Heliconius_wing_old_photos_2001_2019_part3.csv \n",
"47626 Heliconius_wing_old_photos_2001_2019_part3.csv \n",
"47692 Heliconius_wing_old_photos_2001_2019_part3.csv \n",
"47673 Heliconius_wing_old_photos_2001_2019_part3.csv \n",
"\n",
" zenodo_link \n",
"47693 https://zenodo.org/record/2553977 \n",
"47694 https://zenodo.org/record/2553977 \n",
"47712 https://zenodo.org/record/2553977 \n",
"47637 https://zenodo.org/record/2553977 \n",
"47626 https://zenodo.org/record/2553977 \n",
"47692 https://zenodo.org/record/2553977 \n",
"47673 https://zenodo.org/record/2553977 "
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jiggins_imgs[jiggins_imgs.Image_name.str.contains('tif')].sample(7)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>CAMID</th>\n",
" <th>X</th>\n",
" <th>Image_name</th>\n",
" <th>zenodo_name</th>\n",
" <th>zenodo_link</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>42543</th>\n",
" <td>CAM044049</td>\n",
" <td>32915</td>\n",
" <td>CAM044049_d.CR2</td>\n",
" <td>batch2.Peru.image.names.Zenodo.csv</td>\n",
" <td>https://zenodo.org/record/4287444</td>\n",
" </tr>\n",
" <tr>\n",
" <th>44160</th>\n",
" <td>CAM044261</td>\n",
" <td>36392</td>\n",
" <td>CAM044261_d.JPG</td>\n",
" <td>batch3.Peru.image.names.Zenodo.csv</td>\n",
" <td>https://zenodo.org/record/4288250</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14298</th>\n",
" <td>CAM010848</td>\n",
" <td>27458</td>\n",
" <td>CAM010848_d.JPG</td>\n",
" <td>2001_2.broods.batch.1.csv</td>\n",
" <td>https://zenodo.org/record/2549524</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19141</th>\n",
" <td>CAM016524</td>\n",
" <td>759</td>\n",
" <td>CAM016524_d.JPG</td>\n",
" <td>CAM.coll.images.batch1.csv</td>\n",
" <td>https://zenodo.org/record/1247307</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3229</th>\n",
" <td>19N2383</td>\n",
" <td>22175</td>\n",
" <td>19N2383_d.JPG</td>\n",
" <td>0.sheffield.ps.nn.ikiam.batch2.csv</td>\n",
" <td>https://zenodo.org/record/4288311</td>\n",
" </tr>\n",
" <tr>\n",
" <th>34948</th>\n",
" <td>CAM041352</td>\n",
" <td>14340</td>\n",
" <td>CAM041352_d.JPG</td>\n",
" <td>CAM.coll.images.batch9.csv</td>\n",
" <td>https://zenodo.org/record/2714333</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28072</th>\n",
" <td>CAM021080</td>\n",
" <td>11587</td>\n",
" <td>CAM021080_d.JPG</td>\n",
" <td>CAM.coll.images.batch7.csv</td>\n",
" <td>https://zenodo.org/record/2702457</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" CAMID X Image_name zenodo_name \\\n",
"42543 CAM044049 32915 CAM044049_d.CR2 batch2.Peru.image.names.Zenodo.csv \n",
"44160 CAM044261 36392 CAM044261_d.JPG batch3.Peru.image.names.Zenodo.csv \n",
"14298 CAM010848 27458 CAM010848_d.JPG 2001_2.broods.batch.1.csv \n",
"19141 CAM016524 759 CAM016524_d.JPG CAM.coll.images.batch1.csv \n",
"3229 19N2383 22175 19N2383_d.JPG 0.sheffield.ps.nn.ikiam.batch2.csv \n",
"34948 CAM041352 14340 CAM041352_d.JPG CAM.coll.images.batch9.csv \n",
"28072 CAM021080 11587 CAM021080_d.JPG CAM.coll.images.batch7.csv \n",
"\n",
" zenodo_link \n",
"42543 https://zenodo.org/record/4287444 \n",
"44160 https://zenodo.org/record/4288250 \n",
"14298 https://zenodo.org/record/2549524 \n",
"19141 https://zenodo.org/record/1247307 \n",
"3229 https://zenodo.org/record/4288311 \n",
"34948 https://zenodo.org/record/2714333 \n",
"28072 https://zenodo.org/record/2702457 "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jiggins_imgs[jiggins_imgs.Image_name.str.contains('d.')].sample(7)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'JPG', 'CR2', 'tif', 'jpeg', 'JPG(1)', 'jpg'}\n"
]
}
],
"source": [
"check_filetypes = []\n",
"for img_name in list(jiggins_imgs.Image_name.unique()):\n",
" check_filetypes.append(img_name.split(\".\")[1])\n",
"\n",
"print(set(check_filetypes))"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"# Note CR2 is raw, may be duplicates, would need conversion\n",
"file_types = [\"JPG\", \"jpg\", \"jpeg\", \"tif\", \"JPG(1)\", \"CR2\"]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"37821"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"images = []\n",
"\n",
"for img_name in list(jiggins_imgs.Image_name.unique()):\n",
" if img_name.split(\".\")[1] in file_types:\n",
" images.append(img_name)\n",
"\n",
"len(images)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Index: 49359 entries, 433 to 49791\n",
"Data columns (total 5 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 CAMID 49359 non-null object\n",
" 1 X 49359 non-null int64 \n",
" 2 Image_name 49359 non-null object\n",
" 3 zenodo_name 49359 non-null object\n",
" 4 zenodo_link 49359 non-null object\n",
"dtypes: int64(1), object(4)\n",
"memory usage: 2.3+ MB\n"
]
}
],
"source": [
"img = jiggins_imgs[jiggins_imgs.Image_name.isin(images)]\n",
"img.info()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"def get_file_type(filename):\n",
" jpgs = [\"JPG\", \"jpg\", \"jpeg\", \"JPG(1)\"]\n",
" file_type = filename.split(\".\")[1]\n",
" if file_type in jpgs:\n",
" return \"jpg\"\n",
" elif file_type == \"tif\":\n",
" return \"tif\"\n",
" elif file_type == \"CR2\":\n",
" return \"raw\"\n",
" else:\n",
" print(f\"{file_type} does not match known file types\")\n",
" return None"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Index: 49359 entries, 433 to 49791\n",
"Data columns (total 6 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 CAMID 49359 non-null object\n",
" 1 X 49359 non-null int64 \n",
" 2 Image_name 49359 non-null object\n",
" 3 zenodo_name 49359 non-null object\n",
" 4 zenodo_link 49359 non-null object\n",
" 5 file_type 49359 non-null object\n",
"dtypes: int64(1), object(5)\n",
"memory usage: 2.6+ MB\n"
]
}
],
"source": [
"img[\"file_type\"] = img[\"Image_name\"].apply(get_file_type)\n",
"img.info()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"img.to_csv(\"../zendo_img_master.csv\", index = False)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Unnamed: 0 49956\n",
"CAMID 12586\n",
"X 49956\n",
"Image_name 37843\n",
"dtype: int64\n",
"\n",
"CAMID 12586\n",
"X 49359\n",
"Image_name 37821\n",
"zenodo_name 36\n",
"dtype: int64\n"
]
}
],
"source": [
"print(jiggins[list(jiggins.columns)[:4]].nunique())\n",
"print()\n",
"print(img[list(img.columns[:4])].nunique())"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 49956 entries, 0 to 49955\n",
"Data columns (total 4 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Unnamed: 0 49956 non-null int64 \n",
" 1 CAMID 49359 non-null object\n",
" 2 X 49956 non-null int64 \n",
" 3 Image_name 49545 non-null object\n",
"dtypes: int64(2), object(2)\n",
"memory usage: 1.5+ MB\n",
"None\n",
"\n",
"<class 'pandas.core.frame.DataFrame'>\n",
"Index: 49359 entries, 433 to 49791\n",
"Data columns (total 4 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 CAMID 49359 non-null object\n",
" 1 X 49359 non-null int64 \n",
" 2 Image_name 49359 non-null object\n",
" 3 zenodo_name 49359 non-null object\n",
"dtypes: int64(1), object(3)\n",
"memory usage: 1.9+ MB\n",
"None\n"
]
}
],
"source": [
"print(jiggins[list(jiggins.columns)[:4]].info())\n",
"print()\n",
"print(img[list(img.columns[:4])].info())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We want to match these up on `X`, since all entries have a value and it is unique."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Index: 49359 entries, 433 to 49791\n",
"Data columns (total 25 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Unnamed: 0 49359 non-null int64 \n",
" 1 CAMID 49359 non-null object \n",
" 2 X 49359 non-null int64 \n",
" 3 Image_name 49359 non-null object \n",
" 4 Side 48288 non-null object \n",
" 5 zenodo_name 49359 non-null object \n",
" 6 zenodo_link 49359 non-null object \n",
" 7 Sequence 48424 non-null object \n",
" 8 Taxonomic.Name 45473 non-null object \n",
" 9 Locality 34015 non-null object \n",
" 10 Sample.accession 5884 non-null object \n",
" 11 Collected.by 5280 non-null object \n",
" 12 Other.Id 14382 non-null object \n",
" 13 Collected.By 0 non-null float64\n",
" 14 Date 33718 non-null object \n",
" 15 Dataset 40405 non-null object \n",
" 16 Store 39485 non-null object \n",
" 17 Eclosion.Date 97 non-null object \n",
" 18 Brood 14942 non-null object \n",
" 19 Death.Date 318 non-null object \n",
" 20 Cross.Type 5133 non-null object \n",
" 21 Stage 15 non-null object \n",
" 22 Sex 36243 non-null object \n",
" 23 Unit.Type 33890 non-null object \n",
" 24 Verbatim.Coordinates 0 non-null float64\n",
"dtypes: float64(2), int64(2), object(21)\n",
"memory usage: 9.8+ MB\n"
]
}
],
"source": [
"df_img = jiggins.loc[jiggins.X.isin(list(img.X))]\n",
"df_img.info()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Rename columns to have underscore"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/nv/f0fq1p1n1_3b11x579py_0q80000gq/T/ipykernel_66533/3055364590.py:1: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df_img.rename(columns = {\"Side\": \"View\",\n"
]
}
],
"source": [
"df_img.rename(columns = {\"Side\": \"View\",\n",
" \"Taxonomic.Name\": \"Taxonomic_Name\",\n",
" \"Cross.Type\": \"Cross_Type\",\n",
" \"Sample.accession\": \"Sample_accession\",\n",
" \"Collected.by\": \"Collected_by\",\n",
" \"Other.Id\": \"Other_ID\",\n",
" \"Death.Date\": \"Death_Date\",\n",
" \"Unit.Type\": \"Unit_Type\"},\n",
" inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"null_cols = [\"Unnamed: 0\", \"Collected.By\", \"Eclosion.Date\", \"Verbatim.Coordinates\"]\n",
"non_null_cols = [col for col in list(df_img.columns) if col not in null_cols]"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"df_img = df_img[non_null_cols]"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>CAMID</th>\n",
" <th>X</th>\n",
" <th>Image_name</th>\n",
" <th>View</th>\n",
" <th>zenodo_name</th>\n",
" <th>zenodo_link</th>\n",
" <th>Sequence</th>\n",
" <th>Taxonomic_Name</th>\n",
" <th>Locality</th>\n",
" <th>Sample_accession</th>\n",
" <th>...</th>\n",
" <th>Other_ID</th>\n",
" <th>Date</th>\n",
" <th>Dataset</th>\n",
" <th>Store</th>\n",
" <th>Brood</th>\n",
" <th>Death_Date</th>\n",
" <th>Cross_Type</th>\n",
" <th>Stage</th>\n",
" <th>Sex</th>\n",
" <th>Unit_Type</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>433</th>\n",
" <td>14N004</td>\n",
" <td>15131</td>\n",
" <td>14N004_d.JPG</td>\n",
" <td>dorsal</td>\n",
" <td>0.4.nn.requests2.csv</td>\n",
" <td>https://zenodo.org/record/4289223</td>\n",
" <td>4</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>Nadeau Sheffield</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>434</th>\n",
" <td>14N004</td>\n",
" <td>15132</td>\n",
" <td>14N004_v.JPG</td>\n",
" <td>ventral</td>\n",
" <td>0.4.nn.requests2.csv</td>\n",
" <td>https://zenodo.org/record/4289223</td>\n",
" <td>4</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>Nadeau Sheffield</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>435</th>\n",
" <td>14N009</td>\n",
" <td>15134</td>\n",
" <td>14N009_v.JPG</td>\n",
" <td>ventral</td>\n",
" <td>0.4.nn.requests2.csv</td>\n",
" <td>https://zenodo.org/record/4289223</td>\n",
" <td>9</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>Nadeau Sheffield</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>436</th>\n",
" <td>14N009</td>\n",
" <td>15133</td>\n",
" <td>14N009_d.JPG</td>\n",
" <td>dorsal</td>\n",
" <td>0.4.nn.requests2.csv</td>\n",
" <td>https://zenodo.org/record/4289223</td>\n",
" <td>9</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>Nadeau Sheffield</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>437</th>\n",
" <td>14N014</td>\n",
" <td>15136</td>\n",
" <td>14N014_v.JPG</td>\n",
" <td>ventral</td>\n",
" <td>0.4.nn.requests2.csv</td>\n",
" <td>https://zenodo.org/record/4289223</td>\n",
" <td>14</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>Nadeau Sheffield</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 21 columns</p>\n",
"</div>"
],
"text/plain": [
" CAMID X Image_name View zenodo_name \\\n",
"433 14N004 15131 14N004_d.JPG dorsal 0.4.nn.requests2.csv \n",
"434 14N004 15132 14N004_v.JPG ventral 0.4.nn.requests2.csv \n",
"435 14N009 15134 14N009_v.JPG ventral 0.4.nn.requests2.csv \n",
"436 14N009 15133 14N009_d.JPG dorsal 0.4.nn.requests2.csv \n",
"437 14N014 15136 14N014_v.JPG ventral 0.4.nn.requests2.csv \n",
"\n",
" zenodo_link Sequence Taxonomic_Name Locality \\\n",
"433 https://zenodo.org/record/4289223 4 NaN NaN \n",
"434 https://zenodo.org/record/4289223 4 NaN NaN \n",
"435 https://zenodo.org/record/4289223 9 NaN NaN \n",
"436 https://zenodo.org/record/4289223 9 NaN NaN \n",
"437 https://zenodo.org/record/4289223 14 NaN NaN \n",
"\n",
" Sample_accession ... Other_ID Date Dataset Store Brood \\\n",
"433 NaN ... NaN NaN Nadeau Sheffield NaN NaN \n",
"434 NaN ... NaN NaN Nadeau Sheffield NaN NaN \n",
"435 NaN ... NaN NaN Nadeau Sheffield NaN NaN \n",
"436 NaN ... NaN NaN Nadeau Sheffield NaN NaN \n",
"437 NaN ... NaN NaN Nadeau Sheffield NaN NaN \n",
"\n",
" Death_Date Cross_Type Stage Sex Unit_Type \n",
"433 NaN NaN NaN NaN NaN \n",
"434 NaN NaN NaN NaN NaN \n",
"435 NaN NaN NaN NaN NaN \n",
"436 NaN NaN NaN NaN NaN \n",
"437 NaN NaN NaN NaN NaN \n",
"\n",
"[5 rows x 21 columns]"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_img.head()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Index: 49359 entries, 433 to 49791\n",
"Data columns (total 22 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 CAMID 49359 non-null object\n",
" 1 X 49359 non-null int64 \n",
" 2 Image_name 49359 non-null object\n",
" 3 View 48288 non-null object\n",
" 4 zenodo_name 49359 non-null object\n",
" 5 zenodo_link 49359 non-null object\n",
" 6 Sequence 48424 non-null object\n",
" 7 Taxonomic_Name 45473 non-null object\n",
" 8 Locality 34015 non-null object\n",
" 9 Sample_accession 5884 non-null object\n",
" 10 Collected_by 5280 non-null object\n",
" 11 Other_ID 14382 non-null object\n",
" 12 Date 33718 non-null object\n",
" 13 Dataset 40405 non-null object\n",
" 14 Store 39485 non-null object\n",
" 15 Brood 14942 non-null object\n",
" 16 Death_Date 318 non-null object\n",
" 17 Cross_Type 5133 non-null object\n",
" 18 Stage 15 non-null object\n",
" 19 Sex 36243 non-null object\n",
" 20 Unit_Type 33890 non-null object\n",
" 21 file_type 49359 non-null object\n",
"dtypes: int64(1), object(21)\n",
"memory usage: 8.7+ MB\n"
]
}
],
"source": [
"df_img[\"file_type\"] = df_img[\"Image_name\"].apply(get_file_type)\n",
"df_img.info()"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"df_img.to_csv(\"../Jiggins_Zenodo_Img_Master.csv\", index = False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Remaining Question is just if the raw images are duplicated as jpgs or are unique. The `CAMID`'s correspond to samples (as noted in the [zenodo records](https://zenodo.org/record/4289223)), so we can check a single view for this."
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"View\n",
"dorsal 15128\n",
"ventral 13424\n",
"Dorsal 8360\n",
"Ventral 8090\n",
"ventral 1644\n",
"forewing dorsal 406\n",
"hindwing dorsal 406\n",
"forewing ventral 406\n",
"hindwing ventral 406\n",
"Dorsal and Ventral 18\n",
"Name: count, dtype: int64"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_img.View.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['dorsal',\n",
" 'Dorsal',\n",
" 'Dorsal and Ventral',\n",
" 'forewing dorsal',\n",
" 'hindwing dorsal']"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dorsal_labels = [view for view in list(df_img.View.dropna().unique()) if \"dorsal\" in view.lower()]\n",
"dorsal_labels"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Index: 24318 entries, 433 to 49790\n",
"Data columns (total 22 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 CAMID 24318 non-null object\n",
" 1 X 24318 non-null int64 \n",
" 2 Image_name 24318 non-null object\n",
" 3 View 24318 non-null object\n",
" 4 zenodo_name 24318 non-null object\n",
" 5 zenodo_link 24318 non-null object\n",
" 6 Sequence 23851 non-null object\n",
" 7 Taxonomic_Name 22511 non-null object\n",
" 8 Locality 16773 non-null object\n",
" 9 Sample_accession 2953 non-null object\n",
" 10 Collected_by 2656 non-null object\n",
" 11 Other_ID 6931 non-null object\n",
" 12 Date 16847 non-null object\n",
" 13 Dataset 19935 non-null object\n",
" 14 Store 19894 non-null object\n",
" 15 Brood 7264 non-null object\n",
" 16 Death_Date 107 non-null object\n",
" 17 Cross_Type 2572 non-null object\n",
" 18 Stage 8 non-null object\n",
" 19 Sex 17875 non-null object\n",
" 20 Unit_Type 16693 non-null object\n",
" 21 file_type 24318 non-null object\n",
"dtypes: int64(1), object(21)\n",
"memory usage: 4.3+ MB\n"
]
}
],
"source": [
"df_img_dorsal = df_img.loc[df_img[\"View\"].isin(dorsal_labels)]\n",
"df_img_dorsal.info()"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"CAMID 12296\n",
"X 24318\n",
"Image_name 18539\n",
"View 5\n",
"zenodo_name 36\n",
"zenodo_link 32\n",
"Sequence 11107\n",
"Taxonomic_Name 359\n",
"Locality 642\n",
"Sample_accession 1564\n",
"Collected_by 12\n",
"Other_ID 2897\n",
"Date 794\n",
"Dataset 8\n",
"Store 142\n",
"Brood 217\n",
"Death_Date 64\n",
"Cross_Type 30\n",
"Stage 1\n",
"Sex 3\n",
"Unit_Type 6\n",
"file_type 3\n",
"dtype: int64"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_img_dorsal.nunique()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We still have repeated `CAMID`s."
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/nv/f0fq1p1n1_3b11x579py_0q80000gq/T/ipykernel_66533/4002726096.py:1: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df_img_dorsal[\"CAM_Dupe\"] = df_img_dorsal.duplicated(subset = \"CAMID\", keep = False)\n"
]
}
],
"source": [
"df_img_dorsal[\"CAM_Dupe\"] = df_img_dorsal.duplicated(subset = \"CAMID\", keep = False)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"CAM_Dupe\n",
"True 20765\n",
"False 3553\n",
"Name: count, dtype: int64"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_img_dorsal[\"CAM_Dupe\"].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Index: 20765 entries, 709 to 49692\n",
"Data columns (total 23 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 CAMID 20765 non-null object\n",
" 1 X 20765 non-null int64 \n",
" 2 Image_name 20765 non-null object\n",
" 3 View 20765 non-null object\n",
" 4 zenodo_name 20765 non-null object\n",
" 5 zenodo_link 20765 non-null object\n",
" 6 Sequence 20299 non-null object\n",
" 7 Taxonomic_Name 19368 non-null object\n",
" 8 Locality 15301 non-null object\n",
" 9 Sample_accession 2657 non-null object\n",
" 10 Collected_by 2653 non-null object\n",
" 11 Other_ID 6107 non-null object\n",
" 12 Date 15980 non-null object\n",
" 13 Dataset 16862 non-null object\n",
" 14 Store 17579 non-null object\n",
" 15 Brood 5414 non-null object\n",
" 16 Death_Date 26 non-null object\n",
" 17 Cross_Type 2572 non-null object\n",
" 18 Stage 0 non-null object\n",
" 19 Sex 14897 non-null object\n",
" 20 Unit_Type 13814 non-null object\n",
" 21 file_type 20765 non-null object\n",
" 22 CAM_Dupe 20765 non-null bool \n",
"dtypes: bool(1), int64(1), object(21)\n",
"memory usage: 3.7+ MB\n"
]
}
],
"source": [
"duplicate_samples = df_img_dorsal.loc[df_img_dorsal[\"CAM_Dupe\"]]\n",
"duplicate_samples.info()"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"CAMID 8743\n",
"X 20765\n",
"Image_name 14986\n",
"View 5\n",
"zenodo_name 32\n",
"zenodo_link 31\n",
"Sequence 8407\n",
"Taxonomic_Name 328\n",
"Locality 516\n",
"Sample_accession 1268\n",
"Collected_by 12\n",
"Other_ID 2073\n",
"Date 578\n",
"Dataset 4\n",
"Store 130\n",
"Brood 144\n",
"Death_Date 12\n",
"Cross_Type 30\n",
"Stage 0\n",
"Sex 3\n",
"Unit_Type 3\n",
"file_type 3\n",
"CAM_Dupe 1\n",
"dtype: int64"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"duplicate_samples.nunique()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"All sources are impacted."
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"file_type\n",
"jpg 14788\n",
"raw 5956\n",
"tif 21\n",
"Name: count, dtype: int64"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"duplicate_samples.file_type.value_counts()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will get some added duplication from `forewing dorsal` and `hindwing dorsal`, so we should filter those down to just one for a more accurate assessment."
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True 680\n",
"False 132\n",
"Name: count, dtype: int64"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"duplicate_samples.loc[duplicate_samples[\"View\"].isin([\"forewing dorsal\", \"hindwing dorsal\"])].duplicated(\"CAMID\", keep = \"first\").value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"CAMID 132\n",
"X 812\n",
"Image_name 528\n",
"View 2\n",
"zenodo_name 3\n",
"zenodo_link 3\n",
"Sequence 132\n",
"Taxonomic_Name 7\n",
"Locality 59\n",
"Sample_accession 0\n",
"Collected_by 0\n",
"Other_ID 127\n",
"Date 16\n",
"Dataset 1\n",
"Store 17\n",
"Brood 0\n",
"Death_Date 0\n",
"Cross_Type 0\n",
"Stage 0\n",
"Sex 0\n",
"Unit_Type 0\n",
"file_type 2\n",
"CAM_Dupe 1\n",
"dtype: int64"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"duplicate_samples.loc[duplicate_samples[\"View\"].isin([\"forewing dorsal\", \"hindwing dorsal\"])].nunique()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is only a couple zenodo links, so it is not contributing to the duplication across sources. It also covers two file types."
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Index: 3553 entries, 433 to 49790\n",
"Data columns (total 23 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 CAMID 3553 non-null object\n",
" 1 X 3553 non-null int64 \n",
" 2 Image_name 3553 non-null object\n",
" 3 View 3553 non-null object\n",
" 4 zenodo_name 3553 non-null object\n",
" 5 zenodo_link 3553 non-null object\n",
" 6 Sequence 3552 non-null object\n",
" 7 Taxonomic_Name 3143 non-null object\n",
" 8 Locality 1472 non-null object\n",
" 9 Sample_accession 296 non-null object\n",
" 10 Collected_by 3 non-null object\n",
" 11 Other_ID 824 non-null object\n",
" 12 Date 867 non-null object\n",
" 13 Dataset 3073 non-null object\n",
" 14 Store 2315 non-null object\n",
" 15 Brood 1850 non-null object\n",
" 16 Death_Date 81 non-null object\n",
" 17 Cross_Type 0 non-null object\n",
" 18 Stage 8 non-null object\n",
" 19 Sex 2978 non-null object\n",
" 20 Unit_Type 2879 non-null object\n",
" 21 file_type 3553 non-null object\n",
" 22 CAM_Dupe 3553 non-null bool \n",
"dtypes: bool(1), int64(1), object(21)\n",
"memory usage: 641.9+ KB\n"
]
}
],
"source": [
"unique_samples = df_img_dorsal.loc[~df_img_dorsal[\"CAM_Dupe\"]]\n",
"unique_samples.info()"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"CAMID 3553\n",
"X 3553\n",
"Image_name 3553\n",
"View 3\n",
"zenodo_name 21\n",
"zenodo_link 18\n",
"Sequence 3016\n",
"Taxonomic_Name 109\n",
"Locality 160\n",
"Sample_accession 296\n",
"Collected_by 3\n",
"Other_ID 824\n",
"Date 265\n",
"Dataset 8\n",
"Store 76\n",
"Brood 95\n",
"Death_Date 52\n",
"Cross_Type 0\n",
"Stage 1\n",
"Sex 3\n",
"Unit_Type 6\n",
"file_type 2\n",
"CAM_Dupe 1\n",
"dtype: int64"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"unique_samples.nunique()"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"file_type\n",
"jpg 3535\n",
"tif 18\n",
"Name: count, dtype: int64"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"unique_samples.file_type.value_counts()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ah, well all raw images are indeed duplicated. Let's check if they're duplicated among themselves or duplicated to other file types (eg., jpg)."
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(5753, 23)\n"
]
},
{
"data": {
"text/plain": [
"4944"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(duplicate_samples.loc[(duplicate_samples[\"View\"] != \"hindwing dorsal\") & (duplicate_samples[\"file_type\"] == \"raw\")].shape)\n",
"duplicate_samples.loc[(duplicate_samples[\"View\"] != \"hindwing dorsal\") & (duplicate_samples[\"file_type\"] == \"raw\"), \"CAMID\"].nunique()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Okay, so there are multiple raw images of the same sample. "
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"View\n",
"dorsal 4219\n",
"Dorsal 1331\n",
"forewing dorsal 203\n",
"Name: count, dtype: int64"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"duplicate_raw = duplicate_samples.loc[(duplicate_samples[\"View\"] != \"hindwing dorsal\") & (duplicate_samples[\"file_type\"] == \"raw\")]\n",
"duplicate_raw.View.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"raw_dupe\n",
"False 4240\n",
"True 1513\n",
"Name: count, dtype: int64\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/nv/f0fq1p1n1_3b11x579py_0q80000gq/T/ipykernel_66533/3049709573.py:1: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" duplicate_raw[\"raw_dupe\"] = duplicate_raw.duplicated(\"CAMID\", keep = False)\n"
]
},
{
"data": {
"text/plain": [
"View\n",
"dorsal 1159\n",
"Dorsal 212\n",
"forewing dorsal 142\n",
"Name: count, dtype: int64"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"duplicate_raw[\"raw_dupe\"] = duplicate_raw.duplicated(\"CAMID\", keep = False)\n",
"print(duplicate_raw[\"raw_dupe\"].value_counts())\n",
"print()\n",
"duplicate_raw.loc[duplicate_raw[\"raw_dupe\"], \"View\"].value_counts()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There does not seem to be an easy method of filtering these other than just keeping the first instance of a particular `CAMID`.\n",
"\n",
"It is interesting that non of the Cross Types are unique. Is that just because we have the forewing/hindwing duplication?"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(2572, 23)\n"
]
},
{
"data": {
"text/plain": [
"820"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(duplicate_samples.loc[(duplicate_samples[\"View\"] != \"hindwing dorsal\") & (duplicate_samples[\"Cross_Type\"].notna())].shape)\n",
"duplicate_samples.loc[(duplicate_samples[\"View\"] != \"hindwing dorsal\") & (duplicate_samples[\"Cross_Type\"].notna()), \"CAMID\"].nunique()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There still seem to be 3 images for each specimen."
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"cross_dupe\n",
"True 2572\n",
"Name: count, dtype: int64\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/nv/f0fq1p1n1_3b11x579py_0q80000gq/T/ipykernel_66533/2419376272.py:2: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" duplicate_cross[\"cross_dupe\"] = duplicate_cross.duplicated(\"CAMID\", keep = False)\n"
]
},
{
"data": {
"text/plain": [
"View\n",
"dorsal 2322\n",
"Dorsal 250\n",
"Name: count, dtype: int64"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"duplicate_cross = duplicate_samples.loc[(duplicate_samples[\"View\"] != \"hindwing dorsal\") & (duplicate_samples[\"Cross_Type\"].notna())]\n",
"duplicate_cross[\"cross_dupe\"] = duplicate_cross.duplicated(\"CAMID\", keep = False)\n",
"print(duplicate_cross[\"cross_dupe\"].value_counts())\n",
"print()\n",
"duplicate_cross.View.value_counts()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Yes, they are all duplicated."
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"file_type\n",
"jpg 1753\n",
"raw 819\n",
"Name: count, dtype: int64"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"duplicate_cross.file_type.value_counts()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It seems there's one raw image for each sample (other than one) and then everything else is jpg. I wonder if this includes the `JPG(1)` values."
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"count = 0\n",
"for img_name in list(duplicate_cross.Image_name.unique()):\n",
" if \"JPG(1)\" in img_name:\n",
" count = count + 1\n",
"count"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"No, that's not the issue."
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"count = 0\n",
"for img_name in list(duplicate_samples.Image_name.unique()):\n",
" if \"JPG(1)\" in img_name:\n",
" count = count + 1\n",
"count"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"count = 0\n",
"for img_name in list(df_img_dorsal.Image_name.unique()):\n",
" if \"JPG(1)\" in img_name:\n",
" count = count + 1\n",
"count"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"count = 0\n",
"for img_name in list(df_img.Image_name.unique()):\n",
" if \"JPG(1)\" in img_name:\n",
" count = count + 1\n",
"count"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There's only one instance of this, and it's not a dorsal image, so that's not part of the issue."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's save all the dorsal images as another CSV (with the duplicate `CAMID` indicator)."
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"df_img_dorsal.to_csv(\"../Jiggins_Zenodo_dorsal_Img_Master.csv\", index = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "std",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|