Datasets:
Notebook finding and fixing the '-' in 'Collected_by' column of full and heliconius CSVs
Browse files- notebooks/Data-gen-1-4.ipynb +136 -0
notebooks/Data-gen-1-4.ipynb
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd\n",
|
10 |
+
"import numpy as np"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "markdown",
|
15 |
+
"metadata": {},
|
16 |
+
"source": [
|
17 |
+
"# Fix \"-\" in \"Collected_by\" Columns in full_master and Heliconius subsets\n",
|
18 |
+
"\n",
|
19 |
+
"See [discussion](https://huggingface.co/datasets/imageomics/Heliconius-Collection_Cambridge-Butterfly/discussions/7). I then tested each column that showed up as \"null\" in type on the dataset viewer (searching for df[col] == \"-\")."
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "code",
|
24 |
+
"execution_count": 2,
|
25 |
+
"metadata": {},
|
26 |
+
"outputs": [],
|
27 |
+
"source": [
|
28 |
+
"# while main is commit 3264ec40dbc9db025e027ddb2abca0914cd6500f\n",
|
29 |
+
"df = pd.read_csv(\"https://huggingface.co/datasets/imageomics/Heliconius-Collection_Cambridge-Butterfly/resolve/main/img_master.csv\", low_memory= False)\n",
|
30 |
+
"df_heli = pd.read_csv(\"https://huggingface.co/datasets/imageomics/Heliconius-Collection_Cambridge-Butterfly/resolve/main/Heliconius_img_master.csv\", low_memory=False)"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": 3,
|
36 |
+
"metadata": {},
|
37 |
+
"outputs": [
|
38 |
+
{
|
39 |
+
"name": "stdout",
|
40 |
+
"output_type": "stream",
|
41 |
+
"text": [
|
42 |
+
"column Collected_by has 62 instances of '-'\n"
|
43 |
+
]
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"source": [
|
47 |
+
"for col in list(df.columns):\n",
|
48 |
+
" temp = df.loc[df[col] == \"-\"]\n",
|
49 |
+
" if temp.shape[0] > 0:\n",
|
50 |
+
" print(f\"column {col} has {temp.shape[0]} instances of '-'\")"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": 4,
|
56 |
+
"metadata": {},
|
57 |
+
"outputs": [
|
58 |
+
{
|
59 |
+
"name": "stdout",
|
60 |
+
"output_type": "stream",
|
61 |
+
"text": [
|
62 |
+
"column Collected_by has 62 instances of '-'\n"
|
63 |
+
]
|
64 |
+
}
|
65 |
+
],
|
66 |
+
"source": [
|
67 |
+
"for col in list(df_heli.columns):\n",
|
68 |
+
" temp = df_heli.loc[df_heli[col] == \"-\"]\n",
|
69 |
+
" if temp.shape[0] > 0:\n",
|
70 |
+
" print(f\"column {col} has {temp.shape[0]} instances of '-'\")"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "markdown",
|
75 |
+
"metadata": {},
|
76 |
+
"source": [
|
77 |
+
"Looks like we just need to fix the `Collected_by` column for both CSVs. We'll replace these with `null` so that it doesn't break the dataset viewer."
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"cell_type": "code",
|
82 |
+
"execution_count": 5,
|
83 |
+
"metadata": {},
|
84 |
+
"outputs": [],
|
85 |
+
"source": [
|
86 |
+
"df.loc[df[\"Collected_by\"] == \"-\", \"Collected_by\"] = np.nan\n",
|
87 |
+
"df_heli.loc[df_heli[\"Collected_by\"] == \"-\", \"Collected_by\"] = np.nan"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "markdown",
|
92 |
+
"metadata": {},
|
93 |
+
"source": [
|
94 |
+
"## Now let's save the fix"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "code",
|
99 |
+
"execution_count": 6,
|
100 |
+
"metadata": {},
|
101 |
+
"outputs": [],
|
102 |
+
"source": [
|
103 |
+
"df.to_csv(\"../img_master.csv\", index = False)\n",
|
104 |
+
"df_heli.to_csv(\"../Heliconius_img_master.csv\", index = False)"
|
105 |
+
]
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"cell_type": "code",
|
109 |
+
"execution_count": null,
|
110 |
+
"metadata": {},
|
111 |
+
"outputs": [],
|
112 |
+
"source": []
|
113 |
+
}
|
114 |
+
],
|
115 |
+
"metadata": {
|
116 |
+
"kernelspec": {
|
117 |
+
"display_name": "std",
|
118 |
+
"language": "python",
|
119 |
+
"name": "python3"
|
120 |
+
},
|
121 |
+
"language_info": {
|
122 |
+
"codemirror_mode": {
|
123 |
+
"name": "ipython",
|
124 |
+
"version": 3
|
125 |
+
},
|
126 |
+
"file_extension": ".py",
|
127 |
+
"mimetype": "text/x-python",
|
128 |
+
"name": "python",
|
129 |
+
"nbconvert_exporter": "python",
|
130 |
+
"pygments_lexer": "ipython3",
|
131 |
+
"version": "3.11.3"
|
132 |
+
}
|
133 |
+
},
|
134 |
+
"nbformat": 4,
|
135 |
+
"nbformat_minor": 2
|
136 |
+
}
|